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Abstract
Two-component systems (TCSs) play vital functions in the adaptation of plants to environmental stres-

ses. To identify soybean TCS genes involved in the regulation of drought stress response, we performed
tissue-specific expression profiling of all 83 putative TCS genes in plants subjected to dehydration.
Under well-watered conditions, the majority of soybean TCS genes were expressed higher in the root
tissues. Additionally, a high variability in transcript abundance was observed for the TCS genes in both
roots and shoots. Under dehydration, TCS genes were more responsive in shoots than in roots. Further
analysis indicated that 50% more TCS genes were repressed by dehydration than induced. Specifically,
18 genes were induced by 2-fold or more, whereas 33 genes were down-regulated at least 2-fold by dehy-
dration. TCS genes putatively involved in cytokinin and ethylene signallings strongly responded to dehy-
dration, suggesting that crosstalk exists between different hormonal and stress pathways. Our study
provides the first glance into the complex regulatory roles of soybean TCSs underlying their functions
in response to dehydration. Additionally, these systematic expression analyses identified excellent dehy-
dration-responsive candidate genes to further clarify soybean TCS functions in drought response and to
enable the development of improved drought tolerance in transgenic soybeans.
Key words: soybean; two-component system; dehydration; expression profiling; RT-qPCR

1. Introduction

Drought stress is one of the several adverse environ-
mental factors that are commonly encountered by
plants and can result in significant reductions in crop
productivity worldwide. In response to drought stress,
plants activate a number of endogenous defence mech-
anisms that function to increase the drought toler-
ance.1 Plants have evolved molecular machinery that
initiates complex signal-transduction networks which
minimize the impact of a suboptimal water supply on

plants. The identification of signalling pathways acting
in stress-affected cells and the mutual interactions
between these pathways are the major research
efforts. As a result of the complexities of stress-related
signal transduction and its huge potential for impact
on modern agriculture, this research field has garnered
a substantial amount of attention. The early events of
plant adaptation to environmental stresses involve the
perception of stress signals and subsequent signal trans-
duction, leading to the activation of various physiologi-
cal and metabolic responses.1–4
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In the signal-transduction networks involved in the
perception of stress signals to stress-responsive gene
expression, phosphorylation, which is mediated by
two-component systems (TCSs) or His-to-Asp phos-
phorelays, is a key mechanism for stress signal trans-
duction in cells. TCSs, consisting of sensor hybrid
histidine kinases (HKs), histidine phosphotransfers
(HPts) and effector response regulators (RRs), have
been systematically identified and analysed in two
completely sequenced and well-annotated model
plant species: Arabidopsis thaliana and rice (Oryza
sativa).5–7 A number of studies in Arabidopsis have
suggested that among the Arabidopsis HKs (AHKs),
AHK1, AHK2, AHK3 and AHK4 function in response
to drought stress. In planta studies have demonstrated
that the cytokinin (CK)-independent AHK1 functions
as a positive regulator, whereas the CK-responsive
AHK2, AHK3 and AHK4 function as negative regula-
tors in drought stress signalling in both ABA-depen-
dent and ABA-independent pathways.8,9 Although
the AHK2, AHK3 and AHK4 proteins all positively
regulate shoot growth, they exert a negative regu-
lation of root growth.10–13 AHK1 also positively regu-
lates shoot growth but its function in root growth is
not known at this time.8 The involvement of AHKs
in drought stress response suggests that the down-
stream Arabidopsis HPts (AHPs) and Arabidopsis RRs
(ARRs) may also function in drought stress response.
However, at the present time, there is not any in
planta evidence or expression data, which have
characterized the regulatory roles of AHPs in
drought stress signalling. As for the ARRs, which can
be classified into the type-A, type-B, type-C and
pseudo ARRs based on their sequence signatures,14

loss-of-function studies indicated that among the
type-A ARRs, ARR3, ARR4, ARR5 and ARR6 may func-
tion as positive regulators, whereas ARR8 and ARR9
as negative regulators in osmotic stress response,
suggesting that these type-A ARRs might play a role
in drought stress response.9 Recently, mutations in
the pseudo aprr5, aprr7 and aprr9 genes enhanced
tolerance of the triple mutant to drought stress,
demonstrating that these three APRRs play negative
roles in drought response.15 Since the rice TCS genes
have been identified,7 expression studies have indi-
cated that transcription of several rice TCS members,
including HK, HPt and RR encoding genes, is altered
by salt stress treatments.16–18 However, drought-
related functions and/or expression profiling of rice
TCS genes under dehydration and/or drought stress
remain to be determined. TCSs were also identified
in the important model legume Lotus japonicus.19

None of the abiotic stress-related data are currently
available for L. japonicus TCS components.

Global soybean (Glycine max) production is fre-
quently impacted by drought stress, which may

reduce soybean yield by �40%.20 Given the impor-
tance of TCS signalling pathways in the regulation of
various biological processes and responses to environ-
mental stimuli, including drought stress, we have
recently compiled a list of putative TCS-associated
components in soybean.21 Within the soybean
genome, a total of 21 HK, 10 authentic and 3
pseudo HPt, 18 type-A RR, 15 type-B RR, 3 type-C
RR and 13 pseudo RR encoding genes were identified.
Comparative analysis of the Arabidopsis, rice and
soybean TCS members revealed the conserved archi-
tecture of the TCSs between these plants.21 In this
study, we aimed to identify tissue-related and dehy-
dration-related soybean TCS genes by characterizing
their expression profiles in both root and shoot
tissues of soybean plants treated with a time-coursed
dehydration stress. These findings will enable us to
perform in planta functional analyses of the candidates
and will allow us to identify appropriate stress-respon-
sive TCS candidate genes and their respective promo-
ters for the future improvement of drought resistance
in soybean via genetic engineering. Therefore, the
identification, characterization and molecular tailoring
of novel TCS members will have the potential to over-
come a number of important limitations involved in
the generation of transgenic soybean plants with
superior yield under drought conditions.1,2,8

2. Materials and methods

2.1. Plant growth, dehydration treatment and
collection of tissues

Soybean cv. Williams 82 seeds were germinated in
6-l pots containing vermiculite and were well-
watered and grown under greenhouse conditions
(continuous 308C temperature, photoperiod of
12 h/12 h, 80 mmol m22 s21 photon flux density
and 60% relative humidity). For tissue-specific
expression profiling of TCS genes, root and shoot
tissues were collected from 12-day-old soybean
plants in three biological repeats. For expression pro-
filing of TCS genes under dehydration stress, the dehy-
dration treatment was carried out in time-course
experiments to identify dynamic changes in tran-
scripts in response to dehydration stress. Specifically,
12-day-old plants were carefully removed from soil,
and roots were gently washed to remove soil. The
plants were subsequently transferred onto a filter
paper and allowed to dry for 2 and 10 h under the
following conditions: 60% relative humidity, 258C
temperature and 10 mmol m22 s21 photon flux light
intensity. The intensity of the dehydration stress treat-
ments was quantified by the levels of relative water con-
tents and standardized water contents, which were
determined as described previously (n¼ 5;
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Supplementary Fig. S1).22 For mock control, seedlings
were removed from soil and washed exactly as above,
then grown hydroponically in water for 2 and 10 h
under the same conditions. Root and shoot tissues of
dehydrated and control plants were separately collected
in three biological repeats for expression profiling.

2.2. RNA isolation, DNase treatment and cDNA
synthesis

Plant tissue samples were ground into a fine powder
using a mortar and pestle. Total RNA was isolated
using the TRIZOL reagent (Invitrogen), and RNA con-
centration was determined using the NanoDrop ND-
1000 UV-Vis spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA). For each
sample, 4 mg of total RNA was digested according to
the manufacturer’s instructions in a 25-ml volume
with Turbo DNA-free DNaseI to remove genomic
DNA contamination (Ambion, Austin, TX, USA). After
DNaseI treatment, RNA concentration was deter-
mined again with the NanoDrop spectrophotometer.
The A260/A280 values of all RNA samples used in this
study were 2.08 or higher, and the A260/A230 ratios
of all samples were higher than 2.2. First-strand
cDNA synthesis was performed using 1 mg of
DNaseI-treated RNA with the ReverTra Acew qPCR RT
Kit (Toyobo, Japan) in a 20-ml reaction volume
according to the manufacturer’s supplied protocol.

2.3. Quantitative real-time PCR
Gene-specific primers for soybean TCS genes were

designed using the Primer3 software.23 Primer speci-
ficity was confirmed by blasting each primer sequence
against the soybean genome (Glyma1 model),24 fol-
lowed by analysing the melting curves and amplicon
fragments. Primers were redesigned if the correspond-
ing melting curve did not yield a single sharp peak
and/or if they had an electrophoresis pattern that
failed to produce a single amplicon of the correct pre-
dicted length. The CYP2 gene was selected as a refer-
ence gene in the expression profiling of soybean genes
as recommended previously.25 Quantitative real-time
PCRs (RT-qPCR) were performed in 96-well plates on
a Stratagene MX3000P system (Agilent Technologies,
Santa Clara, CA, USA) using ThunderbirdTM SYBRw

qPCR Mix (Toyobo, Japan) reagents. Primer sets of
0.4 mM final concentrations for each primer were
used in a final volume of 10 ml well21. The thermal
profile of the RT-qPCRs was at 958C for 1 min, 40
cycles at 958C for 15 s and at 608C for 1 min.
Dissociation curves were obtained using a thermal
melting profile performed after the last PCR cycle:
958C for 15 s followed by a constant increase in the
temperature between 608C and 958C. Background-
corrected raw fluorescence data were exported from

the MX3000P system and analysed in LinRegPCR soft-
ware with a built-in baseline correction and amplifica-
tion efficiency calculation.26,27 Amplicon-based
fluorescence thresholds were used to obtain the Ct

values, and these values together with the amplicon-
based mean efficiency were used for calculating the
initial quantity of mRNA transcripts. Finally, the
mRNA levels of each transcript were normalized
with those of the corresponding CYP2 transcript.

2.4. Statistical analysis of the data
Mean values of three biological repeats were used

to plot figures, and error bars on each figure represent
the standard errors. When appropriate, a Student’s t-
test (one tail, unpaired, equal variance) was used to
determine the statistical significance of the differen-
tial expression patterns between tissues and/or
between treatments. Differential expression data
which failed to pass the t-test with a P-value ,0.05
were regarded as insignificant. These insignificant
data were regarded as ‘ubiquitous’ in the case of
tissue-specific comparisons and as ‘unresponsive’ in
comparisons between normal and stress treatments;
regardless of the fold change between the expression
levels. Dehydration-responsive genes were defined as
the differentially expressed genes with at least 2-fold
induction or repression at 2 h and/or 10 h after dehy-
dration treatment, whereas their expression in the
mock control seedlings did not significantly change
in a similar manner (Student’s t-test, P , 0.05).

3. Results and discussion

3.1. Confirmation of primer specificity
Since the specificity of primers is crucial in RT-qPCR

assays,28 we carefully designed each primer pair as
described in the ‘Materials and methods’ section.
Furthermore, we determined their specificity by ana-
lysing their respective melting curves and amplicon
fragments. All primer sets used in this study produced
only one peak in their respective melting curves, and
corresponding amplicons detected under our RT-
qPCR conditions generated a single band of expected
size on 2% agarose gels (data not shown). The
sequences and calculated amplification efficiencies
of the specific primers used in this study can be
obtained in Supplementary Table S1.

3.2. Expression of the soybean TCS genes in root and
shoot tissues

Increasing evidence suggests that the mechanisms
of drought resistance are either related to root and/
or shoot traits.29 Root morphology and development
is one of the key traits that is correlated with mechan-
isms of drought resistance.30 Because the distribution
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of water within the rhizosphere is critical to maintain-
ing function in different environmental conditions,
plasticity for root traits is a vital factor to acquire
resources. For instance, plants can adapt to drought
by developing a longer taproot which helps reach
lower soil layers where water is more readily available.
In addition, an extensive fibrous root system can be
useful for foraging subsoil surface moisture and nutri-
ents such as phosphorus.29 On the other hand, a
restraint of shoot growth has been shown to be
advantageous in adverse environments by minimizing
the evaporative leaf surface area. The growth restraint
conferred by DELLA proteins, whose functions are
regulated by different hormones such as gibberellin
(GA), auxin and ethylene, is beneficial and promotes
survival.31 Overexpression of the GhDREB1 gene
from cotton (Gossypium hirsutum) in Arabidopsis
resulted in a cold, salt and osmotic stress-tolerant
phenotype as a consequence of growth retardation
caused by GA deficiency, decreased sensitivity to CKs
and repression of CK signalling.32 Therefore, the
appropriate control of shoot- and root-related mor-
phological traits is a promising approach for develop-
ing drought resistance in a number of crops, including
soybean.29,31,32

In Arabidopsis, numerous reports have suggested
that TCS members regulate shoot and root growth
and branching.10–14 In order to identify candidate
genes that could be potentially used for enhancing
drought resistance by altering shoot and/or root
growth when overexpressed or repressed in transgenic
plant systems, we determined expression profiles for
all root- and shoot-specific soybean TCS members.
As shown in Fig. 1 and summarized in Table 1
(detailed in Supplementary Table S2), the majority
of soybean TCS genes were preferentially or specifi-
cally expressed in roots according to the criteria
defined for the analysis of tissue-specific expression
(Table 1; Supplementary Table S2).33 Forty-eight of
the 83 soybean TCS genes were expressed highly in
roots. Among these 48 genes, 20 genes were further
classified into a root-specific group, as their transcript
abundance in roots was more than 10-fold higher
than that of shoots. The remaining 28 genes fell
into the root-preferential group as their correspond-
ing root/shoot expression ratios were between 3 and
10 (Fig. 1, Table 1). One gene (GmRR18) was found
to be ‘very specifically expressed’ in root tissues as its
root/shoot transcript abundance ratio was more
than 118-fold (Fig. 1C). Another gene (GmHK02)
was identified as a root ‘exclusively expressed’ gene
since it was only detected in root tissues (Fig. 1A).
Only four genes (GmHP07, GmRR04, GmRR17 and
GmPRR46) displayed higher expression in shoots and
the remaining 30 genes showed ubiquitous
expression patterns. All four of the shoot-related

genes were grouped into the shoot-preferential
group with root/shoot expression ratios ranged
between 210 and 23 (Fig. 1, Table 1,
Supplementary Table S2).

The expression levels of the soybean TCS genes were
widely divergent. For example, the GmHK genes,
which express more highly in roots than in shoots,
can be divided into three groups (low, medium and
high) based on their transcript abundance, in which
the lowest (GmHK08) and highest (GmERS2) tran-
script abundance in roots was more than 3200-fold
different (Fig. 1A). Among the GmHK genes, the
genes encoding ethylene-receptor HKs, especially
the GmERS1 and GmERS2, were expressed more
highly than the others in both root and shoot
tissues. Three GmHK genes (GmHK07–09), encoding
proteins with highest homology to the osmosensor
AHK1 of Arabidopsis,21 have a similar root-enriched
expression pattern to the AHK1 gene.34 Similarly,
TCS genes, coding for the Arabidopsis AHK4-like HKs
in soybean (GmHK14–17), are more preferentially
expressed in roots than in shoots (Fig. 1A),10,21

suggesting that a correlation between sequence con-
servation and expression patterns may exist. The
soybean HPt encoding TCS genes formed a highly
divergent group based on their transcript abundance.
Specifically, their highest/lowest expression ratios in
root and shoot tissues were more than 16 000- and
65 000-fold, respectively (Fig. 1B). Among the GmRR
genes, the type-A GmRRs possessed the most diverse
expression levels in both roots and shoots (Fig. 1C).
GmRR06 had the highest expression in the root
tissues, which was 170 000-fold higher than that of
the lowest one (GmRR16). The expression levels
among type-A GmRR genes in shoots were less vari-
able than in roots, and the difference in expression
was 28 000-fold between the highest (GmRR10)
and the lowest (GmRR16) expressed genes (Fig. 1C).
Twelve of 15 genes encoding type-B GmRRs were
expressed either preferentially (eight genes) or specifi-
cally (four genes) in root tissues (Table 1). There were
no shoot-preferential expression patterns detected
among the type-B GmRR genes (Fig. 1D). The greatest
amount of divergence in root/shoot expression levels
among GmRRs was found for GmRR27, which had a
root/shoot transcript abundance ratio of 39-fold.
According to a comparative sequence analysis,21 the
15 type-B GmRRs showed the highest amino acid
sequence identity to five ARRs (ARR1, ARR2, ARR11,
ARR12 and ARR14). With the exception of the
ARR14 gene that was not expressed in roots, semi-
quantitative analyses determined that the remaining
four ARR genes were expressed ubiquitously in root
and leaf tissues.35 All of the GmPRR genes were
expressed in both root and shoot tissues, of which
four, eight and one genes were expressed root
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Figure 1. Expression of soybean TCS genes in root (white bars) and shoot (black bars) tissues under normal conditions. (A) GmHK genes.
(B) GmHP and GmPHP genes. (C) Type-A GmRR genes. (D) Type-B GmRR genes. (E) Type-C GmRR genes. (F) Pseudo GmPRR genes. Data
represent the means and standard errors of three independent biological samples. Asterisks on the top of bars indicate statistically
significant differences between tissues with a P-value ,0.05 (*) or 0.01 (**).
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preferentially, ubiquitously and shoot preferentially,
respectively (Table 1, Fig. 1F). Among the soybean
TCS genes, the three type-C GmRR genes (GmRR34–
36) exhibited the lowest levels of expression under
our experimental conditions (Fig. 1E). In an analysis
of soybean short transcript sequence reads by
Libault et al.,33 the transcripts of two type-C GmRR
genes (GmRR34 and GmRR35) were not detected in
all the tissues except from the green pods. It should
also be noted that the transcripts of GmHK05,
GmHK06 and GmRR36 were not found in any of the
nine tissues tested in their studies, including a tran-
scriptomic analysis of root hair cells.33,36 However,
in our experimental settings, the presence of the tran-
scripts of these genes were reliably detected, albeit at
low levels (Fig. 1A and E). It is possible that this discre-
pancy is due to the duplicated nature of the soybean
genome,37 resulting in very high homology between
duplicates. As a result, the method used in the
authors’ study failed to detect expression because it
could not assign reads matching with two or more
closely related loci.33,36

3.3. Expression of the soybean TCS gene during
dehydration

Plant TCSs have been implicated in the regulation of
environmental stress responses, including drought
stress,8,16–18,38 suggesting that the TCS genes, which
function in stress responses, may be used to enhance
drought tolerance in plants via genetic engineering.8,38

Stress-related soybean TCS genes can be predicted
based on comparative sequence analyses21; however,
this approach has limitations. Although TCSs have
been systematically identified and characterized in
Arabidopsis, rice, L. japonicus and soybean,5–7,19 only
a few members of Arabidopsis TCS genes have been

identified as drought-related genes based on
expression and/or functional analyses.8,38 Cis-
element-based targeted gene finding approach can
also be used to predict stress-responsive genes, and
tissue-specific genes.21,39–41 However, because of
their short length (5- to 9-bp core) and flexibility, the
frequency of a cis-motif sequence in the whole
genome is relatively high. In addition, a number of cis-
element sequences might be syntactically correct
without providing practical regulatory function.42

Therefore, our major goal of this study was to charac-
terize the expression profile of all soybean TCS
members under dehydration stress in order to precisely
identify dehydration-responsive TCS genes that can
potentially used to engineer soybean plants with
improved drought resistance. We employed RT-qPCR
analyses to conduct systematic expression profiling of
all 83 TCS genes in root and shoot tissues of 12-day-
old soybean plants subjected to 2 and 10 h dehy-
dration stress. The evaluation of expression patterns
in individual stressed tissues, rather than whole
plants, might provide information on the mode of
action of stress-responsive genes in specific tissues.43

As presented in Figs 2 and 3, a large number of
soybean TCS genes appeared to be dehydration respon-
sive. To precisely determine the dehydration-respon-
sive genes, the expression of those soybean TCS genes,
whose mRNA levels were found to be changed under
dehydration treatment, was also examined in the
water-treated control plant samples (Supplementary
Figs S2 and S3). As a result, among 83 soybean TCS
genes, a total of 18 induced and 33 repressed genes
were identified (Fig. 4, Table 2, Supplementary Table
S3). Previously, a cis-motif-based prediction using 12
stress-responsive cis-motifs suggested that out of 83
soybean TCS genes, 30 genes might be dehydration
responsive because these genes were found to

Table 1. Expression of the soybean TCS genes in root and shoot tissues

Fold differencea Root-specific
(X . 10-fold)

Root-preferential
(3 , X , 10)

Ubiquitousb

(23 , X , 3)
Shoot-preferential
(210 , X , 23)

Shoot-specific
(X , 210)

HKs 8 7 6 0 0

Phosphotransfer proteins 3 3 6 1 0

RRs

Type-A 3 5 7 2 0

Type-B 4 8 3 0 0

Type-C 2 1 0 0 0

Pseudo 0 4 8 1 0

Total 20 28 30 4 0
aFold difference was calculated as the ratio of mean expression levels of the same gene in roots and the shoots, when the
root/shoot ratio is ,1.0, the ratio was reversed and a minus sign (2) was added.
bGenes whose differential expressions between root and the shoot tissues did not pass Student’s t-test with P-value ,0.05
are also classified as ubiquitously expressed genes.
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contain dehydration-responsive ABRE and/or MYBR
and/or MYCR motifs in their promoter regions.21

It should be noticed that the ABRE and MYBR were
discovered as dehydration-inducible cis-motifs,
whereas MYCR was shown to act as both dehydration-
inducible and dehydration-repressible regulatory
motifs.44 We found that among the 30 predicted

dehydration-responsive TCS genes, 11 genes were con-
firmed by our RT-qPCR analysis. Eight genes (GmHK10,
GmRR01, GmRR02, GmRR25, GmRR34, GmRR35,
GmRR36 and GmPRR39) are induced, and three genes
(GmHP01, GmRR09 and GmRR29), which contain
MYCR(s) in their promoter regions, are repressed
(Supplementary Table S3).21 Thus, although the cis-

Figure 2. Expression of TCS genes encoding HKs and HPts in root (white bars) and shoot (black bars) tissues of soybean plants under
dehydration stress. (A) Expression of TCS genes encoding HKs. (B) Expression of TCS genes encoding HPts. Relative gene expression
levels were normalized to a value at 1 in the untreated plant samples (0 h). Data represent the means and standard errors of three
independent biological samples. Asterisks on the top of bars indicate statistically significant differences when compared with 0 h
with a P-value ,0.05 (*) or 0.01 (**).
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Figure 3. Expression of TCS genes encoding RRs in root (white bars) and shoot (black bars) tissues of soybean plants under dehydration
stress. (A) Type-A GmRR genes. (B) Type-B GmRR genes. (C) Type-C GmRR genes. (D) Pseudo GmPRR genes. Relative gene expression levels
were normalized to a value at 1 in the untreated plant samples (0 h). Data represent the means and standard errors of three
independent biological samples. Asterisks on the top of bars indicate statistically significant differences when compared with 0 h
with a P-value ,0.05 (*) or 0.01 (**).
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element-based targeted gene finding approach
has demonstrated a wide application in the genome-
wide prediction due to the availability of a large
number of cis-elements in many plant species,
expression profiles of the cis-motif-based predicted
genes should be verified experimentally using an
expression profiling approach, such as RT-qPCR, prior
to the launching of laborious in planta functional
studies.39,40,42,45

Although the soybean TCS genes were predomi-
nantly expressed in roots than in shoots (Fig. 1),
their expression patterns upon dehydration stress
were opposite (Fig. 4). Specifically, there were only 8
and 17 genes whose expression was induced or
repressed in the roots, respectively, upon dehydration.
At the same time, there were 14 and 20 genes whose
expression was either induced or repressed, respect-
ively, in shoots (Fig. 4). Only a small number of the
genes responded in a similar fashion (induced or
repressed) in both tissues. Specifically, the GmHK06,
GmHK08 and GmHK11 genes were down-regulated,
and the GmRR16, GmRR34, GmRR35 and GmRR36
genes were up-regulated. These data support the
hypothesis that the majority of soybean TCS genes
respond to dehydration stress in either root- or
shoot-specific manner. It is worth mentioning that
the dehydration responsiveness of the GmHK10
gene were opposite in the root and the shoot
tissues. The expression of GmHK10 was induced in
the roots at 2 h but was repressed in the shoots at
10 h after dehydration treatment (Fig. 2A,
Supplementary Fig. S2A). Not only having a larger
number of dehydration-responsive genes, but the
extent of the responsiveness of GmHKs, i.e. the fold
change, was also higher in shoot tissues. For
example, the expression levels of the GmHK01 and
GmHK12 genes, which encode proteins most similar
to the Arabidopsis CKI1 and AHK3, respectively,21

exhibited a 5–6-fold induction in shoots but insignif-
icant induction in roots (Supplementary Table S3).
Similarly, the extent of repression was also more
severe in shoots than in roots. A maximum of 6-fold
repression was found in roots, whereas a 17-fold
repression was observed in shoots (Supplementary
Table S3). GmHK08 was the most repressed among
all soybean TCS genes during dehydration treatment
and in both tissues, and its expression in shoots at
10 h after dehydration treatment was not detectable
(Fig. 2A, Supplementary Fig. S2A). In Arabidopsis, the
osmosensor AHK1 and the CK receptor AHK2, AHK3
and AHK4 have been shown to function in drought
stress response. The expression of all four of these
AHK genes is induced by dehydration.8 Among the
three AHK1-like protein encoding GmHK07–09
genes,21 the expression of GmHK07 was induced by
dehydration, suggesting that GmHK07 may play a
positive regulatory role in drought response of
soybean plants similar to that of AHK1 in
Arabidopsis.8 Out of eight GmHK genes (GmHK10–
17), which are predicted to encode CK-receptor HKs
based on sequence similarity to their Arabidopsis
counterparts,21 GmHK10 and GmHK12 showed sig-
nificant induction in roots and shoots, respectively
(Fig. 2A, Supplementary Fig. S2A). It is possible that
GmHK10 and GmHK12 may act as negative

Figure 4. Venn diagram showing dehydration-responsive soybean
TCS genes in root and shoot tissues of soybean plants. The
dehydration-responsive genes were defined as those genes
whose expression is either induced (upper panel) or repressed
(lower panel) significantly (P , 0.05) at least 2-fold at 2 h
and/or 10 h after exposure to dehydration stress and their
expression in the water-treated mock control samples did not
significantly change in a similar manner. The reported
differential expression patterns passed the Student’s t-test (one
tail, unpaired, assuming equal variance) with a P-value ,0.05.

Table 2. Genes with altered expression under dehydration in each
family

Family Number of genes Induced genes Repressed genes

HKs 21 5 10

Phosphotransfers

Authentic 10 2 2

Pseudo 3 0 2

RRs

Type-A 18 4 7

Type-B 15 2 8

Type-C 3 3 0

Pseudo 13 2 4

Total genes 83 18 33
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regulators in drought stress response in a similar
fashion as their Arabidopsis orthologs.8 Based on our
analyses, all of the GmHK07, GmHK10 and GmHK12
genes appear to be good candidates for in planta
studies.

Among the 13 soybean TCS genes encoding HPt
proteins, two genes (GmHP03 and GmHP06) were
induced and four other genes were repressed upon
dehydration (Table 2). Interestingly, none of the
induced genes were found in root tissues. Among
the induced genes, GmHP06 exhibited the highest
induction (.6-fold) in shoots, meanwhile its induc-
tion in roots was not significant. The most repressed
gene was GmPHP2, whose expression was reduced
by 7.5-fold in shoots upon dehydration (Fig. 2B,
Supplementary Fig. S2B, Supplementary Table S3).

The expression of soybean GmRR genes followed
different patterns (Fig. 3A, Supplementary Fig. S3,
Supplementary Table S3). Repression of the type-A
GmRRs genes in roots was not statistically significant.
In addition, only two genes (GmRR01 and GmRR16)
were induced in the same tissues. In shoots, three
and six genes of this group were induced and
repressed upon dehydration, respectively. Together,
11 of the 18 type-A GmRR genes were either
induced and/or repressed by dehydration in root
and/or shoot tissues, suggesting their diverse func-
tions in the regulation of dehydration stress
response (Supplementary Table S3). Diverse func-
tions were also reported for Arabidopsis type-A
ARRs. Mutations in arr3, arr4, arr5 and arr6
increase sensitivity, but an additional loss of ARR8
and ARR9 decreases the sensitivity to osmotic
stress. These data suggest that ARR3, ARR4, ARR5
and ARR6 may function as positive regulators,
whereas ARR8 and ARR9 function as negative regu-
lators.9 In soybean, the six dehydration-repressed
type-A GmRR genes (GmRR07–09 and GmRR11–
13) encode ARR8- and ARR9-like GmRRs, providing
correlative evidence that these GmRRs function in
stress response, and may act as negative regulators
in a similar fashion as their ARR8 and ARR9 ortho-
logues (Supplementary Table S3). Similarly, the
ARR4- and ARR6-like protein encoding GmRR01
and GmRR02 genes were up-regulated in response
to drought, suggesting that they may function as
positive regulators in stress response in a similar
fashion as their Arabidopsis counterparts. The
expression of type-B GmRR genes in soybean,
which encode transcription factors, was mostly
repressed in both tissues. Only two genes
(GmRR25 and GmRR32) were induced in response
to drought, and they exhibited shoot specificity
(Fig. 3B, Table 2, Supplementary Fig. S3,
Supplementary Table S3). As for the type-C GmRR
genes, all three genes (GmRR34–36) were found

to be induced strongly in both roots and shoots
by dehydration (Fig. 3C, Table 2, Supplementary
Fig. S3, Supplementary Table S3).

Among 13 pseudo GmPRR genes, the expression of six
genes was altered by dehydration, suggesting that they
may play a physiological role in response to dehy-
dration (Fig. 3D, Table 2, Supplementary Fig. S3,
Supplementary Table S3). Genes encoding GmPRR39
and GmPRR44 were significantly induced in shoots
and roots, respectively, upon dehydration treatment.
Four other genes encoding GmPRRs were repressed
upon dehydration, of which two genes (GmPRR46
and GmPRR47) were repressed in the roots, whereas
two other genes (GmPRR48 and GmPRR49) were
repressed in the shoots (Supplementary Table S3).
The dehydration-inducible GmPRR39 and GmPRR44
genes were shown to encode either APRR5- or APPR9-
like proteins.21 In Arabidopsis, the APRR5 and APRR9
proteins were reported to negatively regulate drought
response.15 Therefore, it is possible that the dehy-
dration-responsive GmPRR39 and GmPRR44 may
function as negative regulators in soybean as well. On
the other hand, although the transcripts of GmPRR38,
GmPRR42, GmPRR43 and GmPRR45 were accumulated
under dehydration, the transcripts of these genes were
also increased in a similar manner in the water-treated
mock control plant tissues (Supplementary Fig. S3),
suggesting that circadian clock-related regulation
affected the expression of these GmPRR genes rather
than dehydration stress. This is not a surprise because
it has been reported previously that these four GmPRR
genes encode circadian clock-associated APRR1-,
APRR7- and APRR9-orthologous proteins.21,46

3.4. Clustering analysis of the expression data of
soybean TCS genes

A gene’s expression is regulated through several
mechanisms, of which some are still unknown.47

Nonetheless, the regulation of gene expression via
the interaction of transcription factors and promoters
has been well documented.1 Similarities in expression
patterns and responsiveness to stresses may likely be a
result of the involvement of similar cis-elements and/
or transcription factors. In order to gain an overall
understanding of the expression patterns of soybean
TCS genes, we performed hierarchical clustering
using their log-transformed expression data. Figure 5
shows the result of hierarchical analysis of soybean
TCS genes performed on each of the groups
(GmHKs, GmHPs and GmRRs). As shown in Fig. 5A,
the expression patterns of GmHK genes clustered
into two distinct nodes. Within these two distinct
nodes, each group was separated into two subnodes.
The high correlation coefficient (0.85–0.96) of each
subnode indicates that the expression patterns of
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the genes in each node were highly similar to one
another. The expression of several genes with high
homology, which is an indication of duplicated pairs,
did not cluster in the analysis. For instance, GmHK02
and GmHK05, and GmHK10 and GmHK11 did not
cluster, implying that their divergence in expression
was the cause. The expression patterns of GmHP
genes in roots and shoots during dehydration were
clustered into three nodes with high correlation coef-
ficient values (Fig. 5B). It should be noted that
GmHP07 and GmHP08 did not fall into those nodes.
With the exception of GmPHP1 and GmPHP2, the
expressions of other highly homologous pairs in this
group clustered together. These data indicated that

functional redundancy is still high among duplicated
HPt proteins of soybean. Expression profiles of each
of the RR types (A, B, C and pseudo) clustered into
two nodes mainly based on the expression levels
(Fig. 5C–E). Some of the groups were clustered into
two or more subgroups based on the responsiveness
to dehydration in the tested tissues (Fig. 5C–E).

To find out how the soybean TCS genes cluster in
response to dehydration, we conducted a hierarchical
analysis based on the log-transformed ratio of the
expression values with and without stress treatment.
The groups of genes clustered in this analysis will
not take into account the gene-to-gene expression
divergence. We found that several nodes were

Figure 5. Hierarchical clustering and heat map presentation for the expression of TCS genes in dehydrated root and shoot tissues of
soybean. Genes are grouped according to their expression patterns using hierarchical clustering (Cluster v.2.11).48 The vertical
dendrogram indicates the relationship among transcripts across tissues and treatments in the hierarchical clustering analysis.
TreeView (http://rana.lbl.gov/eisen/?page_id=42) was used to generate the heat map figure. Phylogenetic trees are indicated on the
right of each group. Numbers next to the nodes of the dendrogram indicate the correlation coefficient r. (A) HK proteins. (B) HPt
proteins. (C) Type-A GmRR proteins. (D) Type-B GmRR proteins. (E) Type-C and pseudo GmRR proteins.
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formed (Supplementary Fig. S4), implying the possi-
bility that similar dehydration-regulated pathways
exist for each node.

3.5. Conclusions
This report has provided the first insight into the

previously uncharacterized TCS members of soybean
and placed a special emphasis on the relation to dehy-
dration stress responsiveness. Our results have pro-
vided useful information by identifying candidate
dehydration-responsive genes. By combining these
genes with their associated dehydration-responsive
promoters, scientists can utilize these resources to
engineer soybean plants for enhanced stress resist-
ance. We have selected a number of dehydration-
responsive genes for further analysis in Arabidopsis to
corroborate their functional significance in planta. By
implementing these functional studies, we aim to
identify a suite of candidate genes that are best
suited for the genetic engineering of soybean plants
with improved drought resistance.

Supplementary Data: Supplementary data are
available at www.dnaresearch.oxfordjournals.org.
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