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Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disease that
is the most common cause of dementia. Optogenetics uses a combination of genetic
engineering and light to activate or inhibit specific neurons in the brain.

Objective: The objective of the study was to examine the effect of activation of
glutamatergic neurons in the hippocampus of mice injected with Aβ1-42 on memory
function and biomarkers of neuroinflammation and neuroprotection in the brain to
elucidate the clinical utility of optogenetic neuromodulation in AD.

Methods: AAV5–CaMKII–channelrhodopsin-2 (CHR2)–mCherry (Aβ-CHR2 mice) or
AAV5—CaMKII–mCherry (Aβ-non-CHR2 mice) was injected into the dentate gyrus
(DG) of the bilateral hippocampus of an Aβ1-42-injected mouse model of AD. The
novel object recognition test was used to investigate working memory (M1), short-term
memory (M2), and long-term memory (M3) after Aβ1-42 injection. Hippocampus tissues
were collected for immunohistochemical analysis.

Results: Compared to controls, M1 and M2 were significantly higher in Aβ-CHR2
mice, but there was no significant difference in M3; NeuN and synapsin expression
were significantly increased in the DG of Aβ-CHR2 mice, but not in CA1, CA3, the
subventricular zone (SVZ), or the entorhinal cortex (ENT); GluR2 and IL-10 expressions
were significantly increased, and GFAP expression was significantly decreased, in CA1,
CA3, the DG, and the SVZ of Aβ-CHR2 mice, but not in the ENT.
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Conclusion: Activation of glutamatergic neurons by optogenetics in the bilateral DG of
an Aβ-injected mouse model of AD improved M1 and M2, but not M3. A single-target
optogenetics strategy has spatial limitations; therefore, a multiple targeted optogenetics
approach to AD therapy should be explored.

Keywords: Alzheimer’s disease, amyloid-1-42, channelrhodopsin-2, memory, novel object recognition,
neuroprotection, neuro-inflammation

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease that is the most common cause of dementia (Aravanis
et al., 2007). AD is characterized by pathological changes that
include amyloid-β (Aβ) deposition, marked neuronal loss, and
tau hyperphosphorylation (Gomez-Isla et al., 1996; Scheff et al.,
2006; Crews and Masliah, 2010). Increasingly, evidence suggests
that soluble low-molecular-weight Aβ oligomers are associated
with neurotoxicity (Lambert et al., 1998; Lesne et al., 2006; Ono
et al., 2009). In a novel mouse model, small, soluble Aβ1−42
oligomers induced extensive neuronal loss in vivo, and initiated
a cascade of events that mimicked key neuropathological events
in AD (Brouillette et al., 2012).

Optogenetics uses a combination of genetic engineering
and light to activate or inhibit specific neurons in the brain
and explore the functions associated with those neurons
(Deisseroth, 2011). Optogenetics has been used to investigate the
pathophysiology of Parkinson’s disease and epilepsy, but studies
applying optogenetics to AD are scarce.

AAV5–CaMKII–ChR2–mCherry is an adeno-associated virus
(AAV) expressing channelrhodopsin-2 (ChR2)–mCherry under
the control of the glutametergic neuron promoter, CamKII
(Aravanis et al., 2007). The objective of the present study was
to examine the effect of activation of glutamatergic neurons in
the hippocampus of mice injected with soluble low-molecular-
weight Aβ1−42 on memory function and biomarkers of
neuroinflammation and neuroprotection in the brain to elucidate
the clinical utility of optogenetic neuromodulation in AD.

MATERIALS AND METHODS

Study Design
All experiments were approved by the Animal Resources
Committee, Jinan University, China (No. LL-KT-2011134) and
performed according to the Guide for the Care and Use of
Laboratory Animals (NIH publication No. 8523, revised 1985).

A flow chart of the study design is shown in Figure 1. A total
of 36 8-month-old female C57BL/6 mice were purchased from
Guangdong Medical Laboratory Animal Center, China [license
No. SCXK (Yue) 2008-0002]. Mice were housed at 20 ± 2◦C and
55 ± 5% humidity, with free access to food and water, under
a 12/12 h light/dark cycle. The mice were randomly allocated
into three groups: Aβ mice (n = 6), Aβ-non-CHR2 mice (n = 6),

Abbreviations: AD, Alzheimer’s disease; DG, dentate gyrus; ENT, entorhinal
cortex; GFAP, glial fibrillary acidic protein; GluR2, glutamate receptors; IL,
interleukin; NeuN, neuronal nuclei; SVZ, subventricular zone.

and Aβ-CHR2 mice (n = 6). AAV5–CaMKII–CHR2–mCherry
(Aβ-CHR2 mice) or AAV5–CaMKII–mCherry (Aβ-non-CHR2
mice) was injected into the dentate gyrus (DG) of the mouse
bilateral hippocampus. Fourteen days later, 0.2 µg of soluble low-
molecular-weight Aβ1−42 was injected, and light stimulation with
an optical fiber was performed at the same site. Low-molecular-
weight Aβ1−42 injection and light stimulation were repeated once
a day for 7 days. Behavioral tests were performed on Day 0 and
Days 1–6 after Aβ1−42 injection. Mice were sacrificed on Day 7,
and tissues were collected for immunochemical analysis.

Soluble Low-Molecular-Weight Aβ1−42
Aβ1−42 peptide solution was prepared according to a previously
published protocol (Kuperstein et al., 2010; Brouillette et al.,
2012). Briefly, Aβ1−42 peptide (Sigma A9810) was dissolved
in 99% hexafluoroisopropanol (HFIP) (Sigma-Aldrich) to a
concentration of 1 mg/ml. After evaporation under nitrogen
gas, the peptide film was dissolved in dimethylsulfoxide (DMSO;
Sigma-Aldrich) to a concentration of 1 mg/ml and eluted on
a 5 ml HiTrap desalting column (GE Healthcare) with 50 mM
Tris, 1 mM EDTA buffer, and pH 7.5. Aβ1−42 concentration was
measured with a BCA protein assay kit (Pierce, Rockford, IL,
United States). Aβ1−42 was stored on ice and used within 30 min.

Surgical Procedures
AAV5–CaMKII–CHR2–mCherry and AAV5–CaMKII–mCherry
were provided by Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences. All surgeries were performed
under stereotaxic guidance.

Mice were anesthetized with 500 mg/kg of avertin. Bilateral
cannulae (328OPD-2.8/Spc with a removable dummy wire;
Plastics One) were stereotaxically implanted into the DG
of the hippocampus [coordinates with respect to bregma:
−2.2 mm anteroposterior (AP), ± 1.4 mm mediolateral (ML),
−2.1 mm dorsoventral (DV)], as previously described (Paxinos
and Waston, 2005; Brouillette et al., 2012). AAV5–CaMKII–
CHR2–mCherry or AAV5–CaMKII–mCherry were injected
at 100 nl/min for 10 min to a total of 1 µl through a
microelectrode holder (MPH6S;WPI) using a glass micropipette
and a 10 µl Hamilton microsyringe (701LT; Hamilton). The
needle was retained for 5 min following completion of the
injection. Expression of AAV5–CaMKII–CHR2–mCherry and
AAV5–CaMKII–mCherry were histologically confirmed 14 days
after surgery. Subsequently, Aβ1−42 0.2 µg/µl was injected
into the DG at 100 nl/min for 10 min to a total of 1 µl,
as previously described. Next, a fiber optic patchcord optical
fiber (200 mm core diameter; Doric Lenses) was implanted at
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FIGURE 1 | Study design. AAV, adeno-associated virus; CaMK,
Ca2+/calmodulin-dependent protein kinase; CHR2, channelrhodopsin-2;
Aβ, amyloid-β; D, day(s).

the site of the Aβ1−42 injection, and optical stimulation was
generated by a laser (473 nm, 1–3 ms, 10 Hz) (Changchun New
Industries) for 5 min.

Behavioral Test
The novel object recognition test was used to assess the ability
of mice to recognize a novel object in their environment. The
novel object recognition test was conducted in three phases:
(1) Pre-training, mice were allowed to explore an arena without
objects for 5 min daily on Day 0 and Days 1–5 after Aβ1−42
injection. (2) Training phase (acquisition): on Day 6 after Aβ1−42
injection, the mice were placed in the arena with two identical
sample objects (A1 and A2) positioned in two adjacent corners
10 cm from the walls. The mice were placed against the center of
the opposite wall with their back to the objects. The mice were
allowed to explore the objects for 3 min and were then placed in
their home cage. A memory index (M0) was calculated as follows:
M0 (%) = (exploration time devoted to object A2/exploration
time devoted to object A1 + exploration time devoted to object
A2) × 100. (3) Test phase (consolidation): mice were placed
in the arena with two objects in the same position, one was
identical to the sample objects, and the other was novel (A1 and
B). The mice were allowed to explore the objects 5 min, 2 h,
or 24 h after the training phase to measure working memory
(M1), short-term memory (M2), or long-term memory (M3).
The memory indices were calculated as follows: M1, M2, M3
(%) = exploration time devoted to object B/(exploration time
devoted to object A1 + exploration time devoted to object
B) × 100. A higher memory index implied a better ability to
recognize a familiar object.

Immunohistochemistry
Mouse brain was embedded in paraffin. Brain tissue was
sectioned to 30 µm in the coronal plane at the target area

and temporarily stored in a 12-well plate in PBS. Sections
were treated with xylene and rehydrated in graded ethanol
(Fachim et al., 2016). Sections were blocked in 3% BSA at room
temperature for 1 h and incubated in 0.3% Triton X-100/PBS
with primary antibody overnight at 4◦C. Primary antibodies
were mouse antiglial fibrillary acidic protein (GFAP, 5 µg/ml,
Cat. No. MAB3402, Chemicon), monoclonal mouse anti-NeuN
(1:500, Cat. No. MAB377, Millipore), monoclonal mouse anti-
synapsin Ia/b (A-1, 1:100, Cat. NO. sc-398849, Santa Cruz), rabbit
anti-glutamate receptor 2 (GluR-2, 1:4,000 Cat. No. AB1768,
Millipore), or mouse anti-interleukin (IL)-10 (A-2, 1:100 Cat. No.
sc-365858, Santa Cruz). After washing, sections were incubated
with secondary antibody in the dark for 1 h at room temperature.
Secondary antibodies were goat anti-mouse IgG (H&L, 1:2,000
Cat. No. ab7067; Abcam) or goat anti-rabbit IgG (H&L, HRP,
1:2,000 Cat. No. ab6721; Abcam). Images of CA1, CA3, the
DG, the subventricular zone (SVZ), and the entorhinal cortex
(ENT) were visualized with a light microscope (DMI 3000
B; Leica, Buffalo Grove, IL, United States). The number of
immunostained-positive cells was counted using Image J software
(NIH, Bethesda, MD, United States) in a double-blind manner
and was expressed as a percentage of the Aβ mice.

Statistical Analysis
Statistical analyses were performed using SPSS19.0 and Prism
6 (GraphPad). Data are presented as mean ± SEM. Data from
the behavioral tests were compared using repeated measures
analysis of variance. Data from immunohistochemical analysis
were compared with one-way analysis of variance. P < 0.05 was
considered statistically significant.

RESULTS

Effect of AAV5–CaMK–CHR2–mCherry
on Memory Function in Mice
M1 and M2 were significantly increased compared to M0 in
Aβ-CHR2 mice (F = 25.12, P < 0.0001), but there was no
significant difference between M0 and M3 (P > 0.05). There
were no significant differences between M0, M1, M2, and M3
in Aβ-non-CHR2 mice and Aβ mice (Aβ-non-CHR2 mice,
F = 1.524, P > 0.05; Aβ mice, F = 1.099, P > 0.05). M1 and
M2 were significantly higher in Aβ-CHR2 mice compared to
Aβ-non-CHR2 mice and Aβ mice (F = 53.93, P < 0.001 for
M1; F = 18.31, P < 0.001 for M2). There were no significant
differences in M3 in Aβ-CHR2 mice, Aβ-non-CHR2 mice, and
Aβ mice (F = 2.002, P > 0.05) (Figure 2). These results suggest
that working memory and short-term memory, but not long-
term memory, were rescued by optogenetic treatment.

Effect of AAV5–CaMKII–CHR2–mCherry
on NeuN and Synapsin Expression in
CA1, CA3, the DG, the SVZ, and the ENT
NeuN and synapsin expressions were significantly increased
in the DG of Aβ-CHR2 mice compared to that of Aβ-non-
CHR2 mice and Aβ mice (P < 0.05). There were no significant
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FIGURE 2 | Novel object recognition test. Working, short-term, and long-term
memory were assessed based on the memory index during the test phase
(consolidation), 5 min, 2 h, and 24 h after the training phase. Data are
expressed as the mean ± SEM (n = 8). **P < 0.001, vs. the Aβ-CHR2 group.
Aβ mice received repeated injections of Aβ1−42 in the bilateral DG;
Aβ-non-CHR2 mice received AAV5–CaMKII–mCherry and repeated injections
of Aβ1−42 in the bilateral DG, as well as light stimulation; Aβ-CHR2 mice
received AAV5–CaMKII–CHR2–mCherry and repeated injections of Aβ1−42 in
the bilateral DG as well as light stimulation. Memory index (%) = exploration
time devoted to object B/(exploration time devoted to object A1 + exploration
time devoted to object B) × 100. AAV, adeno-associated virus; CaMK,
Ca2+/calmodulin-dependent protein kinase; CHR2, channelrhodopsin-2.
#P < 0.001, vs. M0 (repeated measures analysis of variance).

differences in NeuN and synapsin expression in CA1, CA3, the
SVZ, or the ENT of Aβ-CHR2 mice, Aβ-non-CHR2 mice, and
Aβ mice (P > 0.05) (Figure 3).

Effect of AAV5–CaMKII–CHR2–mCherry
on GluR2, IL-10, and GFAP Expression in
CA1, CA3, the DG, the SVZ, and the ENT
GluR2 and IL-10 expressions were significantly increased, and
GFAP expression was significantly decreased in CA1, CA3, the
DG, and the SVZ of Aβ-CHR2 mice compared to Aβ-non-
CHR2 mice and Aβ mice (P < 0.05). There were no significant
differences in GluR2, IL-10, and GFAP expression in the
ENT of Aβ-CHR2 mice, Aβ-non-CHR2 mice, and Aβ mice
(P > 0.05) (Figure 4).

DISCUSSION

This study used optogenetics and investigated the effect of
stimulating CaMK–CHR2-expressing neurons in the DG of the
bilateral hippocampus on memory function and biomarkers
of neuroinflammation and neuroprotection in the brain
of an Aβ-injected mouse model of AD. Findings showed:
(1) optogenetics improved working memory and short-term
memory, but not long-term memory, in Aβ-CHR2 mice, and
(2) optogenetics activated GluR2, attenuated neuroinflammation,
and exerted neuroprotective effects in the core but not the
peripheral areas of CHR2 expression.

Optogenetics enables precise temporal control of neuronal
activity and has been used in a number of contexts (Gradinaru
et al., 2009; Tye et al., 2011). Bi et al. (2006) proposed the
expression of microbial-type channelrhodopsins, such as ChR2,
in surviving inner retinal neurons as a potential strategy for the
restoration of vision after rod and cone degeneration. Van den
Oever et al. (2013) used optogenetics to explore the involvement
of ventromedial prefrontal cortex (vmPFC) pyramidal cells
in recent and remote conditioned cocaine memory in mice.
Activation of pyramidal cells resulted in the loss of remote
memory, without affecting recent memory, and inhibition of
pyramidal cells impaired recall of recent memory, without
affecting remote memory (Van den Oever et al., 2013).

Cognitive impairment in AD is characterized by memory
disorders, mental and behavioral changes, insomnia, and
autonomic dysfunction (Greene et al., 1996). Memory is a
complex phenomenon, and memory impairment is the most
prominent symptom of AD. In the present study, a novel
object recognition test was used to assess memory function
in an Aβ-injected mouse model of AD. The novel object
recognition test has been used to evaluate the ability of
mice to recognize a novel object in familiar surroundings
(Ennaceur and Delacour, 1988) and to recognize an object after
administration of bilateral lidocaine (Hammond et al., 2004),
providing information on working memory, short-term memory,
and long-term memory. The present study demonstrated that M1
and M2 were significantly higher in Aβ-CHR2 mice compared to
Aβ-non-CHR2 mice and Aβ mice, and there were no significant
differences in M3 in Aβ-CHR2 mice, Aβ-non-CHR2 mice, and
Aβ mice. This implies that optogenetics improved working
memory and short-term memory, but not long-term memory, in
Aβ-CHR2 mice.

The hippocampus is severely affected early in the AD process
(Hyman et al., 1984; Hyman et al., 1994). The hippocampus
proper, which is defined by CA1–CA3 and the dentate gyrus,
is the core structure within a larger hippocampal formation,
which includes the adjacent subicular and rhinal cortices. The
entorhinal cortex is among the first of the medial temporal
lobe regions to exhibit dysfunction in early AD (Khan et al.,
2014). Therefore, the neurobiological mechanisms underlying the
improvement in memory function after optogenetic activation
in the Aβ-injected mouse model of AD were investigated using
histological studies of the neurons and synapses in the mouse
hippocampus and entorhinal cortex.

NeuN and synapsin have neuroprotective effects. NeuN is
a biomarker for arcuate neurons, and synapsins are involved
in synaptogenesis and plasticity of mature synapses and play
a major role in maintaining brain physiology (Meunier et al.,
2015). Synapsins I and II are the major synapsin isoforms in
neurons; both can be recognized by anti-synapsin Ia/b. Synapsin I
is associated with elongation of axons and regulation of synaptic
vesicle fusion. Synapsin II is essential for the synaptic vesicle cycle
through its involvement in vesicle docking (Mirza and Zahid,
2018). In the present study, NeuN and synapsin expression in
the core area of CHR2 injection was significantly increased, while
there was no difference in NeuN and synapsin expression in
the peripheral areas of CHR2 expression, including CA1, CA3,
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FIGURE 3 | Effect of CHR2 on NeuN (A) and synapsin (B) expression in CA1, CA3, the DG, the SVZ and the ENT (n = 6). Arrows show the positive cells, 400×.
∗P < 0.05, ∗∗P < 0.01 vs. the Aβ-CHR2 mice. Aβ mice received repeated injections of Aβ1−42 in the bilateral DG; Aβ-non-CHR2 mice received
AAV5–CaMKII–mCherry and repeated injections of Aβ1−42 in the bilateral DG, as well as light stimulation; Aβ-CHR2 mice received AAV5–CaMKII–CHR2-mCherry
and repeated injections of Aβ1−42 in the bilateral DG as well as light stimulation. DG, dentate gyrus; ENT, entorhinal cortex; NeuN, neuronal nuclei; SVZ,
subventricular zone.

FIGURE 4 | Effect of CHR2 on GluR2 (A), IL-10 (B), and GFAP (C), expression in CA1, CA3, DG, the SVZ, and the ENT (n = 6). Arrows show positive cells, 400×.
*P < 0.05, **P < 0.01 vs. Aβ-CHR2 mice. Aβ mice received repeated injections of Aβ1−42 in the bilateral DG; Aβ-non-CHR2 mice received AAV5–CaMKII–mCherry
and repeated injections of Aβ1−42 in the bilateral DG, as well as light stimulation; Aβ-CHR2 mice received AAV5–CaMKII–CHR2–mCherry and repeated injections of
Aβ1−42 in the bilateral DG as well as light stimulation. DG, dentate gyrus; ENT, entorhinal cortex; GFAP, glial fibrillary acidic protein; GluR2, glutamate receptors;
IL, interleukin; NeuN, neuronal nuclei; SVZ, subventricular zone.

the SVZ, and the more distant ENT, compared to controls. This
suggests that optogenetic activation of glutamatergic neurons in
the DG exerted neuroprotective effects locally, but the effects
of optogenetics declined or disappeared with distance from
CHR2 expression.

Various regions of the brain are involved in executive
memory. The medial temporal lobe (hippocampal system),
prefrontal cortex, diencephalon (papillary body and thalamus),

and amygdala are reciprocally connected and associated with
learning and memory (Naya et al., 2017; Shirayama et al.,
2017; Guo et al., 2019). Short-term memory (including working
memory) and long-term memory are separate systems. The
neural basis of short-term memory and long-term memory
are located in the hippocampus and multiple cortical regions,
respectively (Matthews, 2015; Hampson et al., 2018). In the
present study, the neuroprotective effect of optogenetics was

Frontiers in Neuroscience | www.frontiersin.org 5 October 2020 | Volume 14 | Article 583628

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-583628 October 7, 2020 Time: 19:43 # 6

Cui et al. Neuroprotective Effect of Optogenetics

limited to the DG and may have been one mechanism underlying
the observed improvement in working memory and short-term
memory in Aβ-CHR2 mice. As optogenetic activation of neurons
in the DG did not extend to the cortex, there was no obvious
enhancement of long-term memory.

Optogenetics combines optics and genetics to control well-
defined events in tissues or behaviors in animals (Duebel et al.,
2015). It drives physiological changes in a tissue by influencing
neurons or synapses via cytokines or neurotransmitters (Van
den Oever et al., 2013). Aβ is a pathological hallmark of AD,
and Aβ-injected mouse models of AD show AD-like behavioral
abnormalities and Aβ pathology. Here, optogenetics was used
to activate glutamatergic neurons in the brain of an Aβ-injected
mouse model of AD.

The glutamate family of receptors includes the
ionotropic receptors [e.g., α-amino-3-hydroxy-5-methyl-4-
isoaxolepropionate (AMPA)] and metabotropic receptors
(mGluR; G-protein coupled). AMPA receptors are comprised of
different combinations of GluR1–GluR4 subunits. RNA editing
at the Q/R site of the GluR2 subunit confers Ca2+ impermeability
to AMPA receptors. The edited form represents nearly 100%
of GluR2 subunits expressed in the adult mammals’ brain
(Burnashev et al., 1992; Borges and Dingledine, 1998). Thus,
the presence of the edited GluR2 subunit plays a key role in
determining a neuron’s vulnerability to glutamate toxicity
(Palmer and Gershon, 1990). In the present study, optogenetics
increased GluR2 expression in CA1, CA3, the DG, and the SVZ,
but not in the ENT.

Glutamate is the most abundant free amino acid in the brain
and is the major excitatory neurotransmitter in the mammalian
central nervous system (Meldrum, 2000; Reiner and Levitz,
2018). Evidence suggests that AD is characterized by impaired
glutamate uptake, alterations in the glutamate–glutamine cycle
(Walton and Dodd, 2007), and glutamatergic excitotoxicity
(Palmer and Gershon, 1990; Lau and Tymianski, 2010), whereby
the neurotoxic action of glutamate follows the overactivation of
Ca2+ -permeable ionotropic glutamate receptors (Choi, 1992).

The maintenance of normal glutamatergic neurotransmission
and glutamate clearance depends on active glutamate uptake
into glial cells and neurons as glutamate released by neuronal
cells is not subsequently metabolized in the extracellular space
(Malik and Willnow, 2019). Excitatory amino acid transporters
(EAATs) are needed to maintain a low glutamate concentration
in the extracellular space and prevent excitotoxicity (Logan and
Snyder, 1971; Tanaka et al., 1997). Activation of mGluR2/3
increases the levels of EAAT1 and 2 proteins (Aronica
et al., 2003; Lyon et al., 2008; Lin et al., 2014), and mice
deficient in mGluR2 have decreased levels of EAAT3 mRNA
(Lyon et al., 2008). In the present study, an increase in
GluR2 may have upregulated the expression of the EAATs,
causing bulk glutamate uptake from the extracellular space
and preventing excitotoxicity. This may be one mechanism
by which optogenetics with CaMKII targeting glutamatergic
neurons exerts a neuroprotective effect.

Findings regarding the associations between AD and
inflammatory cytokines, including interleukin (IL)-1β, IL-2,
IL-4, IL-6, IL-8, IL-12, IL-18, tumor necrosis factor (TNF)-α,

transforming growth factor (TGF)-β, interferon (IFN)-γ, and
the C-reactive protein are controversial (Julian et al., 2015).
However, IL-10, a cytokine with anti-inflammatory properties,
may be a main cytokine associated with the pathogenesis of
AD (Swardfager et al., 2010; Sardi et al., 2011; Kiyota et al.,
2012). IL-10 limits the immune response to pathogens and
microbial flora. AAV serotype 2/1 hybrid-mediated neuronal
expression of the mouse IL-10 gene in hippocampal neurons of
amyloid precursor protein + presenilin-1 bigenic mice resulted
in sustained expression of IL-10, reduced astro/microgliosis,
enhanced plasma Aβ levels, and enhanced neurogenesis.

Glial fibrillary acidic protein (GFAP) is a commonly used
marker for astrocytes (Sofroniew and Vinters, 2010). Aβ

increases GFAP levels in the hippocampus (Meunier et al.,
2015), and GFAP is upregulated in astrocytes of patients with
AD (Perez-Nievas and Serrano-Pozo, 2018), which initiates
neuroinflammation and cellular damage. AAV vectors containing
the astrocyte-specific Gfa2 promoter to target hippocampal
astrocytes and interfere with the biochemical cascades leading to
astrocyte activation in APP/PS1 mice confirmed a deleterious role
for activated astrocytes in AD.

In the present study, increased GluR2 expression may have
alleviated excitotoxicity, upregulated IL-10, and downregulated
GFAP. Thus, diminished neuroinflammation induced by
optogenetics may have protected neurons and synapses from
the neurotoxicity of Aβ. It was noteworthy that there was
increased expression of glutamate receptors (GluR2) and IL-10
and decreased expression of GFAP in CA1, CA3, the DG, and
the SVZ, but not the ENT, which is distant to the injection site.
Neuroprotection induced by optogenetics was limited to the core
area of AAV5–CaMKII–CHR2–mCherry injection. In addition,
activation of glutamatergic neurons by AAV5–CaMKII–CHR2–
mCherry injection increased NeuN and synapsin expression
in the core area (DG) of CHR2 injection, while there were
significant changes in the expression of GluR2, IL-10, and GFAP
in the core and peripheral areas of CHR2 expression, including
CA1, CA3, and the SVZ. This suggests that optogenetic activation
of glutamatergic neurons with the CaMKII–CHR2 gene has an
extensive effect on astrocytes, although the interaction and
mechanism need to be investigated in future studies.

The neuronal–glial network is a potential target for
intervention in AD. Consistent with this, our optogenetic
technique that selectively stimulated CaMKII–CHR2-
expressing neurons in the DG of the bilateral hippocampus
improved working memory and short-term memory, altered
neuroinflammation, attenuated excitotoxicity induced by Aβ,
and exerted neuroprotective effects in our mouse model of AD.
This effect was likely mediated by the neuronal–glial network
and activation of glutamate receptors.

While optogenetics has temporal precision, spatial resolution,
and neuronal specificity, it has inevitable limitations. In the
present study, increased NeuN and synapsin expression were
only found in the DG, and increased IL-10 and GluR2 expression
and decreased GFAP expression were not found in the ENT of the
Aβ-injected mouse model of AD. This implies that activation of
glutamatergic neurons in the DG modulated neuroinflammation
in local and peripheral areas and exerted neuroprotective effects
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locally, and the effects of optogenetics varied with the distance
from CHR2 expression.

Thus, although optogenetics has a potential as an effective
treatment for AD, a single-target strategy has spatial limitations.
AD has a wide range of injuries, and a multiple targeted
optogenetics approach may be a more effective therapy.

CONCLUSION

In conclusion, activation of glutamatergic neurons by
optogenetics in the bilateral DG of an Aβ-injected mouse model
of AD improved working memory and short-term memory and
downregulated biomarkers of neuroinflammation in the core and
peripheral areas of CHR2 expression and upregulated biomarkers
of neuroprotection in the core area of CHR2 expression. Due
to the spatial constraints of optogenetics, a multiple targeted
approach may be needed to address the heterogeneous clinical
presentation and pathology of AD.
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