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Abstract
Gallbladder carcinoma (GBC) is the most common biliary tract malignancy with the lowest survival rate, primarily
arising from chronic inflammation. To better characterize the progression from inflammation to cancer to metastasis,
we performed single-cell RNA sequencing across samples of 6 chronic cholecystitis, 12 treatment-naive GBCs, and 6
matched metastases. Benign epithelial cells from inflamed gallbladders displayed resting, immune-regulating, and
gastrointestinal metaplastic phenotypes. A small amount of PLA2G2A+ epithelial cells with copy number variation were
identified from a histologically benign sample. We validated significant overexpression of PLA2G2A across in situ GBCs,
together with increased proliferation and cancer stemness in PLA2G2A-overexpressing GBC cells, indicating an
important role for PLA2G2A during early carcinogenesis. Malignant epithelial cells displayed pervasive cancer hallmarks
and cellular plasticity, differentiating into metaplastic, inflammatory, and mesenchymal subtypes with distinct
transcriptomic, genomic, and prognostic patterns. Chronic cholecystitis led to an adapted microenvironment
characterized by MDSC-like macrophages, CD8+ TRM cells, and CCL2+ immunity-regulating fibroblasts. By contrast, GBC
instigated an aggressive and immunosuppressive microenvironment, featured by tumor-associated macrophages,
Treg cells, CD8+ TEX cells, and STMN1+ tumor-promoting fibroblasts. Single-cell and bulk RNA-seq profiles consistently
showed a more suppressive immune milieu for GBCs with inflammatory epithelial signatures, coupled with
strengthened epithelial-immune crosstalk. We further pinpointed a subset of senescence-like fibroblasts (FN1+TGM2+)
preferentially enriched in metastatic lesions, which promoted GBC migration and invasion via their secretory
phenotype. Collectively, this study provides comprehensive insights into epithelial and microenvironmental
reprogramming throughout cholecystitis-propelled carcinogenesis and metastasis, laying a new foundation for the
precision therapy of GBC.

Introduction
Gallbladder carcinoma (GBC), with adenocarcinoma as

the most common histological type, is a relatively rare but
stubborn and deadly malignancy worldwide1. It commonly
develops from gallstones, pancreaticobiliary maljunction
(PBM), or seldom gallbladder polyps, usually accompanied
by persistent inflammation2. GBC carcinogenesis is con-
ceivably concerned by 10%–20% of adults affected by gall-
stones in the global populations3. Nevertheless, unlike
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gastrointestinal cancers, our understanding of GBC is
impeded by the disease rarity and difficulty in acquiring
fresh samples, given that biopsy is not always feasible and
surgically resected tissues are frequently dedicated to fresh-
frozen sections2. In a compromise, as one specific subtype,
GBC has long been fathomed in a heterogeneous collection
of biliary tract cancers across epidemiological, genomic, and
clinical studies. In fact, despite resembling other biliary tract
cancers in epithelial immunological response or cellular
origin, GBC exhibits distinct mucosal structure (e.g.,
absence of peribiliary glands), physiological function (e.g.,
vivid fluid transport), and local milieu (e.g., a higher

concentration of bile salts), which presumably lead to
genomic, transcriptomic, as well as clinical disparities.
Based on accumulated evidence in a century, GBC typifies

chronic inflammation-associated cancers (CIACs)4. The
majority of GBCs reside in a harsh environment besieged by
infectious (e.g., pathogens), chemical (e.g., pancreatic juice
reflux), mechanical (e.g., gallstone irritation), metabolic (e.g.,
bile cholesterol supersaturation), and hydrodynamic (e.g.,
biliary sludge) stresses which, along with heightened cell
division stress with aging, contribute to a multitude of
microbial, cytotoxic, metabolic, genotoxic, and senescence-
related inflammation processes5, many of which have

Fig. 1 Overview of scRNA-seq analysis across patient-derived gallbladder carcinoma (GBC) samples and non-malignant gallbladder (GB)
samples. a Workflow for sample collection, processing, sequencing, data analysis, and external validation. b t-SNE plot visualizing 42 distinct clusters
encompassing 140,870 cells from all samples (n= 24), colored by cell type (n= 8). c Violin plots showing expression levels of marker genes for each
cell type. d t-SNE plots visualizing expression levels of cell-type gene signatures among identified cell clusters. e t-SNE plot visualizing cell clusters
colored by tissue of origin. CC chronic cholecystitis; PT primary tumor; MT metastatic tumor. f t-SNE plot visualizing cell clusters colored by sample. L
Liver; LN lymph node; P peritoneum. g Horizontal bar charts showing the relative abundance of various cell types in each sample.
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initiated and evolved from inflamed gallbladders for ~15
years or more6.
In contrast to the complex GBC macro-environment,

the tumor microenvironment (TME) knitted by various
cell types is likely more intricate. GBC may be driven by
environmental and cell-autonomous reprogramming
synchronously7, yet not fully elucidated by plentiful
immunohistochemistry (IHC), flow cytometry, or geno-
mic studies. Although recent bulk RNA sequencing of
GBC provides some clues regarding TME composi-
tions8,9, the classification system is defined at a low
resolution with a mosaic of unsorted cell types. In com-
parison, single-cell RNA-sequencing (scRNA-seq) will
provide a 30,000-foot aerial view to discern niches and
networks in the cellular jungle and to discriminate cellular
ebb and flow across the initiation, adaptation, and pro-
pagation stages of cancers10. Two scRNA-seq studies on
GBC were only recently published; however, they either
focused on GBC of specific genetic subtype11, or only had
a small sample size12, neither delineating the
inflammation-cancer-metastasis sequence. Our study
profiled and analyzed single-cell transcriptomes from
24 samples across inflamed gallbladders, primary GBCs,
and matched metastatic lesions. Tumor heterogeneity,
cellular plasticity, and crosstalk across various cell types
were depicted. We also explored how the smoldering and
adaptive inflammatory milieu was reprogrammed into an
elaborately organized pro-tumorigenic ecosystem, notably
an aggressive and immunosuppressive TME. This single-
cell landscape potentially laid a foundation for decoding
enigmas regarding GBC carcinogenesis and metastasis
and for uncovering targets of chemo-and immunotherapy.

Results
Overview of GBC ecosystem by scRNA-seq
We used the droplet-based scRNA-seq platform to

profile single cells from 24 surgically resected fresh tis-
sues, including 12 treatment-naive primary tumors of the
gallbladder (PT; GBC1–12), 6 matched metastatic tumor
samples (MT; four to the liver, one to the lymph node,
and one to the peritoneum), and 6 benign gallbladder
samples of chronic cholecystitis (CC1–6) (Fig. 1a), con-
firmed by hematoxylin and eosin (H&E) staining (Sup-
plementary Fig. S1). As a homogeneous adenocarcinoma
group, tumor samples spanned a variety of etiologies
(gallstone, gallbladder polyps, and PBM), clinical stages
(0–IVB), locations (fundus, body, and neck), and histo-
logical differentiation grades (poor to good). Benign
samples were obtained from distant peritumoral (> 1 cm
from the tumor margin), adenomyosis, calculous, PBM-
associated, and xanthogranulomatous cholecystitis
(XGC)-related gallbladders (Supplementary Table S1).
Following resection, digestion, quality filtering, and

doublet removal, we obtained a total of 140,870 cells. We

identified 8 cell subpopulations using the t-distributed
stochastic neighbor embedding (t-SNE) method, includ-
ing T cells (n= 50,871; CD3D, CD3E), B cells (n= 5,925;
CD79A, MS4A1), plasma B cells (n= 8,490; CD79A,
MZB1), myeloid cells (n= 14,958; CD68, CD14, CD163),
mast cells (n= 1,971; TPSAB1, KIT, CPA3), mesenchymal
cells (n= 24,680; COL1A1, COL14A1, LUM), endothelial
cells (n= 8,897; CD34, PECAM1, VWF), and epithelial
cells (EPCs, n= 25,078; EPCAM, KRT19) (Fig. 1b–d).
EPCs primarily clustered by sample, indicating marked
inter-patient heterogeneity, but the stromal and immune
cells mainly clustered by cell type with mixed biological
origins (Fig. 1e, f). These cell types dispersed among
benign and tumor samples to varying extents, and this
variation remained for paired lesions from the same case,
implying intra- and inter-patient heterogeneity (Fig. 1g;
Supplementary Table S2). Generally, compared with CCs,
PTs were enriched with more EPCs and mesenchymal
cells but with fewer immune cells, especially T cells
behaving as tumor-infiltrating lymphocytes (TILs) (Sup-
plementary Fig. S2a, b). These discrepancies implied
dynamic cellular adaptation and competition for space
and survival amidst different ecosystems13.

Classification of malignant and non-malignant epithelial
cells
Since GBCs harbor enriched copy number variations

(CNVs)14, we inferred large-scale chromosomal CNVs
from the RNA expression profiles to distinguish malig-
nant EPCs (mEPCs) from non-malignant EPCs (nEPCs).
Based on the initial cell-type identification, all the EPCs
were extracted and inferred for CNVs in each cell, with
endothelial cells as the reference and spike-in. After
K-means clustering of the CNV profiles, nEPCs were
identified as those in the same cluster with spike-in cells
and lack of CNVs, predominantly from benign samples.
Cells with chromosomal alterations (deletions or ampli-
fications) in other clusters, mostly from GBC samples,
were identified as mEPCs (Fig. 2a). Compared with
putative benign clusters, the inferred malignant groups
exhibited distinct CNV profiles and salient patient occu-
pancy, corresponding to the inter-tumor heterogeneity.
The inferred CNVs of mEPCs were consistent with the
whole-exome sequencing (WES) data in six cases (Fig. 2a).
Overall, 20,644 mEPCs (99.8% from tumor samples) and
3232 nEPCs (81.8% from benign samples) were identified
for analyses (excluding samples with cell counts < 30; Fig.
2b; Supplementary Table S2). We next performed bulk
RNA-seq analysis of tumoral and peritumoral tissues from
GBC7 and used the top 50 differentially expressed genes
(DEGs) to construct the tumoral and normal gene set
score, respectively. Putative mEPCs defined by inferred
CNV in GBC7 exhibited significantly higher tumoral gene
set score and lower normal gene set score (Supplementary
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Fig. S3a, b), verifying the capacity of inferred CNV algo-
rithm in distinguishing DEG-labelled mEPCs.
We next compared DEGs between all the malignant and

non-malignant EPCs (Fig. 2c; Supplementary Table S3).

Upregulated genes in mEPCs, including IGF2, GPC3,
S100A4, STMN1, and MDK, were semi-automatically
assigned to the traditional cancer hallmark framework
(Supplementary Table S4)15, including proliferative
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Fig. 2 scRNA-seq analysis of malignant epithelial cells (mEPCs) and non-malignant epithelial cells (nEPCs). a The landscape of inferred large-
scale copy number variations (CNVs) for EPCs among all samples, paired with CNV features revealed by whole-exome sequencing (WES) in six GBC
samples. Chromosomal locations are displayed on the top. The left annotation bar indicates sample IDs. The right bar indicates CNV-based
categorization of epithelial cells. b Pie charts showing the relative abundance of mEPCs and nEPCs across samples with EPC counts ≥ 30 (n= 21).
c Heatmap showing top 50 differentially expressed genes (DEGs) between mEPCs and nEPCs. d Dot plots showing differentially enriched GO terms in
mEPCs versus nEPCs. e Dot plots showing activities of transcription factors among mEPCs versus mEPCs. f The landscape of inferred CNVs for EPCs
from CC1 and GBC11 (from the same patient), showing a small fraction of cells inferred as mEPCs in CC1. g Heatmap showing top-ranking DEGs for
CC1-originated nEPCs, CC1-originated mEPCs, and GBC11-originated mEPCs. h Dot plots showing significantly enriched GO terms across CC1-
originated nEPCs, CC1-originated mEPCs, and GBC11-originated mEPCs. i PLA2G2A expression across inflamed gallbladders (n= 17), GBCs in situ (Tis;
n= 59), and GBCs (TNM II-IV; n= 48), illustrated by typical IHC staining images (scale bars, 200 μm; 20×) and boxplots (bottom-right) that compared
PLA2G2A expression levels between three groups (Wilcoxon rank-sum test; ***P < 0.001, ****P < 0.0001; NS not significant).
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signaling, invasion/metastasis, genomic instability,
immune response, and stem cell-like program. We noted
a multitude of genes mapping to chromatin remodeling,
RNA metabolism, and protein homeostasis. Additionally,
mEPCs extensively overexpressed gastrointestinal EPC
markers (e.g., OLFM4, PHGR1) and cell differentiation
markers (e.g., CD9, DLK1), implying the likelihood of
gastrointestinal metaplasia16,17. These signatures were in
line with enriched biological pathways (Fig. 2d) and
coincidently exemplified the novel cancer hallmarks
published during our peer review process18. nEPCs highly
expressed conserved cholangiocyte signatures (e.g., TFF2,
FGF19, MUC5B) (Fig. 2c), typically engaged in physiolo-
gical gallbladder functioning, as well as innate or adaptive
immune responses against chronic inflammation (Fig. 2d;
Supplementary Table S5). Based on SCENIC analysis,
nEPCs showed highly active transcription factors (TFs)
related to embryogenesis and organogenesis (e.g., HNF1B,
NR2F1/2, SOX6) and bile acid metabolism (NR1H4).19 By
contrast, mEPCs displayed oncogenic TF signatures
mapping to MYC circuits (e.g., MYC, NELFE, HDAC2) or
TP53-related pathways (Fig. 2e; Supplementary Fig. S3c
and Table S6).
To further understand the function of nEPCs, these

gallbladder cholangiocytes were re-clustered into nine
subsets (Supplementary Fig. S3d–f), corresponding to
three subtypes: (1) resting cholangiocytes (nEPC01–03),
specifically enriched with cholangiocyte signatures (e.g.,
SLC26A3, FGF19, SCGB3A1, MUC5B); (2) immune-
regulating cholangiocytes, including nEPC07, principally
originated from GBC samples and enriched with
interferon-stimulating genes (ISGs), and two clusters
mainly from an XGC sample (CC6), namely nEPC04
(CXCL6+, IGLC2+, IGHM+) and nEPC08 (HLA-DPB1+,
HLA-DQA1+), both showing upregulated epithelial-
mesenchymal plasticity (EMP) signatures (SPP1+,
S100A4+, VTM+); (3) gastrointestinal metaplastic cho-
langiocytes, including nEPC05 (enterocyte-like: FABP1+,
PHGR1+, REG3A+), mainly derived from PBM-associated
GBC10, and two clusters exclusively from PBM-
associated CC3, namely nEPC06 (gastric cell-like: PGC+,
MUC5AC+, GKN1/2+) and nEPC09 (goblet cell-like:
SPINK4+, REG4+, TFF3+)17,20. These transcriptomic
profiles implied diverse phenotypic plasticity of nEPCs in
maintaining mucosal homeostasis and in reacting to
inflammation or pancreatic juice reflux stress (Supple-
mentary Fig. S3g).

Identification of markers for early-stage carcinogenesis of
gallbladder epithelia
We unexpectedly identified a small fraction of mEPCs

(n= 12) with substantial CNV in a benign sample (CC1,
the peritumoral tissue of GBC11). Despite some genomic
nuances (e.g., fewer copy number gains involving chr8;

fewer copy number losses involving chr19), this squad of
mEPCs largely shared analogous CNV signatures with the
main herd of malignant cells in the matched tumor sample
(Fig. 2f). CC1-residing nEPCs showed top-ranking DEGs
associated with metabolic process (e.g., DUOXA2), gall-
bladder homeostasis (e.g., TFF2), mucosal healing (e.g.,
SERPING1), and inflammatory response (e.g., PIGR) (Fig.
2g, h). In contrast, mEPCs from CC1 and GBC11 displayed
upregulation of multiple tumor-specific genes (e.g., S100P,
TSPAN1, CEACAM5). Putative mEPCs in CC1 and
GBC11 shared vivid mRNA translation processes. Dis-
similar to enriched pathways in CC1-derived mEPCs (e.g.,
tissue remodeling, neutrophil activation), mEPCs in GBC11
displayed ectopic expression of IGHA1 (Fig. 2g), pre-
sumably mediating aberrant tumor immunity and pro-
moting tumor aggressiveness (Fig. 2h)21. Putative mEPCs
in CC1 strikingly showed the highest expression of
PLA2G2A (log2FC= 3.72, P= 7.5 × 10−13) (Fig. 2g), a
typical gastrointestinal mucosal marker22. We next inter-
rogated IHC data of our GBC cohort and transcriptomic
data of external European Genome-Phenome Archive
(EGA) GBC cohort9, consistently revealing pronounced
overexpression of PLA2G2A among early-stage GBCs. A
trend was observed towards reduced PLA2G2A expression
among advanced GBCs versus early cases, despite without
statistical significance (Fig. 2i; Supplementary Fig. S4c).
Moreover, PLA2G2A expression did not seem to correlate
well with GBC etiology or overall survival (Supplementary
Fig. S4a, b, d). We next established PLA2G2A-over-
expressing GBC cell lines (NOZ and GBC-SD cells; Sup-
plementary Fig. S4e). PLA2G2A overexpression potentiated
proliferation, inhibited apoptosis, and significantly facili-
tated stemness of GBC cells, whereas unexpectedly
retarding tumor migration and invasion (Supplementary
Fig. S4f–j). Therefore, PLA2G2A likely served a stage-
dependent role, more actively engaged in early carcino-
genesis than in tumor progression.

Identification of diverse subtypes of mEPCs associated
with GBC prognosis
We identified 13 subsets of mEPCs mostly clustered by

patient (Fig. 3a; Supplementary Fig. S5a), implying inter-
tumoral heterogeneity. Several samples harbored mixed
clusters, suggesting coexisting intra-tumoral hetero-
geneity (Fig. 3b). Most clusters exhibited distinct tran-
scriptomic profiles; however, those from the same patient
(e.g., mEPC01 and 08 from GBC9) displayed overlapping
transcriptomic profiles to varying extents (Supplementary
Fig. S5b, c). Inferred CNV signatures for each cluster were
in line with distinct or shared transcriptomic traits
(Supplementary Fig. S5d). For instance, underlying the
extensive copy number gains at chr19 for mEPCs, 28% of
the top 100 cancer-related DEGs were found at chr19q13
(Supplementary Table S4).
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Gene set variation analysis (GSVA) revealed three dis-
tinct mEPC subtypes based on MSigDb_C6 signatures.
Subtype I (metaplastic mEPCs) exhibited enrichment of
KRAS-related circuits and highly expressed enterocyte-
like (REG4, OLFM4, MUC2) or gastric cell-like (LYZ,
PGC, MUC6) markers (Fig. 3c, d; Supplementary Table
S7), implying intestinal and/or pseudopyloric metaplasia.
Related patients (GBC1, 9, 10) generally had an earlier
stage of disease and good-to-moderate differentiation
associated with gallbladder polyps or PBM. Subtype II
(inflammatory mEPCs) exhibited enriched inflammatory
pathways (e.g., NF-κB, IL-2, IL-15) and DNA damage-
related pathways (e.g., P53, RB, MYC) (Fig. 3c), reminis-
cent of the exacerbated tumor-promoting DNA damage
induced by chronic inflammation23. Plentiful immune or
inflammatory marker genes (e.g., CXCL5, CTSD, BST2,
CD47) were identified (Fig. 3d). Most related cases
(GBC4, 5, 7, 8) had gallstones and suffered an advanced
stage with poor differentiation and lymph node metas-
tasis. As for subtype III (mesenchymal mEPCs; GBC2, 9,
11, 12), in addition to upregulated KRAS-related path-
ways, we noted activated SRC and Wnt pathways, both
serving as master regulators of cell-cell adhesion and
EMP24,25, and typical marker genes associated with cell
migration (e.g., GJA1, MT1H) and EMP (e.g., SPP1,
MSLN) (Fig. 3c, d). IHC analysis further validated
increased protein levels of subtype-specific markers in
corresponding GBC patients, including MUC2, CTSD,
and MSLN for subtypes I, II, and III, respectively (Sup-
plementary Fig. S6a–c). Based on subtype-specific single-
cell transcriptomic signatures, we calculated a reference
matrix for deconvolution analysis of the bulk RNA-seq
data in the EGA GBC cohort (n= 111). The decomposi-
tion analysis of this external validation cohort revealed
three phenotypes akin to our classification system, with
more early-stage GBCs in subtype I. In line with our
findings, enriched KRAS-related signaling was present for
subtypes I and III but not for subtype II, which conversely
showed enriched ERBB2 and P53 pathways (Fig. 3e).
The association between subtype-specific markers and

prognosis was explored in another independent GBC
cohort from our hospital based on tissue microarray data
(n= 49; Fig. 3f–h; Supplementary Table S8).
Increased expression of MUC2 (subtype I marker) was
markedly associated with better overall survival
(P= 0.041; Fig. 3i). By contrast, overexpression of CTSD
(subtype II marker), MSLN (subtype III marker), or SPP1
(subtype III marker) likely predicted decreased overall
survival (P= 0.008, P= 0.040, and P= 0.039, respectively;
Fig. 3j, k). We further jointly used these markers to dis-
tinguish GBC subtypes: MUC2highCTSDlowMSLNlow sub-
type_I, CTSDhighMUC2lowMSLNlow subtype_II, and
MSLNhighMUC2lowCTSDlow subtype_III. Compared with
subtype_I, both subtype_II and subtype_III GBCs had

substantially decreased overall survival (Supplementary
Fig. S6d). Taken together, inflammatory and mesenchy-
mal signatures of mEPCs were more closely associated
with GBC aggressiveness.
Moreover, the somatic mutation landscape based on

available WES data showed that subtype_II GBC samples
altogether displayed TP53 mutation and high tumor
mutational burden (TMB), which partly accounted for the
activated immune signatures (Supplementary Fig. S7a)26.
KRAS mutation was captured in a subtype_I sample
(GBC1), paralleling the GSVA findings, reminiscent of the
role of KRAS mutation in the gallbladder metaplasia-
cancer sequence27. We successfully established two dif-
ferent organoids (GBO-819 and GBO-831) from the
benign human gallbladder mucosa, both showing non-
dysplastic CK7+ epithelial structure. Unlike GBO-819
(MUC2−REG4−), MUC2+REG4+ GBO-831 represented
the intestinal metaplastic organoid (Supplementary Fig.
S7b). The introduced KRASG12D mutation did not lead to
dysplastic alterations in GBO-819 (Supplementary Fig.
S8). By contrast, the metaplastic organoid GBO-831 dis-
played malignant transformation of the gallbladder epi-
thelium after KRASG12D introduction, evidenced by the
altered nucleo-cytoplasmic ratio, nuclear atypia, and
mitosis. Further administration of KRASG12D inhibitor 14
markedly relieved GBO-831 from oncogenic transforma-
tion (Supplementary Fig. S9). These data strongly sug-
gested a crucial role of KRAS signaling in the
tumorigenesis of metaplastic gallbladder epithelia.
We next compared transcriptomic profiles of mEPCs

between paired primary and metastatic samples from five
patients respectively. Three patients (GBC8, 11, 12) dis-
played intermingled mEPCs; however, the other two cases
(GBC9, 10) showed clearly demarcated metastasis-specific
clusters (Supplementary Fig. S10a). Despite broad simi-
larities in CNV signatures, a few distinct genomic varia-
tions were shown for metastatic versus primary tumors
(e.g., chr12 amplification in GBC9-MT; chr2 amplification
in GBC10-MT) (Supplementary Fig. S10b). In both cases,
metastatic mEPCs exhibited substantially boosted trans-
lational initiation and ribosome biogenesis, mirrored by
the upregulated genes (e.g., DDX1 and CENPW in GBC9-
MT; RPL31 and RPS18 in GBC10-MT) (Supplementary
Fig. S10c–e). Intriguingly, we noted several candidate
metastasis-promoting biomarkers potentially serving as
anti-cancer targets. For instance, GBC9-MT showed ele-
vated expression of CD24 (immune checkpoint in pro-
moting immune evasion) and IGFBP2 (metabolic
checkpoint in promoting tumor growth), and GBC10-MT
displayed cancer stem cell signature (OLFM4) and
enhanced cell migration (e.g., CLDN3, CEACAM5)
(Supplementary Table S6).
These results together revealed three subtypes of gall-

bladder cancer cells relevant to patient prognosis, which
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displayed distinct transcriptomic and genomic signatures,
providing potential markers and targets for GBC diag-
nosis and treatment.

Identification of myeloid cell subsets nurturing the
immunosuppressive TME
Innate myeloid cells are at the vanguard of host defense

against tumor initiation. Tumor-infiltrating myeloid cells
play essential roles in regulating immune responses and
facilitating cancer progression28. We re-clustered all
myeloid cells (n= 13,873) and identified eight distinct
subsets, including macrophages (Macro01-06), conven-
tional dendritic cells (cDCs; FCER1A+), and plasmacytoid
dendritic cells (pDCs; LILRA4+) (Fig. 4a, b; Supplemen-
tary Table S9).
Macro01 was preferentially enriched in metastatic lesions

(Fig. 4c; Supplementary Fig. S11a) and was mapped to
tumor-associated macrophages (TAMs) (Fig. 4g; Supple-
mentary Table S10), with extensive upregulation of ISGs
(e.g., ISG15, GPNMB, IFI6) and lipid metabolism genes (e.g.,
APOC1, CTSD, PLA2G7) (Fig. 4b, f; Supplementary Table
S9), conceivably implying its immunosuppressive role con-
ferred by IFN-stimulated lipid reprogramming29,30. The
S100A8+THBS1+ Macro02 subset, rich in S100A family
genes (S100A8, S100A9, S100A12, VCAN, and FCN1),
typically mapped to myeloid-derived suppressor cell-like
(MDSC-like) macrophages (Fig. 4f, g)31–33. Apart from its
affluence in inflamed gallbladders akin to other chronic
infections (Fig. 4c)34, several GBC patients, especially one
advanced case (GBC9), showed pronounced enrichment
(Supplementary Fig. S11a), whereby this subset conceivably
induced an immunocompromised state through regulating
cytokine production and leukocyte chemotaxis (Fig. 4i).
Macro03 (FCGBP+CX3CR1+C3+) was enriched in GBCs
(Fig. 4c), especially in two early cases (GBC1-2) (Supple-
mentary Fig. S11a), typically expressing the tumor-
promoting marker TREM2 (Fig. 4b, e, f)35. It behaved as
an immunosuppressive TAM subset by regulating leukocyte
migration, differentiation, and chemotaxis (Fig. 4i). With
marked patient occupancy (GBC6) (Fig. 4c; Supplementary
Fig. S11a), Macro04 exhibited versatile tumor-promoting
roles, including cytokine production (e.g., TNFAIP3,
CXCL3), pro-angiogenesis (e.g., VEGFA), and ECM remo-
deling (e.g., SPP1) (Fig. 4e–g, j)28,36,37. Macro05 displayed
prominently active proliferation features (MKI67+STMN1+)
(Fig. 4b, f), likely serving as self-renewal gallbladder-resident
macrophages38. This subcluster was frequently found within
GBCs (Supplementary Fig. S11a); however, a benign outlier
(CC6 with XGC) was noted, whereby proliferating macro-
phages probably contributed to the shaping of ‘foamy’
macrophage milieu in XGC-related destructive inflamma-
tion. Predominantly residing in PTs (Fig. 4c),
Macro06 synchronously behaved as M2-like TAMs (e.g.,
LYVE1, SEPP1, MRC1, FOLR2)39, as well as perivascular

TAMs (e.g., MRC1, VCAM1, SLC40A1) (Fig. 4f, g), which
probably facilitated vascular development and cancer cell
intravasation (Fig. 4c–g)32,40. Collectively, tumor-derived
macrophages displayed more prominent M2- and TAM-like
traits, together with boosted angiogenesis and phagocytosis
processes. In contrast, their benign counterparts behaved
more like M1- or MDSC-like macrophages (Fig. 4h). As for
different epithelial subtypes, subtype II exhibited more active
crosstalk with macrophages (Supplementary Fig. S11b).
Cancer cell-derived MIF or COPA potentially dictated the
crosstalk with macrophages through CD74-related signaling
pathways and, reciprocally, macrophage-secreted granulin
(GRN) might send tumor-promoting signals to cancer cells
via TNF receptors (Supplementary Fig. S11c, d).
Dendritic cells (DCs) consisted of type 1 conventional

DCs (cDC1s), type 2 cDCs (cDC2s) and plasmacytoid DCs
(pDCs)41. We identified cDC2s (CD1C+FCER1A+) as the
predominant cDC subset (Fig. 4a), paralleling with pre-
vious pan-cancer single-cell data28,42. The cDC subset
displayed prominent antigen presentation properties
(HLA-DRAhighHLA-DRB1high), whereas pDCs extensively
expressed chemotactic receptors (CXCR3highCXCR4high)
(Fig. 4d). The cDC subset seemed to be independent of
histological origin, implying a general naive T-cell prim-
ing program shared by inflamed gallbladders and GBCs
(Supplementary Fig. S11a). By contrast, despite being less
abundant (n= 89), the pDC subset chiefly resided in
tumors (Fig. 4c), serving as a multitasking player in
creating the immunosuppressive milieu, such as T-cell
proliferation suppression (GZMB)43, interferon produc-
tion inhibition (PTPRS)44, and metabolic rewiring (CLIC3)
(Supplementary Table S9)45. Collectively, these results
implied a pivotal role of myeloid cell subsets in nurturing
the immunosuppressive gallbladder TME.

T cell phenotypes reveal regulators modulating immune
evasion in GBC
TILs are an integral component of the GBC micro-

environment and potentially predict prognosis and ther-
apy response46. By clustering T cells and natural killer
(NK) cells (n= 50,871; Supplementary Table S11), we
identified ten major subsets: (1) CD4+ T cell subsets
(n= 2), including naive T (TN) and regulatory T (Treg)
cells; (2) CD8+ T cell subsets (n= 6), including resident
memory T (TRM), effector T (TEFF), exhausted T (TEX),
effector memory T (TEM), mucosal-associated invariant T
(MAIT), and proliferative T cell subsets; (3) NK cell
subsets (n= 2), including conventional NK and NKT cells
(Fig. 5a). Each subset was annotated by canonical marker
genes (Fig. 5b; Supplementary Fig. S12a). These immune
cell clusters were distributed across inflamed, primary,
and metastatic samples to varying extents; however, his-
tologically different samples exhibited preferential
enrichment (Fig. 5c, d; Supplementary Fig. S12b–d).
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Chronic cholecystitis was rich in CD8+ MAIT and memory
T cell subsets (TRM and TEM). In contrast, other immune
cell types were chiefly enriched in GBCs. Specifically, PTs
were mostly enriched with CD4+ Treg, CD8+ TEX, and
CD8+ proliferative T cells, whereas metastatic lesions were
more infiltrated with CD4+ TN, CD8

+ TEFF, and NK cells
(Fig. 5d; Supplementary Fig. S12b). We further quantita-
tively compared the cytotoxicity, exhaustion, and Treg
scores between cell types and between sample types (Sup-
plementary Table S12). Compared with other CD8+ T cells,
CD8+ TEFF cells showed distinctly higher cytotoxicity scores
(Fig. 5e). CD8+ TILs in MTs had a lower cytotoxicity score
than those in PTs, especially CD8+ TEFF and CD8+ TRM

cells (Fig. 5f, g). CD8+ TILs within PTs, particularly the
CD8+ TEX subset, showed higher exhaustion scores than
those in CCs or MTs (Fig. 5h–j). Tumor-infiltrating CD4+

T cell populations, including CD4+ Treg and CD4+ TN

subsets, showed markedly increased Treg scores than those
residing in CCs (Fig. 5k–m). These results reflected the
abnormal distribution and dysfunctional state of T cells in
GBC TME, providing a resource for further investigation of
GBC immunotherapy.
We next investigated interactions between mEPCs and

T or NK cells. Compared to subtypes I and III, subtype II
EPCs exhibited strengthened crosstalk with various lym-
phocyte subsets (Fig. 5n, o). mEPCs communicated with
T cells most extensively via MIF-TNFRSF14 (HVEM)
interactions, followed by FAM3C-CLEC2D and CD55-
ADGRE5 pairs. mEPCs also interacted with immuno-
suppressive T cells (CD4+ Treg and CD8+ TEX cells)
through ligands CD47 and LGALS9, whereby CD47-
related ‘do not eat me’ signals and LGALS9-triggered
inhibitory pathways presumably facilitated GBC immune
evasion (Supplementary Table S6). Meanwhile, immune
checkpoints LAG3 and HAVCR2 (encoding receptor for
LGALS9) were highly expressed in CD8+ TEX cells
(Supplementary Table S11), suggesting the presence of
functional crosstalk between mEPCs and CD8+ TEX cells.
These significant interactions presumably contributed to
an immunosuppressive TME and represented appealing
immune checkpoints for therapeutic targeting.

Characterization of innate and adaptive immune cell
landscape associated with EPC phenotypes
We next systematically depicted the sample-specific

landscape (e.g., distribution, dynamic variations) of
innate and adaptive immune cell populations categor-
ized by histological types, disease stages, and EPC-based
phenotypes (Fig. 6a). Chronic cholecystitis and malig-
nant samples were enriched with MDSC-like macro-
phages (Macro02) and immunosuppressive TAMs (e.g.,
Macro01), respectively. Compared with inflamed
lesions, malignant samples displayed an overall more
immunosuppressive state, typified by expanding pDCs,
CD4+ Tregs, and CD8+ TEX cells, along with decreased
memory T cells. We further cemented these disparities
either by comparing matched peritumoral (CC1) and
tumor (GBC11) lesions from the same patient or by
comparing inflamed (CC3) and cancerous (GBC10)
lesions with the same PBM etiology. Moreover, each
mEPC subtype exhibited a distinct pattern in recruiting
innate and adaptive immune cells. Strikingly, inflam-
matory subtype II GBCs harbored a more suppressive
TME with higher proportions of pDCs, Tregs, and
CD8+ TEX cells. Multiplex immunofluorescence stain-
ing further validated that CD8+PD-1+ TEX and
CD4+FOXP3+ Treg cells were more frequently seen in
subtype II GBC versus other subtypes (Fig. 6b, c). We
next referred to the external EGA bulk RNA-seq dataset
to quantitatively interrogate the preferential enrichment
of T cells across differentially assigned GBC subtypes.
Compared to the other two types, subtype II GBCs
displayed the highest proportion of CD8+ T and CD4+

Treg subsets (Fig. 6d). Further pairwise correlation
analyses revealed a closer correlation between subtype II
markers (e.g., CD74, CTSD, CD47, LGALS1) and various
T cell markers (e.g., CD3D, CD4, CD8A; Fig. 6e). Spe-
cifically, we noted a positive correlation between sub-
type II markers and representative CD8+ TEX or CD4+

Treg gene sets (Fig. 6f, g). Collectively, these results
suggested that epithelial cell phenotype might remodel
the immunologic microenvironment, which in turn
expedited tumor progression.

(see figure on previous page)
Fig. 6 Landscape of innate and adaptive immune microenvironment. a Bar charts showing the relative abundance of various immune cell
subsets (from top to bottom: macrophages, DCs, CD4+ T cells, and CD8+ T cells) in each sample of our scRNA-seq cohort. b, c Representative
immunofluorescence staining for epithelial markers (pan-CK) and immune cell markers (CD3, CD4, CD8, CD20, CD163, PD-1, and FoxP3) across
samples of different mEPC subtypes. Scale bars, 50 μm. CD4+FoxP3+ cells are highlighted by arrows in b, and arrows in c indicate CD8+PD-1+ cells.
d Boxplots comparing CIBERSORT scores of typical T cell subsets between differentially assigned subtypes of GBCs, based on external bulk RNA-seq
data (n= 111). e Correlation matrix showing the relationship between mEPC subtype gene signatures and T cell marker genes, based on external
bulk RNA-seq data (n= 111). f, g Correlation matrix showing the relationship between mEPC subtype gene signatures and CD8+ TEX cell marker
genes (f) or CD4+ Treg marker genes (g), based on external bulk RNA-seq data (n= 111).
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Dissection of mesenchymal components and regulators
underlying GBC progression
GBC cells are embedded in a desmoplastic stromal

microenvironment8. We identified three major mesenchy-
mal cell types, including fibroblasts (Fib01-Fib11; COL6A3+,
PDGFRA+, FN1+), pericytes (Peri01-Peri04; RGS5+,
CSPG4+, MCAM+), and vascular smooth muscle cells
(VSMCs; MYH11+, ACTA2+, DES+) (Fig. 7a, b). The
pathway activation and related gene expression were further
assessed to explore the diverse phenotypes of fibroblasts
(Fig. 7c–g; Supplementary Table S13). Three clusters (Fib01,
02, and 11) were engaged in collagen biosynthesis and
organization with high expression of COL11A1, FN1, and
POSTN, implying a phenotype of ECM-remodeling

fibroblasts (ERF). Four fibroblast clusters (Fib03, 05, 07, and
10), primarily inhabiting inflamed samples (Fig. 7g; Supple-
mentary Fig. S13a, b), were actively involved in inflammatory
responses, chemokine signaling, and complement activation
(e.g., CCL2, PTGDS, CFD), indicating a phenotype of
immunity-regulating fibroblasts (IRF). Two tumor-
originated clusters (Fib04, Fib09) showed distinctive
enrichment in cell-cycle (e.g., STMN, PTTG) and TNFα
signaling pathway (Fig. 7c–f), typically co-opting the wound
healing-like programs of cellular proliferation and metabolic
rewiring (e.g., IGFL2, TNC) (Fig. 7d)47. Hence, they were
labeled as tumor-promoting fibroblasts (TPF). Fib06 and
Fib08 were enriched in tumor tissues, especially metastatic
lesions (Fig. 7g; Supplementary Table S13), exhibiting

Fig. 7 Mesenchymal microenvironment of GBCs. a t-SNE plot visualizing 16 clusters across three major compartments of mesenchymal cells,
including fibroblasts, pericytes, and VSMCs. VSMC, vascular smooth muscle cell. b Bubble heatmap showing marker genes across mesenchymal
clusters. Dot size indicates the percentage of positively expressed cells, colored by the expression level. c Heatmap showing four phenotypic
subtypes of fibroblasts with differentially enriched GO terms, based on GSVA analysis. Subtype names are annotated at the bottom right. d Heatmap
showing typical DEGs across four fibroblast subsets. e t-SNE plots visualizing color-coded expression of marker genes across four fibroblast subsets.
f Bubble plot showing gene signatures for four fibroblast subtypes. g Heatmap showing the preferential enrichment of different fibroblasts subtypes
across CCs, PTs, and MTs. Ro/e > 1 indicates significant enrichment. h Representative immunofluorescent staining of senescence-like fibroblast
(Fibronectin+ TGM2+) in peritumoral, PT, and MT lesions from the same GBC patient. Scale bars, 50 μm; white arrow, Fibronectin+TGM2+ fibroblasts.
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proliferation quiescence (MKI67−CENPW−) and enhanced
secretory capacity (e.g., CST1, CXCL14, TGM2, SPP1, IGF2)
(Fig. 7d–f), corresponding to the senescence-associated
secretory phenotype (SASP)48. As such, we termed them
as senescence-like fibroblasts (SLF). The senescence-like
fibroblasts also highly expressed F2R and CD24 (Fig. 7f),
implying a role in suppressing anti-tumor immunity49,50.
Multiplex immunofluorescence staining from the same

patient showed enrichment of FN1+ (fibroblast marker)
TGM2+ (aging marker) senescence-like fibroblasts across
primary and metastatic lesions in comparison to the
peritumoral tissue (Fig. 7h)51. When co-culturing normal
human fibroblasts (HFL-1) with supernatant fluid from
GBC-SD cells in vitro (Fig. 8a), HFL-1 cells showed
boosted cell proliferation (MKI67high) and quiescent
secretion (e.g., CXCL14lowTGM2low) at day 3 (Fig. 8b).
Markers for IRF (e.g., CFD, CLU, CCL12) and TRF (e.g.,
IGFL2, IGFBP2, PTTG) were significantly upregulated
after co-culture for 3 or 6 days. By contrast, upregulation
of senescence markers (P16, P21, and P53) and overactive
secretion (e.g., CXCL14, IGF2, TGM2, SPP1), along with
dampened cell proliferation (MKI67low), were noted at day
9 (Fig. 8b). Moreover, as time went by, HFL-1 cells
exhibited stepwise enhanced expression of the
senescence-associated β-galactosidase (SA-β-gal) and
boosted pro-migration/invasion capacity, indicating the
vital role of SLF in promoting GBC metastasis (Fig. 8c).
We next interrogated potential cellular differentiation

trajectories of fibroblasts by RNA velocity. A cellular
hierarchy was unveiled with two main trajectories: one
cellular group differentiated through ERF/IRF towards
TPF and then SLF; the second path went along ERF and
proceeded directly towards SLF (Fig. 8d). Accordingly, we
proposed a progression model for the functional state
transition across fibroblast subsets (Fig. 8e).
We further investigated the interplay between fibro-

blasts and mEPCs by cell–cell communication analysis.
ERF principally interacted with mEPCs via collagen family
members and collagen receptor integrins α1β1/α2β1
(Supplementary Fig. S14). In contrast, IRF actively com-
municated with mEPCs through HLA-C, perhaps imply-
ing their capacity in antigen presentation (Supplementary
Fig. S15). Besides, MIF-EGFR/TNFRSF14, IGF1/2-IGF1R/
2 R, TNFSF12-TNFRSF12A (TWEAK-Fn14) interactions
also mediated the crosstalk between TPF or SLF with
EPCs, consistent with their function in facilitating tumor
progression (Supplementary Figs. S16, S17 and Table S6).
Lastly, four subsets (Per01–Per04) of pericytes were

identified (Supplementary Fig. S13c–e). Except for Per01,
the other three subsets chiefly originated from tumor
samples. Per02 and Per04 were involved in versatile
tumor-promoting programs, such as blood vessel remo-
deling, cell adhesion, and mesenchymal stem cell prop-
erties. By comparison, Per01 and Per03 likely acted as

tissue-resident pericytes, engaged in leukocyte migration,
immune response, and ion transport. Altogether, these
results indicated extensive functional heterogeneity and
phenotypic plasticity of various stromal cells within TME,
which play crucial roles in GBC progression.

Discussion
This study deciphered components and phenotypes

across cholecystitis and GBC ecosystems by scRNA-seq
analysis of 140,870 cells (Fig. 8f). We identified three
subtypes of cancer cells closely linked to TME cellular
predilection as well as patient prognosis. We also dis-
sected potential interactions between cancer cells and
TME cells. This comprehensive single-cell transcriptome
atlas provides a valuable resource for understanding
mechanisms underlying the malignant transformation of
chronic cholecystitis and GBC progression, further paving
ways for developing precision therapies for GBC.
By comparing malignant with non-malignant epithe-

lium, we corroborated most cancer hallmark items and,
meanwhile, identified a plethora of non-canonical sig-
natures pertinent to chromatin remodeling, mRNA
translation, and protein processing, which resembled the
functional partitioning of new candidate cancer genes in
large-scale lung cancer or pan-cancer genomic analy-
sis52,53, and implied epigenomic and translational hall-
marks of GBC18,54,55. Meanwhile, cancer cells showed
missing roles of natural mucosal guardians across epi-
thelial integrity, mucin secretion, and transepithelial
transport. Conversely, they exhibited robust differentia-
tion, metaplastic, and stem cell-like programs, implying
perturbed homeostasis, disrupted tissue organization, and
development gone awry amongst GBCs56,57. Given the
lengthy journey of preceding cholecystitis, GBC typified
the essential property of CIACs under persistent cytotoxic
or genotoxic stresses4,5.
We recapitulated two major continuum states during

inflammation-driven epithelial carcinogenesis: (1)
genomic stable stage (CNV–/low) with inflammatory
adaptation58; (2) genomic unstable (CNVhigh) stage with
inflammatory reprogramming7, as epitomized by the
convergence of epithelial plasticity between inflamed
and malignant gallbladder epithelium. Two PBM-
associated benign EPC subsets (nEPC05–06), awash
with regurgitated pancreatic juice, exhibited gastro-
intestinal metaplastic signatures. Cluster nEPC05 largely
arose from tumor samples, likely implying a pre-
malignant stage with not yet developed genomic
instability. Another two XGC-associated clusters dis-
played EMP signatures, which accounted for the asso-
ciated gallbladder wall destruction and inflammatory
liver invasion (CC6). Unexpectedly, we captured geno-
mic instability in a small fraction of epithelial cells from
the histologically inflamed gallbladder (CC1), implying
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that CNV potentially occurred early and heralded
morphologically malignant transformation, mirrored by
previous pan-cancer evidence59, and meanwhile sug-
gesting fluid boundaries between chronic inflammation
and tumorigenesis stages, presumably with a transitional
zone of field cancerization60. Of note, based on IHC
validation and experimental exploration, we corrobo-
rated that elevated expression of PLA2G2A was asso-
ciated with GBC initiation, corresponding with the
notion that PLA2G2A may display an initial beneficial
effect against gastrointestinal mucosal inflammation
whereas face the tradeoff of increased cancer risk22. In
such a way, PLA2G2A potentially wires long-term
chronic cholecystitis up to GBC.

Cancer cells diverged from inflamed epithelium by cell-
autonomous transcriptional switches (e.g., NR1H4−MYC+)
and by chromosomal instability (e.g., chr19 segmental
aberrations), whereas retaining the memory of epithelial
plasticity, suggestive of sustaining co-option of ‘wound
healing’ programs akin to generalized CIACs61. The meta-
plastic subgroup (subtype I) peculiarly showed KRAS-related
pathway activation, together with KRASG12D-induced
tumorigenesis in our metaplastic gallbladder organoid,
implying the necessity of genomic aberrations for
metaplasia-induced carcinogenesis, presumably via abnor-
mal chromatin remodeling62. In comparison to the ordina-
rily slowly self-renewal gallbladder stem cells (once every
~625 days)63, inflammation spawns gallbladder transit-
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amplifying stem cells64, possibly further reprogrammed into
tumor-initiating stem cells by persistent inflammatory sig-
nals (e.g., NF-κB as a master)65, which have been pervasively
identified in subtype II mEPCs. These inflammatory
responses likely introduced extensive DNA damages and
high mutation burdens, which consequently spurred tumor
initiation, fueled tumor-elicited inflammation, and acceler-
ated tumor progression5,7. We noted extensive low-grade
differentiation and positive lymph nodes across subtype II
patients, reminiscent of cancer-related dedifferentiation
‘hallmark’ and aberrant lymphatic vessel proliferation, both
presumably orchestrated by inflammatory signals7,18,66.
Subtype III cancer cells, typified by hybrid EMP, mostly
came from metastatic lesions, wherein mesenchymal mar-
kers might confer tumor cells of survival advantage, for
instance, to withstand hemodynamic fluid shear stress dur-
ing cell migration.
By dissecting compartments in the gallbladder micro-

environment at a single-cell resolution, we illustrated
their indispensability in driving cancer hallmarks. Acting
as a wound that never heals23, GBC at least hijacked two
categories of building blocks from cholecystitis to con-
struct its TME, pertinent to inflammation resolution (e.g.,
Treg cells, MDSC-like macrophages, and immune-
regulating fibroblasts) and reparative ECM remolding
(e.g., collagen-producing fibroblasts and macrophages),
respectively. By persistently releasing inflammatory med-
iators and shaping a dense barrier to exclude T cell
infiltration67, the inflammation-adapted microenviron-
ment was gradually rewired into an immunosuppressive
TME. For instance, we noted two early GBC samples
enriched with TREM2+ macrophages. While aiding
mucosal wound healing and restraining macrophage
activation, TREM2 might help shape an immunosup-
pressive TME at an early stage. Apart from these co-opted
elements, GBC-TME possessed newly developed pro-
tumorigenic programs, with the generic constituents
mainly grouped into four classes: (1) proliferative class,
typified by various MKI67+ cell subsets (e.g., fibroblasts,
macrophages), conceivably related to sustaining mito-
genic stimulation, genomic instability per se, and activated
stem cell niches68; (2) pro-angiogenic class (e.g., perivas-
cular pericytes and TAMs), presumably relevant to
hypoxic and acidic TME, particularly awful when mucosal
disruption resulting in stark exposure to the acidic gall-
bladder bile; (3) metabolic rewiring class (e.g., lipid-laden
Macro01 subset), likely accounted for by oncogenic
instruction (e.g., KRAS)69 or tumor-related oxidative
stress70; (4) immunosuppressive class (e.g., tumor-pro-
moting/senescence-like fibroblasts), possibly fueled by
persistent chromosomal instability71 or tumor-elicited
inflammation5.
Notwithstanding shared inflammation origins, GBC-

TMEs were not created equally, as shown by forte and

mezzo-forte immunosuppressive subtypes, borrowing the
vivid concept in music theory72. The forte subtype cor-
responded to inflammatory cancer cells (subtype II) and
exhibited extensive infiltration of suppressive immune
cells (e.g., pDCs, M2-like macrophages, Tregs, TEX cells,
and polarized immune-active fibroblasts). In accordance,
compared with other mEPC subtypes, subtype II mEPCs
displayed more robust crosstalk with innate or adaptive
immune cells. The mezzo-forte subtype matched well with
metaplastic cancer cells (subtype I), less hijacked by
suppressive cells as in the forte subtype, and exploited
alternative tumor-promoting TME niches, exemplified by
TREM2+ macrophages and tumor-promoting fibroblasts.
Expanding the concept of ‘epimmunome’ in inflammatory
diseases73, we demonstrated that the dysregulation of
cancer cells could dictate the activity and plasticity of
stromal and immune cell repertoires.
The high similarity between paired primary and meta-

static EPC transcriptomes likely underpinned the parsi-
monious metastatic model of collective migration,
particularly in treatment-naive GBC cases74, as well as the
self-organized ‘histostasis’ cancer theory57. However, we
found a handful of metastatic cancer cells exhibiting
phenotypic nuance such as brisk cellular proliferation,
protein synthesis, and mRNA translation, implying a
central role of translational reprogramming rather than
genomic changes for the adaptive cancer cell plasticity
during metastatic colonization75, conceivably fine-tuned
by the selective pressure within the metastatic niches. In
line with metastatic EPCs, the stromal or immune
populations in metastatic niches also displayed an
increased pliancy. For instance, we noted enriched
senescence-like fibroblasts in metastatic lesions, wherein
copious inflammatory, extracellular modifying, and
growth factors were secreted, further promoting metas-
tasis in extensive ways (e.g., angiogenesis, EMP, and pre-
metastatic niche formation)76. Our findings added fresh
evidence to the novel cancer hallmark of cellular senes-
cence18. Apart from organ adaptation, metastatic TME
likely harbored distinct immunoediting programs. Firstly,
we noted markedly dampened T-cell killing abilities,
typified by decreased CD8+ TEFF cytotoxicity and
increased CD4+ Treg scores, in parallel with the culprit
role of Treg cells in stimulating metastasis in mouse
models77. Secondly, the abundance of NK cells in meta-
static niches likely suggested the revitalized innate
immune system to tackle poorly antigenic cancer cells
that escaped T cell immunosurveillance78. Thirdly,
metastatic lesions represented primary sources of IFN-
associated macrophages, reminiscent of upregulated ISGs
in the pre-malignant epithelium. The paradoxical bimodal
peak of IFN signals implied its co-option during tumor
metastasis79, possibly involved in adaptive immune
resistance of cancer cells and chromosomal instability-
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related cytosolic DNA responses, which might be con-
servative across human cancers80.
Inflammation-driven carcinogenesis has been chiefly

informed by in vitro studies or genetic animal models. At an
in vivo single-cell level and across a continuum of disease
states, we systematically elucidated how the gallbladder
cellular fuels burn up the smoldering inflammatory fire into
raging cancer fire, either within cancer cells or from their
goldilocks zone. GBC subverts long-term inflammatory
tissue homeostasis and establishes its own hierarchy by
usurping extensive ‘wound healing’-like programs, seeking
new pro-tumorigenic players, rewiring new crosstalk cir-
cuits and, more strikingly, re-organizing them together into
seemingly perpetual and indestructible machinery. Herein,
many cellular elements play as delicate rheostats rather than
static building blocks, exhibiting dynamic and context-
dependent phenotypic or functional plasticity, which
underscores the GBC heterogeneity and explains the uni-
versal frustration in ‘targeting’ GBC. Furthermore, the
metaplastic, inflammatory, and mesenchymal classification
system likely expands our knowledge regarding precision
chemo-and immunotherapy of GBC. Implied by cancer cell
and TME signatures, it is reasonable to presume that
inflammatory subtype II GBCs were more suitable for
immune checkpoint blockade therapy. Comparatively, the
other two subtypes might be better managed by incorpor-
ating stromal-normalization therapies. It is worthwhile to
uncover whether the GBC chemotherapy regimens could,
analogous to ampullary carcinoma (pancreaticobiliary ver-
sus intestinal subtype)81, be instructed by the gastro-
intestinal metaplastic state. In addition, targeting the
senescence-like fibroblasts in the tumor stroma might be
a promising strategy to retard GBC metastasis.
In conclusion, the comparative profiling of inflamed

gallbladders, primary GBCs, and matched metastases
delineated the molecular features that drive GBC devel-
opment and progression, laying a new foundation for
future hypothesis-driven translational research. Further
large-scale multi-omics datasets contributed by multi-
center collaboration are expected to verify our scRNA-seq
findings and elucidate the immunosuppressive or
treatment-resistant enigmas underlying this intractable
disease.

Materials and methods
Human specimens
Patient-derived samples for this study were collected at

Eastern Hepatobiliary Surgery Hospital (EHBH), Shanghai,
China. Details for patients in the scRNA-seq cohort were
shown in Supplementary Table S1. The tissue microarray
cohort included 49 GBC patients who underwent curative
intended resection at EHBH from May 2017 to Mar 2019
(Supplementary Table S8). All patients’ diagnoses were
histologically confirmed. This cohort was followed up until

June 30th 2020, with a median follow-up of 17.7 months
(range, 0.5–32.2 months). Variables collected included
gender, age, anti-HBc status, gallstone, gallbladder polyps,
CEA level, CA 19-9 level, location, type of surgery, surgical
margin, liver invasion, vascular invasion, bile duct invasion,
tumor stage, lymph node metastasis, distant metastasis,
TNM stage, tumor differentiation, and histological type.
This study was approved by the Ethical Committee of
EHBH (2018-1-001) and was conducted in accordance with
the Declaration of Helsinki. The informed consent was
signed by each participant.

Single-cell isolation and sequencing
Tissues were cut into about 0.4 × 0.4mm and transported

in tissue storage solution, and then washed with DPBS
before being minced. To get single-cell suspensions, the
samples were processed as follows: minced; dissociated with
digestant (0.25% trypsin (ThermoFisher)) and 10 μg/mL
DNase I (Sigma) dissolved in PBS with 5% FBS (Thermo-
Fisher) and incubated in 37 °C with a shaking speed of
50 rpm for about 40min; repeatedly collected dissociated
cells at an interval of 20min; filtered by a 40 μm nylon cell
strainer; removed red blood cells by 1× Red Blood Cell Lysis
Solution (ThermoFisher); washed with DPBS containing 2%
FBS. The viability of cells would be checked on Countess® II
Automated Cell Counter (ThermoFisher) after trypan blue
staining (ThermoFisher).
To ensure each cell paired with a bead in a Gel Beads-in

emulsion (GEM), 10× library preparation and sequencing
beads with the unique molecular identifier (UMI) and cell
barcodes were loaded close to saturation. Polyadenylated
RNA molecules hybridized to the beads after exposure to
the cell lysis buffer. Beads were retrieved into a single tube
for reverse transcription. On cDNA synthesis, each cDNA
molecule was tagged on the 5’ end with UMI and cell label
indicating its cell of origin. Briefly, 10× beads were then
subject to second-strand cDNA synthesis, adaptor liga-
tion, and universal amplification. Sequencing libraries
were prepared using randomly interrupted whole-
transcriptome amplification products to enrich the 3’
end of the transcripts linked with the cell barcode and
UMI. All the remaining procedures including the library
construction were performed according to the standard
manufacturer’s protocol (CG000206 RevD). Sequencing
libraries were quantified using a High Sensitivity DNA
Chip (Agilent) on a Bioanalyzer 2100 and the Qubit High
Sensitivity DNA Assay (ThermoFisher). The libraries were
sequenced on NovaSeq6000 (Illumina) using 2 × 150
chemistry (Shanghai Bohao Biotechnology; Shanghai
OEbiotech Corporation).

DNA isolation and whole exon sequencing (WES)
Genomic DNA of samples was extracted by QIAamp

DNA Mini Kit (Qiagen) and then captured with an
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Agilent SureSelect Human All Exon Kit V6 (Agilent).
DNA libraries were generated following the protocols
provided by Illumina. DNA libraries were sequenced with
the Illumina NovaSeq 6000 System (Illumina), yielding
150 bp of paired-end sequence, and FASTQ files were
generated. The WES sequencing and analysis were con-
ducted by OE Biotech Co., Ltd. (Shanghai, China).

Single-cell RNA-seq data processing
Raw gene expression matrices were generated for each

sample by the Cell Ranger Pipeline coupled with human
reference version GRCh38. The output filtered gene
expression matrices were analyzed by R software with the
Seurat package82. In brief, genes expressed at a proportion
> 0.1% of the data and cells with >200 genes detected were
selected for further analyses. Low-quality cells were
removed if they met the following criteria: (1) <200 genes;
(2) >20% UMIs derived from the mitochondrial genome.
After removal of low-quality cells, the gene expression
matrices were normalized by the NormalizeData function,
and 2000 features with high cell-to-cell variation were
calculated using the FindVariableFeatures function. To
reduce the dimensionality of the datasets, the RunPCA
function was conducted with default parameters on
linear-transformation scaled data generated by the Sca-
leData function. Next, the ElbowPlot, DimHeatmap
functions were used to identify the proper dimension of
each dataset. Finally, we clustered cells using the Find-
Neighbors (top 22 PCs) and FindClusters functions
(resolution= 0.8), and performed non-linear dimensional
reduction with the RunTSNE function with default
settings.
Based on the above analysis, we separated and clustered

each cell type with the same process. For mesenchymal
cells, we selected the top 15 PCs and resolution at 0.3. For
T cells, we select the top 15 PCs and resolution at 1.2. For
epithelial cells, we selected the top 20 PCs and resolution
at 0.2. For macrophages, we selected the top 14 PCs and
resolution at 0.15. For endothelial cells, we selected the
top 14 PCs and resolution= 0.1.

Cell type annotation and cluster markers identification
After non-linear dimensional reduction and projection of

all cells into two-dimensional spaces by t-SNE, cells clus-
tered together according to common features. The Fin-
dAllMarkers function with default parameters in Seurat was
used to find markers for each of the identified clusters.
Clusters were then classified and annotated based on
expression of canonical markers of particular cell types.

DEGs identification and functional enrichment
Differential gene expression testing was performed

using the FindMarkers function in Seurat with parameter
“test.use=wilcox”, only.pos = TRUE, and other

parameters by default, and the Benjamini-Hochberg
method was used to estimate the adjusted P value.
DEGs were filtered using a minimum log (fold change) of
0.25 and a maximum adjusted P value of 0.01. Enrichment
analysis for the functions of the DEGs was conducted
using clusterProfiler R package83. Gene set variation
analysis (GSVA) was performed using gene sets obtained
from the C6 molecular signature database using default
sets, as described in the GSVA package84. To depict the
function preference of each cell cluster, we calculated the
preferential expression of signature genes. The potential
roles of GBC-related DEGs were mapped by using the
Cancer Hallmarks Analytics Tool (http://
chat.lionproject.net/)85, signature gene sets in GSEA
database (http://www.gsea-msigdb.org/), or the Human
Protein Atlas (https://www.proteinatlas.org/).

CNV analysis
To identify malignant cells with clonal large-scale

chromosomal CNVs, we used the inferCNV R package86

to infer the genetic profiles of each cell based on the
average expression of large gene sets (101 genes) in each
chromosomal region of the tumor genome compared to
normal cells. All epithelial cells and 240 endothelial cells
(10 cells of each sample) were input as interrogation
group, and 100 endothelial cells from each patient were
sampled randomly as control. Other parameters were set
as default.

SCENIC analysis
The SCENIC analysis was run using the R package

SCENIC87. The co-expression modules were run by
GENIE3 (SCENIC 1.1.2-2). The motifs database for Homo
sapiens was downloaded from the website https://
resources.aertslab.org/cistarget/databases/. The input
matrix was the normalized expression matrix of cells of
interest.

Cell-cell communication analysis
We used CellPhoneDB for data analysis88. Ligand-

receptor pairs with P values > 0.05 were filtered, while the
others were retained for evaluating the relationship
between the different cell types.

RNA velocity
RNA velocity was performed to investigate the potential

inter-relationship of mesenchymal cell lineage using
velocyto89. BAM file containing all the mesenchymal cells
was used in this pipeline, spliced/unspliced reads were
annotated. The calculation of RNA velocity values for
each gene in each cell and embedding RNA velocity
vector to low-dimension space was done by following the
velocyto pipeline. All the parameters were set as default.
The result was visualized into UMAP plot.
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Tissue distribution preference of clusters
To define the tissue preference of each cell cluster, we

calculated the ratio of observed to excepted cell numbers
(Ro/e) of each cluster in different tissues90. The expected
cell numbers for each combination of cell clusters and
tissues are obtained from the chi-square test. One cluster
was enriched in a specific tissue if Ro/e > 1. Heatmaps
were generated by pheatmap package.

Functional analysis for T cells
Cytotoxicity and exhaustion signatures were derived

from differentially expressed genes across all CD8+ T
cell subtypes. Pearson correlation between the reference
gene GZMK (cytotoxicity signature) or HAVCR2
(exhaustion signature) and all other genes across CD8+

T cells using scaled expression values was analyzed. The
top 30 genes having the highest correlation with the
reference genes (GZMK or HAVCR2) were defined as
cytotoxicity and exhaustion signature genes, respec-
tively. For CD4+ T cells, the IL2RA gene was chosen as
the reference gene for defining the Treg signature using
the same method. We computed signature scores for
individual cells using AddModuleScore function in
Seurat.

WES analysis
The raw reads in fastq format were pre-processed with

fastp91. Firstly, Adapter sequences and sequences with
an average quality value below 15 bases in a sliding
window were trimmed. Then, clean reads were aligned
to the reference human genome GRCh37 using the
BWA92. The mapped reads were sorted and indexed by
SAMtools93, following Picard (Version 4.1.0.0) for
marking duplicate reads, to obtain analysis-ready BAM
files which were used as input files for variant calling.
The GATK (Version 4.1.9.0)94 was used for recalibration
of the base quality score and single nucleotide poly-
morphism (SNP) and insertion/deletion (INDEL) rea-
lignment. The annotation databases, such as Refseq,
1000 Genomes, the Catalogue of Somatic Mutations in
Cancer (COSMIC), OMIM, EXAC, esp6500, gnomAD,
SIFT, clinvar, PolyPhen, MutationTaster, gwasCatalog,
and OMIM were referred to during SNP&INDEL calling
and annotated using ANNOVAR95. Specifically, copy
number variation (CNV) was inferred from sequencing
data using the software package CNVkit (version
0.9.8)96, and Lumpy software (Version 0.2.13)97 was
applied to call structural variation (SV). Tumor muta-
tion burden (TMB) was defined as the number of
somatic, coding, base substitution, and indel mutations
per megabase of genome examined. In this study, we
calculated TMB as the number of all nonsynonymous
mutations/exon length for each sample.

Validation cohort
We acquired the bulk RNA-seq data of 111 GBC

patients from the European Genome-phenome Archive
(EGA) with permission. The fastq files were processed
using Trimmomatic with low-quality reads removed98.
The clean reads were mapped to the human genome
(GRCh38) using HISAT299. The read counts of each gene
were obtained by HTSeq-count100. To validate the sub-
types based on the malignant epithelium in our cohort, we
used the DESeq2 function ‘rlog’ to regularize log trans-
form of the normalized count values101,102. Then, the
characteristic gene sets of each subtype were constructed
with the top 15 genes of themselves, and gene set varia-
tion analysis (GSVA) was performed by GSVA packages
with default parameters. Finally, the patients were classi-
fied by hierarchical clustering with hclust function in R
and the heatmap was generated by Complexheatmap
package103.
To verify the relationship between malignant epithelial

subtypes and tumor microenvironment, we used the
TIMER2 and CIBERSORT to predict the infiltration of
immune cells104,105. Also, we calculated the correlation of
the top 15 genes of each subtype and T subcluster sig-
natures. Heatmaps were generated by corrplot package.

IHC analysis
The IHC was performed as previously described106. To

measure the immunoreactivity of different markers, the
pathologists who as blinded to patients’ outcomes per-
formed the image analysis based on the staining of density
and intensity. The scores were as follows: 1 for 0%–25%
density or negative intensity, 2 for 26%–50% density or
weak intensity, 3 for 51%–75% density or medium
intensity, and 4 for 76%–100% intensity or strong inten-
sity. The final semi-quantitative score was acquired by the
density score multiplying the intensity score, ranging from
1 to 16.

Multiplex immunofluorescence staining
The procedure of deparaffinization, rehydration, and

endogenous peroxidases quench was conducted as stan-
dard IHC. In general, all incubation was conducted in a
dark moisture chamber and at 300 rpm on an orbital
shaker. Applied liquids were removed and washed three
times with TBST after each step. Then one cycle of the
multi-color staining protocol was performed according to
the instructions (PerkinElmer). Images of immuno-
fluorescence stained slides were acquired from the co-
focal microscope using the 60× objective with saturation
protection as a whole-slide overview. A spectral library
was constructed with each OPAL-fluorochrome. The
same spectral library was used for all analyzed immuno-
fluorescence panels throughout the experiments.
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Tumor cell viability, apoptosis, and stemness assays
Tumor cell viability was measured by the CCK8 assay.

Cells were seeded in 96-well plates at a density of 2000
cells per well. Cells were incubated with CCK8 solution
(1:10 v/v) for 2 h every 24 h. The absorbance was mea-
sured at 450 nm by microplate reader. Cell apoptosis was
detected by using the TUNEL Assay Kit in accordance
with the manual. We measured the expression of stem cell
markers (CD44, EpCAM) using flow cytometry analysis.
In brief, cells were collected and resuspended in 100 µL
PBS (1% BSA and 0.1% sodium azide) and were stained
with APC-EpCAM or PE-CD44 antibodies for 30min.
The results were analyzed by FlowJo V10. In sphere for-
mation assays, 1000 cells per well were seeded in the
ultra-low attachment 6-well plates. Tumor spheres larger
than 75 μm were counted under stereomicroscope after
10 days.

Gallbladder organoid (GBO) establishment and assessment
Fresh gallbladder tissues were obtained with informed

consent from patients who underwent surgery at EHBH.
Briefly, the tumor tissues were washed with PBS for 1–2
times, minced into 1 mm3 with scissors, and incubated at
37 °C in digestion solution (Dulbecco’s Modified Eagle
Medium (DMEM)) with 4 mg/mL collagenase D (Roche),
10 μM Y27632 (Sigma-Aldrich), and 1× Primocin (Invi-
voGen) on an orbital shaker for 1–2 h until no visible cell
mass could be seen. Then, digestion was stopped by
adding the cold termination medium (DMEM medium
with 1% penicillin/streptomycin, 1× primocin, 10 μM
Y27632, 10% FBS). The cell suspension was filtered
through a 70 μm Nylon cell strainer and washed with cold
Advanced DMEM/F12 twice before spinning at
300–400× g for 5 min. Re-suspension of the cells in cold
human liver organoid medium mixed with Matrigel and
was seeded into a 6/24-multiwell plate at 37 °C for 1 h.
After polymerization of matrix, the human liver organoid
medium was added to each well. The culture was gen-
erally changed every 3–4 days. After 1–2 weeks, the
organoids were repeatedly blown with a gun tip to dis-
perse the cells and then replanted into Matrigel at a ratio
of 1: 2.
The GBOs were fixed in 10% formalin and embedded in

paraffin. The paraffin-embedded sections (4 µm thick) were
prepared and stained with H&E using standard protocols.
IHC staining was performed as described above.

GBO and GBC cell line lentivirus infection
The green fluorescent protein (GFP), PLA2G2A or

KRASG12D CDS sequence was inserted into pLenti-CMV-
3FLAG lentiviral vector (OBiO Technology, Shanghai).
GBC cell lines (GBC-SD and NOZ) were purchased from
Cell Bank of Type Culture Collection of Chinese Academy
of Sciences. GBC-SD and NOZ cells were transfected with

lentivirus of NC labeling GFP or PLA2G2A labeling GFP
with a multiplicity of infection (MOI) 20 for 4 h. After
12 h, the original medium was replaced with fresh med-
ium. Then the cells were selected with puromycin for two
weeks before performing migration and invasion
experiments.
In terms of GBO lentivirus infection, the organoids were

resuspended in a 500 μL growth medium after trypsini-
zation for 5 min at 37 °C. Then cells were seeded into 48-
well plates at 80%–90% confluence and were infected with
lentivirus of NC labeling GFP and KRASG12D labeling GFP
according to standard procedures107. Three days after
infection, the growth medium was exchanged with med-
ium containing puromycin at a concentration of 5 μg/mL
for selection for two weeks.

Co-culture experiment and senescence-associated
β-galactosidase (SA-β-gal) assay
Human fetal lung fibroblasts (HFL-1) were purchased

from Cell Bank of Type Culture Collection of Chinese
Academy of Sciences. For cell co-culture, the medium
supernatant collected from GBC-SD cells was used to
culture HFL-1 for 0, 3, 6, and 9 days, respectively. Then
the senescence β-Galactosidase Staining Kit was used to
detect the senescence of HFL-1 according to the manu-
facturer’s instructions. In brief, cells were fixed 4% par-
aformaldehyde for 15min at room temperature before
being incubated with SA-β-gal staining solution overnight
at 37 °C without CO2. The stain of SA-β-gal was visualized
under a Zeiss microscope.

Total RNA extraction and quantitative real-time PCR (qRT-
PCR)
The procedures of RNA extraction and qPCR were

performed as previously described. Primers used for qRT-
PCR are listed in Supplementary Table S14. Expression
levels were calculated using the 2−ΔΔCT method with
β-actin as the control.

Invasion and migration assays
Both invasion and migration assays were conducted by

using 8.0 mm Boyden chambers (BD Biosciences). For
invasion assay, the Boyden chambers were covered with
200 μL of phenol-red-free matrigel mix which was diluted
1:40 portions with DMEM. Thereafter, these chambers
were placed in a 24-well plate and were incubated for
20mins at 37 °C. For invasion and migration assays of
GBC cells, the wells of the lower chamber were filled with
medium containing 10% FBS. GBC cells (2 × 104) were
seeded in the upper compartment in serum-free medium
for 24 h. At the end of assay, filters were removed and
fixed. The invasion and migration were determined by
counting the cells that migrated to the lower side of the
filter. For invasion and migration assays in co-culture
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system, GBC-SD cells (2 × 104) labeling GFP were platted
under the serum-starved condition in the upper cham-
bers, while in the lower chambers, HFL-1 cells (2 × 104)
that co-cultured with medium supernatant of GBC-SD
cells for 0, 3, 6, and 9 days were seeded. The experiment
was stopped after 24 h of incubation. An equal number of
cells were seeded in wells underneath to normalize the
invasion and migration assay to cell proliferation.

Primers and antibodies
The primers, primary and secondary antibodies were

listed in Supplementary Table S14, and were used at the
concentrations indicated by manufacturer’s instructions.

Statistics
Based on the median IHC scores of markers, the GBC

specimens were divided into high and low groups. The R
package ‘surviminer’ and ‘survival’ were used for Kaplan-
Meier survival analysis. Details of statistical tools, meth-
ods, and thresholds for statistical analysis are described in
the respective results section, methods, and figure
legends.

Acknowledgements
We thank patients and doctors in Eastern Hepatobiliary Hospital for help with
the collection of gallbladder samples. We are grateful to European Genome-
phenome Archive (EGA) for authorizing us access to the gallbladder cancer
sequencing datasets (EGAD00001004853, EGAD00001004854, and
EGAD00001004855). We thank the Bioinformatics Group at Analytical
Biosciences Beijing Limited, particularly Dr. Shaoyu Song, for assistance with
the bioinformatics part. This study is supported by the National Natural Science
Foundation of China (81988101, 81872231, 81830054, 82073411) and the
Shanghai Sailing Program (21YF1458500).

Author details
1International Cooperation Laboratory on Signal Transduction, National Center
for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation
and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-
biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military
Medical University, Shanghai, China. 2Second Department of Biliary Surgery,
Eastern Hepatobiliary Surgery Hospital, Second Military Medical University,
Shanghai, China. 3Changping Laboratory, Yard 28, Science Park Road,
Changping District, Beijing, China. 4Research Center for Organoids, The First
Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. 5Cancer
Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences
and Medicine, University of Science and Technology of China, Hefei, Anhui,
China. 6School of Life Sciences, Fudan University, Shanghai, China. 7Second
Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second
Military Medical University, Shanghai, China

Author contributions
H.W. conceived the project; H.W., J.F. and Y.J.Z. designed the experiments; X.W.,
C.L.L., J.A.C., L.C., M.H., Y.J., E.L.,Y.L.Z. and X.Z. performed the experiments and
bioinformatics analysis; X.W., A.D., X.F., W.Y. and Z.Y. collected the human
samples; H.W., J.F., X.R. and X.C. analyzed the data; J.F., X.W. and C.L.L. wrote the
manuscript.

Conflict of interest
The authors declare no competing interests.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41421-022-00445-8.

Received: 30 December 2021 Accepted: 9 July 2022

References
1. DeSantis, C. E., Kramer, J. L. & Jemal, A. The burden of rare cancers in the

United States. Ca. Cancer J. Clin. 67, 261–272 (2017).
2. Benson, A. B. et al. Hepatobiliary cancers, version 2.2021, NCCN clinical

practice guidelines in oncology. J. Natl. Compr.Canc. Netw. 19, 541–565
(2021).

3. Lammert, F. et al. Gallstones. Nat. Rev. Dis. Prim. 2, 16024 (2016).
4. Tlsty, T. D. & Gascard, P. Stromal directives can control cancer. Science 365,

122–123 (2019).
5. Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers,

mechanisms, and consequences. Immunity 51, 27–41 (2019).
6. Roa, I. et al. Preneoplastic lesions and gallbladder cancer: an estimate of the

period required for progression. Gastroenterology 111, 232–236 (1996).
7. Todoric, J. & Karin, M. The fire within: cell-autonomous mechanisms in

inflammation-driven cancer. Cancer Cell 35, 714–720 (2019).
8. Nepal, C. et al. Integrative molecular characterisation of gallbladder cancer

reveals micro-environment-associated subtypes. J. Hepatol. 74, 1132–1144
(2021).

9. Pandey, A. et al. Integrated genomic analysis reveals mutated ELF3 as a
potential gallbladder cancer vaccine candidate. Nat. Commun. 11, 4225
(2020).

10. Lim, B., Lin, Y. & Navin, N. Advancing cancer research and medicine with
single-cell genomics. Cancer Cell 37, 456–470 (2020).

11. Zhang, Y. et al. Single-cell RNA-sequencing atlas reveals an MDK-dependent
immunosuppressive environment in ErbB pathway-mutated gallbladder
cancer. J. Hepatol. 75, 1128–1141 (2021).

12. Chen, P. et al. Diversity and intratumoral heterogeneity in human gallbladder
cancer progression revealed by single-cell RNA sequencing. Clin. Transl. Med.
11, e462 (2021).

13. Vishwakarma, M. & Piddini, E. Outcompeting cancer. Nat. Rev. Cancer 20,
187–198 (2020).

14. Wang, X. et al. Non-invasive detection of biliary tract cancer by low-coverage
whole genome sequencing from plasma cell-free DNA: A prospective cohort
study. Transl. Oncol. 14, 100908 (2021).

15. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell
144, 646–674 (2011).

16. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370,
eaba7721 (2020).

17. Busslinger, G. A. et al. Human gastrointestinal epithelia of the esophagus,
stomach, and duodenum resolved at single-cell resolution. Cell Rep. 34,
108819 (2021).

18. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46
(2022).

19. Sun, L., Cai, J. & Gonzalez, F. J. The role of farnesoid X receptor in metabolic
diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol.
18, 335–347 (2021).

20. Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal
development at single-cell resolution. Cell 184, 810–826.e23 (2021).

21. Sexauer, D., Gray, E. & Zaenker, P. Tumour-associated autoantibodies as
prognostic cancer biomarkers- a review. Autoimmun. Rev. 21, 103041
(2022).

22. Schewe, M. et al. Secreted phospholipases A2 are intestinal stem cell niche
factors with distinct roles in homeostasis, inflammation, and cancer. Cell Stem
Cell 19, 38–51 (2016).

23. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867
(2002).

24. Avizienyte, E. & Frame, M. C. Src and FAK signalling controls adhesion fate
and the epithelial-to-mesenchymal transition. Curr. Opin. Cell Biol. 17,
542–547 (2005).

Wang et al. Cell Discovery           (2022) 8:101 Page 21 of 23

https://doi.org/10.1038/s41421-022-00445-8


25. Nelson, W. J. & Nusse, R. Convergence of Wnt, beta-catenin, and cadherin
pathways. Science 303, 1483–1487 (2004).

26. Jardim, D. L., Goodman, A., de Melo Gagliato, D. & Kurzrock, R. The challenges
of tumor mutational burden as an immunotherapy biomarker. Cancer Cell
39, 154–173 (2021).

27. Yamagiwa, H. & Tomiyama, H. Intestinal metaplasia-dysplasia-carcinoma
sequence of the gallbladder. Acta Pathol. Jpn. 36, 989–997 (1986).

28. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infil-
trating myeloid cells. Cell 184, 792–809.e23 (2021).

29. York, A. G. et al. Limiting cholesterol biosynthetic flux spontaneously engages
type I IFN signaling. Cell 163, 1716–1729 (2015).

30. Wu, H. et al. Lipid droplet-dependent fatty acid metabolism controls the
immune suppressive phenotype of tumor-associated macrophages. EMBO
Mol. Med. 11, e10698 (2019).

31. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in
the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498
(2021).

32. Zhang, Q. et al. Landscape and dynamics of single immune cells in hepa-
tocellular carcinoma. Cell 179, 829–845.e20 (2019).

33. Hegde, S., Leader, A. M. & Merad, M. MDSC: Markers, development, states,
and unaddressed complexity. Immunity 54, 875–884 (2021).

34. Dorhoi, A. & Du Plessis, N. Monocytic myeloid-derived suppressor cells in
chronic infections. Front. Immunol. 8, 1895 (2017).

35. Deczkowska, A., Weiner, A. & Amit, I. The physiology, pathology, and potential
therapeutic applications of the TREM2 signaling pathway. Cell 181,
1207–1217 (2020).

36. Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted
therapies in colon cancer. Cell 181, 442–459.e429 (2020).

37. Afik, R. et al. Tumor macrophages are pivotal constructors of tumor col-
lagenous matrix. J. Exp. Med. 213, 2315–2331 (2016).

38. Bleriot, C., Chakarov, S. & Ginhoux, F. Determinants of resident tissue mac-
rophage identity and function. Immunity 52, 957–970 (2020).

39. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage
activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

40. Lapenna, A., De Palma, M. & Lewis, C. E. Perivascular macrophages in health
and disease. Nat. Rev. Immunol. 18, 689–702 (2018).

41. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified
nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014).

42. Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor micro-
environment revealed by single-cell profiling. Cell Res. 30, 745–762 (2020).

43. Jahrsdorfer, B. et al. Granzyme B produced by human plasmacytoid dendritic
cells suppresses T-cell expansion. Blood 115, 1156–1165 (2010).

44. Bunin, A. et al. Protein tyrosine phosphatase PTPRS is an inhibitory receptor
on human and murine plasmacytoid dendritic cells. Immunity 43, 277–288
(2015).

45. Hernandez-Fernaud, J. R. et al. Secreted CLIC3 drives cancer progression
through its glutathione-dependent oxidoreductase activity. Nat. Commun. 8,
14206 (2017).

46. Neyaz, A. et al. Clinical relevance of PD-L1 expression in gallbladder cancer: a
potential target for therapy. Histopathology 73, 622–633 (2018).

47. Schworer, S., Vardhana, S. A. & Thompson, C. B. Cancer metabolism drives a
stromal regenerative response. Cell Metab. 29, 576–591 (2019).

48. Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences
tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).

49. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target
for cancer immunotherapy. Nature 572, 392–396 (2019).

50. Yang, Y. et al. Thrombin signaling promotes pancreatic adenocarcinoma
through PAR-1-dependent immune evasion. Cancer Res. 79, 3417–3430
(2019).

51. Cardoso, A. L. et al. Towards frailty biomarkers: Candidates from genes and
pathways regulated in aging and age-related diseases. Ageing Res. Rev. 47,
214–277 (2018).

52. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes
across 21 tumour types. Nature 505, 495–501 (2014).

53. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with
massively parallel sequencing. Cell 150, 1107–1120 (2012).

54. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the
hallmarks of cancer. Science 357 (2017).

55. Fabbri, L., Chakraborty, A., Robert, C. & Vagner, S. The plasticity of mRNA
translation during cancer progression and therapy resistance. Nat. Rev. Cancer
21, 558–577 (2021).

56. Puisieux, A., Pommier, R. M., Morel, A. P. & Lavial, F. Cellular pliancy and the
multistep process of tumorigenesis. Cancer Cell 33, 164–172 (2018).

57. Muthuswamy, S. K. Self-organization in cancer: Implications for histopathol-
ogy, cancer cell biology, and metastasis. Cancer Cell 39, 443–446 (2021).

58. Niec, R. E., Rudensky, A. Y. & Fuchs, E. Inflammatory adaptation in barrier
tissues. Cell 184, 3361–3375 (2021).

59. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578,
122–128 (2020).

60. Curtius, K., Wright, N. A. & Graham, T. A. An evolutionary perspective on field
cancerization. Nat. Rev. Cancer 18, 19–32 (2018).

61. Ge, Y. et al. Stem cell lineage infidelity drives wound repair and cancer. Cell
169, 636–650.e14 (2017).

62. Vassiliadis, D. & Dawson, M. A. Mutation alters chromatin changes during
injury response to drive cancer. Nature 590, 557–558 (2021).

63. Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among
tissues can be explained by the number of stem cell divisions. Science 347,
78–81 (2015).

64. Carpino, G. et al. Evidence for multipotent endodermal stem/progenitor cell
populations in human gallbladder. J. Hepatol. 60, 1194–1202 (2014).

65. Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-kappaB as the
matchmaker. Nat. Immunol. 12, 715–723 (2011).

66. Alitalo, K., Tammela, T. & Petrova, T. V. Lymphangiogenesis in development
and human disease. Nature 438, 946–953 (2005).

67. Hegde, P. S., Karanikas, V. & Evers, S. The where, the when, and the how of
immune monitoring for cancer immunotherapies in the era of checkpoint
inhibition. Clin. Cancer Res. 22, 1865–1874 (2016).

68. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote
breast cancer metastasis. Nature 449, 557–563 (2007).

69. Kerk, S. A., Papagiannakopoulos, T., Shah, Y. M. & Lyssiotis, C. A. Metabolic
networks in mutant KRAS-driven tumours: tissue specificities and the
microenvironment. Nat. Rev. Cancer 21, 510–525 (2021).

70. Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer.
Cancer Cell 38, 167–197 (2020).

71. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a
cytosolic DNA response. Nature 553, 467–472 (2018).

72. Zhang, T. et al. Genomic and evolutionary classification of lung cancer in
never smokers. Nat. Genet. 53, 1348–1359 (2021).

73. Swamy, M., Jamora, C., Havran, W. & Hayday, A. Epithelial decision makers: in
search of the ‘epimmunome’. Nat. Immunol. 11, 656–665 (2010).

74. El-Kebir, M., Satas, G. & Raphael, B. J. Inferring parsimonious migration his-
tories for metastatic cancers. Nat. Genet. 50, 718–726 (2018).

75. Ushijima, T., Clark, S. J. & Tan, P. Mapping genomic and epigenomic evolution
in cancer ecosystems. Science 373, 1474–1479 (2021).

76. Faget, D. V., Ren, Q. & Stewart, S. A. Unmasking senescence: context-
dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439–453 (2019).

77. Tan, W. et al. Tumour-infiltrating regulatory T cells stimulate mammary
cancer metastasis through RANKL-RANK signalling. Nature 470, 548–553
(2011).

78. López-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by
NK cells. Cancer Cell 32, 135–154 (2017).

79. von Locquenghien, M., Rozalen, C. & Celia-Terrassa, T. Interferons in cancer
immunoediting: sculpting metastasis and immunotherapy response. J. Clin.
Invest 131, e143296 (2021).

80. Nirschl, C. J. et al. IFNγ-dependent tissue-immune homeostasis is co-opted in
the tumor microenvironment. Cell 170, 127–141.e15 (2017).

81. Moekotte, A. L. et al. Gemcitabine-based adjuvant chemotherapy in subtypes
of ampullary adenocarcinoma: international propensity score-matched
cohort study. Br. J. Surg. 107, 1171–1182 (2020).

82. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species.
Nat. Biotechnol. 36, 411–420 (2018).

83. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS 16, 284–287
(2012).

84. Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013).

85. Baker, S. et al. Cancer Hallmarks Analytics Tool (CHAT): a text mining
approach to organize and evaluate scientific literature on cancer. Bioinfor-
matics 33, 3973–3981 (2017).

86. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in
primary glioblastoma. Science 344, 1396–1401 (2014).

Wang et al. Cell Discovery           (2022) 8:101 Page 22 of 23



87. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering.
Nat. Methods 14, 1083–1086 (2017).

88. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. Cell-
PhoneDB: inferring cell-cell communication from combined expression of
multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

89. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
90. Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer

by single-cell sequencing. Nat. Med. 24, 978–985 (2018).
91. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ

preprocessor. Bioinformatics 34, i884–i890 (2018).
92. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-

Wheeler transform. Bioinformatics 26, 589–595 (2010).
93. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinfor-

matics 25, 2078–2079 (2009).
94. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework

for analyzing next-generation DNA sequencing data. Genome Res. 20,
1297–1303 (2010).

95. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164
(2010).

96. Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome-wide copy
number detection and visualization from targeted DNA sequencing. PLoS
Comput. Biol. 12, e1004873 (2016).

97. Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic
framework for structural variant discovery. Genome Biol. 15, R84 (2014).

98. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

99. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low
memory requirements. Nat. Methods 12, 357–360 (2015).

100. Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with
high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

101. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550
(2014).

102. Angueira, A. R. et al. Defining the lineage of thermogenic perivascular adi-
pose tissue. Nat. Metab. 3, 469–484 (2021).

103. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and cor-
relations in multidimensional genomic data. Bioinformatics 32, 2847–2849
(2016).

104. Li, T. et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic
Acids Res. 48, W509–w514 (2020).

105. Newman, A. M. et al. Determining cell type abundance and expression
from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782
(2019).

106. Zhang, C. et al. Hepatitis B-induced IL8 promotes hepatocellular carcinoma
venous metastasis and intrahepatic Treg accumulation. Cancer Res. 81,
2386–2398 (2021).

107. Van Lidth de Jeude, J. F., Vermeulen, J. L., Montenegro-Miranda, P. S., Van den
Brink, G. R. & Heijmans, J. A protocol for lentiviral transduction and down-
stream analysis of intestinal organoids. J. Vis. Exp. 98, e52531 (2015).

Wang et al. Cell Discovery           (2022) 8:101 Page 23 of 23


	Single-cell dissection of remodeled inflammatory ecosystem in primary and metastatic gallbladder carcinoma
	Introduction
	Results
	Overview of GBC ecosystem by scRNA-seq
	Classification of malignant and non-malignant epithelial cells
	Identification of markers for early-stage carcinogenesis of gallbladder epithelia
	Identification of diverse subtypes of mEPCs associated with GBC prognosis
	Identification of myeloid cell subsets nurturing the immunosuppressive TME
	T cell phenotypes reveal regulators modulating immune evasion in GBC
	Characterization of innate and adaptive immune cell landscape associated with EPC phenotypes
	Dissection of mesenchymal components and regulators underlying GBC progression

	Discussion
	Materials and methods
	Human specimens
	Single-cell isolation and sequencing
	DNA isolation and whole exon sequencing (WES)
	Single-cell RNA-seq data processing
	Cell type annotation and cluster markers identification
	DEGs identification and functional enrichment
	CNV analysis
	SCENIC analysis
	Cell-cell communication analysis
	RNA velocity
	Tissue distribution preference of clusters
	Functional analysis for T�cells
	WES analysis
	Validation cohort
	IHC analysis
	Multiplex immunofluorescence staining
	Tumor cell viability, apoptosis, and stemness assays
	Gallbladder organoid (GBO) establishment and assessment
	GBO and GBC cell line lentivirus infection
	Co-culture experiment and senescence-associated &#x003B2;nobreak-nobreakgalactosidase (SA-&#x003B2;nobreak-nobreakgal) assay
	Total RNA extraction and quantitative real-time PCR (qRT-PCR)
	Invasion and migration assays
	Primers and antibodies
	Statistics

	Acknowledgements




