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The growth of prostate cancer is dependent on the androgen receptor (AR),

which serves as a ligand-specific transcription factor. Although two immuno-

philins, FKBP51 and FKBP52, are known to regulate AR activity, the precise

mechanism remains unclear. We found that depletion of either FKBP51 or

FKBP52 reduced AR dimer formation, chromatin binding, and phosphoryla-

tion, suggesting defective AR signaling. Furthermore, the peptidyl-prolyl cis/-

trans isomerase activity of FKBP51 was found to be required for AR dimer

formation and cancer cell growth. Treatment of prostate cancer cells with

FK506, which binds to the FK1 domain of FKBPs, or with MJC13, an inhibi-

tor of FKBP52–AR signaling, also inhibited AR dimer formation. Finally,

elevated expression of FKBP52 was associated with a higher rate of prostate-

specific antigen recurrence in patients with prostate cancer. Collectively, these

results suggest that FKBP51 and FKBP52 might be promising targets for

prostate cancer treatment through the inhibition of AR dimer formation.

1. Introduction

The androgen receptor (AR) is a ligand-dependent

nuclear receptor that is required for the expression of

androgen-regulated genes. AR is key to normal pros-

tate development as well as oncogenesis of prostate

cancer, especially the development of castration-

resistant prostate cancer [1]. Androgen deprivation

therapy suppresses the progression of hormone-

sensitive prostate cancer through the inhibition of AR

signaling, although prostate cancer often acquires

resistance to androgen deprivation therapy [2].

Androgen receptor activity is regulated in a highly

coordinated dynamic manner at multiple levels such as

expression, androgen binding, nuclear translocation,

homodimer formation, and DNA binding of AR.

Androgen binding induces conformational changes,

including intramolecular interactions in the AR, which

facilitates its translocation to the nucleus [3]. In the

nucleus, an AR dimer binds to androgen-responsive ele-

ments in the regulatory regions of its target genes [4].

Androgen receptor is localized to the cytosol in the

absence of androgen, as a complex with the molecular

chaperone heat shock protein 90 (Hsp90), and various

other cochaperones, including the small acidic protein

p23, FKBP (FK506-binding protein) 51, and FKBP52

[5–7]. FKBPs are a large family of proteins that pos-

sess peptidyl-prolyl cis/trans isomerase (PPIase) activ-

ity. The immunosuppressants FK506 and rapamycin

bind to FKBP, resulting in the inhibition of its PPIase

activity [8,9].

FKBP51 and FKBP52 are homologous proteins with

54.7% identity and 88.1% similarity in their amino acid

sequences, in addition to a similar structural
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organization. These proteins contain an NH2-terminal

FK1 domain that is responsible for its PPIase activity

and an FK1-like FK2 domain that lacks PPIase activity.

FK506 binds to the FK1 domain and inhibits its enzy-

matic activity, but does not bind to the FK2 domain.

The COOH-terminal region contains three tandem

repeats known as the tetratricopeptide repeat (TPR)

domain, which mediates interactions with other pro-

teins, including the COOH terminus of Hsp90 [10].

Despite the sequence and structural similarity

between the two FKBPs, these have been shown to

exert distinct and diverse effects on various steroid

receptors. FKBP51 inhibits the activity of glucocorti-

coid receptor (GR) and progesterone receptor (PR) by

reducing their ligand binding activity [6,11]. However,

the effect of FKBP51 on AR differs from that on GR

and PR: FKBP51 promotes binding of androgen to

AR, thereby increasing its transcriptional activity [12].

Instead, FKBP52 has been shown to contribute to

the regulation of steroid receptors by enhancing hor-

mone binding, stabilizing the steroid receptors, and

promoting their translocation into the nucleus from

the cytoplasm [5,6,13–15], although a study with

FKBP52-deficient mouse embryonic fibroblasts has

shown that FKBP52 is dispensable for the binding of

androgen to AR or for its nuclear translocation [16].

The PPIase domain, but not its activity, is responsi-

ble for interaction with steroid receptors and is essen-

tial for the receptor activity [6,17]. Several previous

studies have demonstrated the role of FKBP51 and

FKBP52 in AR signaling; yet, little is known about

the precise mechanism by which FKBP51 and

FKBP52 control AR activity.

In the present study, we deciphered how FKBP51 and

FKBP52 regulate AR activity. In contrast to the regula-

tion of GR and mineralocorticoid receptor (MR), we

found that both FKBPs were not required for AR

translocation to the nucleus, but required for dimer for-

mation and chromatin binding of AR. In addition, the

PPIase activity of FKBP51 was essential for cancer cell

proliferation as well as AR dimer formation. We con-

clude that FKBP51 and FKBP52 promote dimer forma-

tion of AR and activate AR-dependent transcription,

which is associated with the etiology of prostate cancer.

2. Methods

2.1. Cell culture and reagents

22Rv1 (CRL-2502; ATCC, Manassas, VA, USA),

LNCaP (CRL-1740; ATCC), LNCaP AI (CRL-3314;

ATCC), PC3 (CRL-1435; ATCC), and 5637 (HTB-9;

ATCC) cells were cultured in RPMI 1640 (187-02705;

Wako, Osaka, Japan). DU145 (HTB-81; ATCC),

TCCSUP (HTB-5; ATCC), UMUC3 (CRL-1749;

ATCC), and J82 (HTB-1; ATCC) cells were cultured

in EMEM (055-08975; Wako). T24 (HTB-4; ATCC)

and RT4 (HTB-2; ATCC) cells were cultured in

McCoy’s 5A medium (16600-082; Gibco, Dublin, Ire-

land). SW 780 (CRL-2169; ATCC) cells were cultured

in Leibovitz’s L-15 medium (128-06075; Wako). RPE1

cells (gift from M. Nakanishi, Tokyo University) were

cultured in DMEM/F-12 (11330-032; Gibco). MJ-90

(gift from M. Nakanishi) and HEK293T (632180;

Takara, Kusatsu, Shiga, Japan) cells were cultured in

DMEM (044-29765; Wako). All cells were cultured in

medium supplemented with 10% FBS (173012;

SIGMA, Saint Louis, MO, USA) and antibiotics

(15240062; Thermo Fisher Scientific, Waltham, MA,

USA). All cells were cultured at 37 °C under 5% CO2.

Cells were treated with DHT (A8380-1G; Sigma-

Aldrich, Saint Louis, MO, USA), FK506 (069–06191;
Wako), SAFit1 (HY-102079; MedChemExpress, Mon-

mouth Junction, NJ, USA), SAFit2 (HY-102080; Med-

ChemExpress), and MJC13 (SML0347; Sigma-

Aldrich). DHT was dissolved in methanol (MeOH),

while FK506 and MJC13 were dissolved in DMSO.

DHT was used at a concentration of 10 nM. FK506,

SAFit1, SAFit2, and FKBP51 PPIase inhibitors were

used at the indicated concentrations. SAFit2 was used

at 10 lM for 24 h in the NanoBiT assay.

2.2. Construction of short hairpin RNA

To generate lentivirus-based shRNA constructs, a 21-

base shRNA-coding fragment with an ACGTGTGCT

GTCCGT loop was introduced into pENTR4-H1

digested with BglII. The pENTR4-H1-shRNA vectors

were incubated with CS-RfA-ETBsd or CS-RfA-ETHyg

vectors and GatewayTM LRTM Clonase Enzyme Mix

(Invitrogen, Dublin, Ireland) for 2 h at 25 °C, which pro-
duced the CS-RfA-ETBsd-shRNA vector. The target

sequences for the lentivirus-based shRNA were

FKBP51-1: GGAAGATAGTGTCCTGGTTAG, FK

BP51-2: GGAACAGACAGTCAAGCAATG, FKB

P52-1: GCGGAATCATTCGCAGAATAC, and FKB

P52-2: GCAAGGACAAATTCTCCTTTG. If not sta-

ted otherwise, shFKBP51-1 or shFKBP52-1 was used for

the experiments.

2.3. Transfection

Lentivirus generation and infection were performed as

described previously [18]. Lentiviruses expressing the

respective genes were generated by cotransfection of
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293T cells with lentiviral-packaging vectors (1.54 lg of

Pax2 and 0.86 lg of pMD2) and 2.0 lg of the respec-

tive CS-RfA-shRNA or FKBP, using 6.6 lg of PEI

MAX� (24765–1; Polysciences Inc., pH 7.0, Warring-

ton, PA, USA). Two days after transfection, the virus-

containing supernatant was collected and filtered. Cells

were then transduced with each lentivirus in the pres-

ence of polybrene (1 : 1000) in standard culture media

for 24 h. Cells infected with viruses were treated with

1 lg�mL�1 puromycin (P7255; Sigma-Aldrich),

10 lg�mL�1 blasticidin (022–18713; Wako), or

200 lg�mL�1 hygromycin (H3274; Sigma-Aldrich) for

2 days. To express the inducible gene, Dox (D9891;

Sigma-Aldrich) was added to the medium at a concen-

tration of 1 lg�mL�1. For transient overexpression of

AR-HA and V5-AR plasmids, cells were transfected

with the corresponding plasmid using polyethylenimine

(PEI; Polysciences Inc., pH 7.0). Briefly, cells at 50–
70% confluence were incubated for 24 h with 6 lL of

PEI and 3 lg of DNA. DNA–lipid complexes were

diluted in Opti-Minimal Essential Medium (Opti-

MEM; Gibco) and incubated for 30 min, before being

added to the cells. After transfection, the cell medium

was changed to a serum medium. Cells were analyzed

48 h after transfection.

2.4. Cell growth

To determine cell growth, 5 9 104 LNCaP cells and

4 9 104 22RV1 cells were plated in a 3.5 cm culture

dish. The day after seeding was considered as day 0,

on which the medium was replaced with serum-free

medium containing Dox. The number of cells that

attached to the dish was counted after trypsin treat-

ment.

2.5. Synthesis of FKBP51 PPIase inhibitor

The FKBP51 PPIase inhibitor was synthesized in

accordance with a previous report [19], with slight

modifications (Figs S1 and S2). 1H- and 13C-NMR

spectra of the final product (the FKBP51 PPIase inhi-

bitor) completely matched the report. Detailed proce-

dures and spectral data are shown in Figs S1 and S2.

2.6. Colony formation assay

A colony formation assay was carried out to evaluate

the effect of the FKBP51 PPIase inhibitor on the pro-

liferation of the cancer cells. Cells (1 9 103) were

seeded into a 6 cm dish. After adhesion, the cells were

treated with different concentrations of the FKBP51

PPIase inhibitor. The clones developed were fixed with

formaldehyde and stained using 0.4% Trypan blue

(207-03252; Wako).

2.7. Immunoblotting

Collected cells were washed with ice-cold PBS, sus-

pended in sample buffer (2% SDS, 10% glycerol,

100 lM DTT, 0.01% BPB, and 50 mM Tris/HCl at pH

6.8), and boiled for 5 min. The total cell lysates

obtained were subjected to subcellular fractionation

using the Subcellular Protein Fractionation Kit for

Cultured Cells (78840; Thermo Scientific, Waltham,

MA, USA). Raw digital images were captured using a

ChemiDoc Imaging System (Bio-Rad, Hercules, CA,

USA). The bands of the target protein were quantified

using IMAGEJ (Rockville, MD, USA) and normalized

with that of b-Actin, unless otherwise indicated. The

following antibodies were used in this study: AR

(cs5153; Cell Signaling Technology, Danvers, MA,

USA), AR-pS81 (07-1375; Millipore, Burlington, MA,

USA), b-Actin (ab6276; Abcam, Cambridge, UK),

FKBP51 (ab126715; Abcam), FKBP52 (10655-1-AP;

Proteintech, Rosemont, IL, USA), FoxA1 (sc101058;

Santa Cruz Biotechnology, Dallas, TX, USA), H3

(ab1791; Abcam), HA (PAB10343; Abnova, Taipei

City, Taiwan), HSP90 (sc13119; Santa Cruz Biotech-

nology), a-Tubulin (T5168; Sigma-Aldrich), V5 (R960-

25; Thermo Fisher Scientific), anti-mouse IgG HRP

(NA9310; GE Healthcare, Chicago, IL, USA), and

anti-rabbit IgG HRP (NA9340; GE Healthcare).

2.8. Mutagenesis

LgBiT-AR P767A, AR P767A-SmBiT, and

pENTR1A-FKBP52 F67Y were generated using the

PrimeSTAR Mutagenesis Basal Kit (R046A; Takara).

The primers used in this study are as follows: AR-

P767A F: CTTCGCCGCTGATCTGGTTTTCAATG,

AR-P767A R: AGATCAGCGGCGAAGTAGAGCA

TCCT, FKBP52 F67Y F: AAAGTACGACTCCAGT

CTGGATCGCAAG, and FKBP52 F67Y R: CTGG

AGTCGTACTTTGTGCCATCTAATAG.

2.9. Plasmid

Using pcDNA3 as the parental vector, the coding

region of the AR gene was fused to -HA or V5- using

the In-Fusion� HD Cloning Kit (Clontech, Kusatsu,

Shiga, Japan). pENTR4-H1-FKBP WT or mutant vec-

tors were incubated with CS-RfA-ETBsd vectors and

GatewayTM LRTM Clonase Enzyme Mix (Invitrogen)

for 2 h at 25 °C, which resulted in the CS-RfA-

ETPuro-FKBP vector. Fusion protein expression
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constructs [fusion of AR (or FKBP or HSP90) and

LgBiT (or SmBiT)] were prepared by directional clon-

ing the full ORF region of these genes into NanoBiT

vectors (pFN33K LgBiT TK-neo Flexi Vector,

pFC34K LgBiT TK-neo Flexi Vector, pFN35K

SmBiT TK-neo Flexi Vector, and pFC36K SmBiT

TK-neo Flexi Vector; Promega, Madison, WI, USA),

according to the manufacturer’s instructions.

2.10. Immunoprecipitation analysis

Total proteins (500 lg) were precleared with protein-G

Sepharose (17061801; GE Healthcare) for 1 h at 4 °C
and immunoprecipitated with 0.02 lg of anti-FKBP51,

anti-FKBP52, or immunoglobulin G (as a control; 12-

270; Sigma-Aldrich) overnight at 4 °C. For co-

immunoprecipitation (Co-IP), 1.1 lg anti-V5 was used

against 300 lg of protein. The immune complexes

were recovered with protein-G Sepharose for 1 h and

then washed with IP Kinase buffer (IPK: 50 mM

HEPES, 150 mM NaCl, 2.5 mM EGTA, 1 mM EDTA,

1 mM DTT, 0.1% Tween-20, 10% glycerol, 50 mM

NaF, 0.1 mM Na3Vo4, 15 mM PNPP, 80 mM b-
glycerophosphate) at least three times, centrifuged, and

subjected to SDS/PAGE, followed by immunoblotting.

2.11. Real-time PCR

Total RNA extraction was performed as described pre-

viously [20]. A total of 50 ng RNA was reverse-

transcribed with random primers using the High-

Capacity cDNA Reverse Transcription Kit (4368814;

Applied Biosystems, Waltham, MA, USA). Quantita-

tive real-time PCR was performed using FastStartTM

Universal SYBR� Green Master (42917900; Roche,

Basel, Switzerland) and an StepOnePlusTM real-time

PCR system (Applied Biosystems). Expression levels

were normalized to those of b-Actin. Primers used for

the real-time PCR included AR-F: AGCAGCA

GGGTGAGGATG and AR-R: GACTGCGGCTGT

GAAGGT.

2.12. Immunofluorescence

LNCaP cells were grown on coverslips and treated

with DHT or MeOH for 20 h. Cells were pretreated

with 1 lg�mL�1 Dox in a medium containing

charcoal-stripped FBS for 2 days. After treatment, the

cells were fixed in ice-cold MeOH, followed by incuba-

tion with 3% acetone for 10 min at �20 °C. Cells

were then washed three times with PBS and incubated

with 0.5% Triton/PBS for 10 min, followed by wash-

ing and blocking in 5% goat serum for 30 min, before

incubation with antibodies (at a dilution of 1 : 200)

for an hour to detect AR. Antigens were visualized

using anti-rabbit antibodies coupled to FITC (1 : 200;

1 h). Photomicrographs were taken at a magnification

of 4009 using DeltaVision Elite (GE Healthcare).

2.13. NanoBiT assay

One day before transfection, HEK293T cells were

seeded at a density of 2 9 104 cells/well in a 96-well

plate containing MEM-a with charcoal-stripped FBS.

On the following day, expression vectors and PEI were

diluted in 16 lL of Opti-MEM (Gibco). Of note,

6.25 ng�lL�1 of LgBiT-AR and AR-SmBiT or LgBiT-

AR P767A and AR P767A-SmBiT expression vectors

were used for the AR dimer formation assay. Further,

AR-LgBiT and FKBP-SmBiT; LgBiT-HSP90 and

SmBiT-FKBP52; AR-LgBiT; and LgBiT-FKBP51,

AR-LgBiT, and SmBiT-HSP90 expression vectors were

used for the protein–protein interaction assays. Diluted

vectors and PEI were combined and vortexed and then

incubated for 30 min at room temperature. After incu-

bation, the solution mixture was directly added to the

cells drop-wise. Two days after transfection, the lumi-

nescence was measured using a Nano-Glo� Live Cell

Assay System (Promega) and Nivo (PerkinElmer, Wal-

tham, MA, USA) or ARVO X4 (PerkinElmer) or Glo-

Max� Navigator (Promega). DHT or MeOH was

added 4 h before or 15 min after the addition of the

luminescence reagent.

2.14. Luciferase reporter assay

The pcDNA3 AR and pCMV Rluc (Renilla luciferase)

constructs were provided by M. Okada. 293T cells

were cultured at a density of 2 9 104 cells/well in 96-

well plates for 24 h in MEM Alpha (41061-029;

Gibco) containing 5% charcoal-stripped FBS and

1 lg�mL�1 Dox. PC3 cells were cultured at a density

of 1 9 104 cells/well in 96-well plates for 24 h in

RPMI Medium 1640 (11835-030; Gibco) containing

5% charcoal-stripped FBS and 1 lg�mL�1 Dox. The

cells were transfected with PSA-430-pGL3 [21],

pcDNA3 AR, which contained an activated-AR-

inducible Fluc sequence, and pCMV Rluc using Lipo-

fectamine3000 Reagent (Invitrogen). Twenty-four

hours after transfection, the cells were treated with

10 nM DHT or DMSO for 24 h. The luminescence

caused by firefly luciferase and Renilla luciferase was

measured using the Dual-Glo Luciferase Assay System

(E2920; Promega) and Nivo (PerkinElmer). Fold

induction was calculated as the ratio of the lumines-

cence of firefly luciferase to that of Renilla luciferase.
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2.15. TCGA dataset analysis

Transcriptome data were obtained from the TCGA

Pan-Cancer dataset using the University of California

at Santa Cruz Cancer Genomics Browser (http://xena.

ucsc.edu/). We selected only primary tumor samples

with expression data (n = 9858). Batch effect-

normalized mRNA data were used as the expression

value. Box plots were generated using GRAPHPAD PRISM

6 (GraphPad Software, San Diego, CA, USA).

2.16. Tissue samples

We performed immunohistochemical (IHC) analysis

with antibodies against FKBP52 for specimens

obtained from prostate cancer patients as reported pre-

viously [22]. A total of 50 newly diagnosed prostate

cancer tissues from radical prostatectomies were

obtained from the Yamaguchi University Hospital

(Ube, Japan) between 2000 and 2016. We used serum

PSA levels after radical prostatectomy as a surrogate

end-point, with a level ≥ 0.2 ng�mL�1 designated as

PSA failure. PSA recurrence-free survival rate was

determined as the percentage of patients without PSA

failure. The experiments were undertaken with the

understanding and written consent of each subject.

The study methodologies conformed to the standards

set by the Declaration of Helsinki. The study method-

ologies were approved by the local ethics committee.

2.17. Immunohistochemistry

Formalin-fixed and paraffin-embedded tissue speci-

mens were subjected to H&E staining and IHC stain-

ing as described in previous study [22]. For each

sample, 3 lm thick sections were deparaffinized in

xylene, dehydrated in ethanol, and incubated in a

0.3% hydrogen peroxide solution in MeOH for 10 min

at room temperature. The sections were then micro-

waved in a 0.01 M citrate-buffered solution (pH 6.0)

for 15 min and covered in blocking solution

(IMMUNO SHOT; Cosmo Bio Co. Ltd., Tokyo,

Japan) for 30 min at room temperature. Following

that, the sections were incubated overnight at 4 °C
with a primary antibody (anti-FKBP52 antibody,

EPR6619, 1 : 200 dilution; Abcam), according to the

manufacturer’s instructions, followed by incubation

with the respective secondary antibody (N‑Histofine

Simple StainTM MAX PO (MULTI); cat. no. 414152F;

Nichirei Biosciences Inc., Tokyo, Japan) for 30 min at

room temperature. The H‑score was used to evaluate

IHC staining in the present study. Briefly, > 500 tumor

cells were counted in five different fields of vision in

each section (9100 magnification) and the H‑score was

calculated by multiplying the percentage of positive

cells by the intensity (strongly stained, 39; moderately

stained, 29; and weakly stained, 19), yielding a possi-

ble range of 0–300. Two independent examiners (HM

and HM) judged the scores, and the mean score

obtained was set as the representative score. Cutoff for

the H‑score was determined based on the receiver

operating characteristic curve.

2.18. Statistical analysis

Association with PSA failure-free probability was

determined using Kaplan–Meier curves, while a log-

rank test was used to determine the level of signifi-

cance. The relationship between the two data groups

was compared using Tukey’s multiple comparison test

or Student’s t-test with GRAPHPAD PRISM 6 (GraphPad

Software). A P-value of < 0.05 was considered statisti-

cally significant.

3. Results

3.1. FKBP51 and FKBP52 contribute to the

proliferation of prostate cancer cells

Steroid receptors are known to form large oligomeric

structures with chaperones and cochaperones, includ-

ing Hsp90, p23, and TPR-domain proteins, such as

FKBP51 and FKBP52. FKBPs, a large family of

immunophilins that are conserved in eukaryotes, medi-

ate diverse cellular functions including protein folding,

cellular signaling, and transcription [23]. To elucidate

the regulatory mechanism of AR by FKBP51 and

FKBP52, we examined the expression of FKBP51 and

FKBP52 in normal cells as well as multiple prostate

cancer and bladder cancer cell lines (Fig. 1A). We

found that the expression of FKBP51 and FKBP52 in

AR-positive prostate cancer cell lines was greater than

that in normal cells and bladder cancer cells. Given

that FKBP51 has been shown to contribute to the pro-

liferation of prostate cancer cells [12], we examined

whether FKBP52 is required for cancer cell growth.

For this purpose, we depleted FKBP52 using a

lentivirus-delivered short hairpin RNA (shRNA) that

allows conditional knockdown upon addition of doxy-

cycline (Dox). Depletion of FKBP52 substantially

attenuated cell proliferation in two independent AR-

positive prostate cancer cells, 22Rv1 and LNCaP

(Fig. 1B). We confirmed that FKBP51 was also

required for the proliferation of these cells (Fig. 1C),

consistent with previous studies [24,25]. These results
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suggest that FKBP51 and FKBP52 are essential for

the proliferation of these prostate cancer cells.

It has been reported that the PPIase activity of

FKBP52 is dispensable for AR activity [15]. We next

examined whether the enzymatic activity of FKBP51 is

required for the proliferation of 22Rv1 cells. We syn-

thesized a compound that specifically binds to the

FK1 domain of FKBP51 and inhibits its PPIase activ-

ity [19]. Notably, this FKBP51 PPIase inhibitor atten-

uated the proliferation and colony formation of 22Rv1

cells (Fig. 1D,E). In addition, we investigated whether

this inhibitor has an effect only on cancer cells that

grow in an androgen-dependent manner. We found

that the PPIase inhibitor suppressed the proliferation

of both androgen-dependent (LNCaP) and androgen-

insensitive prostate cancer cells (LNCap AI) (Fig. 1D),

suggesting that the PPIase activity of FKBP51 is essen-

tial for cell proliferation in addition to AR regulation.

We confirmed that SAFit1 and SAFit2, commercially

available FKBP51 inhibitors, also attenuated the pro-

liferation of 22Rv1 cells (Fig. 1F). These results sug-

gest that the inhibition of PPIase activity of FKBP51

might be a promising approach for prostate cancer

treatment.

A

C

D

E

F

B

Fig. 1. FKBP51 and FKBP52 are involved in prostate cancer cell growth. (A) Immunoblotting of FKBP51 and FKBP52 in normal and cancer

cell lines. (B, C) Cells expressing Dox-inducible shControl (luciferase), shFKBP52 (B), or shFKBP51 (C) were cultured in the presence of Dox

for the indicated number of days. Cells were collected, followed by counting of the cell numbers. Each experimental point is the average of

the quantitation of four aliquots, expressed as mean � SEM. Immunoblots of the cells used in the experiment are shown at the bottom.

The cells were cultured in the presence of Dox for 4 days. (D) 22Rv1, LNCaP, and LNCaP AI cells were cultured in the presence of FKBP51

PPIase inhibitor or DMSO for the indicated number of days. Cells were collected, followed by counting of the cell numbers. The data have

been expressed as mean � SEM of three independent experiments. (E) 22Rv1 cells were cultured in the presence of different

concentrations of FKBP51 PPIase inhibitor. The colonies were visualized using Trypan blue staining. (F) 22Rv1 cells were cultured in the

presence of different concentrations of SAFit1 or SAFit2, or DMSO for the indicated number of days. Cells were collected and then

counted. The data have been expressed as mean � SEM of three independent experiments.
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3.2. FKBP51 and FKBP52 do not affect the

expression and localization of AR

Although FKBP51 and FKBP52 have been shown to

contribute to the regulation of AR signaling, the

detailed underlying mechanisms still remain unclear.

We examined the expression of AR in 22Rv1 cells

depleted of FKBP51 or FKBP52 at 0, 4, and 12 h

after the onset of dihydrotestosterone (DHT) treat-

ment. While the expression of AR increased upon

DHT binding in control cells, consistent with previous

studies that have demonstrated that AR protein stabil-

ity increases upon DHT binding [26,27], depletion of

FKBP51 or FKBP52 had no significant effect on AR

expression, suggesting that FKBP51 and FKBP52 do

not affect the expression of AR (Fig. 2A).

Androgen receptor is known to translocate from the

cytosol to the nucleus in response to ligand binding,

and FKBP52 has been shown to contribute to nuclear

localization of multiple nuclear receptors [14,28]. Sub-

cellular fractionation of 22Rv1 cell lysates revealed that

AR translocated to the nucleus in response to DHT

treatment, with phosphorylation of serine at position

81 of AR (AR-Ser81), which is associated with AR

activity (Fig. 2B). Of note, the nuclear translocation of

AR in FKBP51- or FKBP52-depleted cells did not
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Fig. 2. FKBP51 and FKBP52 are not involved in the expression and localization of AR. (A) 22Rv1 cells expressing Dox-inducible shControl,

shFKBP51, or shFKBP52 were cultured in the presence of Dox for 2 days. The cells were collected after treatment with or without 10 nM

DHT for 4 or 12 h, following which the total cell lysates were analyzed using immunoblotting with the indicated antibodies. The relative

band intensity of AR was normalized to that of b-Actin. The relative ratios of AR/b-Actin have been mentioned at the bottom (n = 3). (B)

22Rv1 cells were treated with 10 nM DHT for the indicated time periods, followed by subcellular fractionation (n = 3). Samples were

analyzed using immunoblotting with the indicated antibodies. Histone H3, FOXA1, and Hsp90 were used as the markers for chromatin,

nuclear, and cytosol, respectively. (C) 22Rv1 cells expressing Dox-inducible shControl, shFKBP51, or shFKBP52 were prepared as

mentioned in (A) and (B) (n = 3). Nuclear (left) and cytosolic (right) fractions were analyzed using immunoblotting with the indicated

antibodies. (D) Immunofluorescence of AR in LNCaP cells expressing shRNA. Cells were treated with DHT or MeOH as a control (�DHT)

for 20 h (n = 3). Hoechst 33342 staining and expression of AR have been shown. Scale bar: 10 lm.
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differ from that in control cells (Fig. 2C). In addition,

immunofluorescence analysis with antibodies against

AR confirmed that the DHT treatment-induced nuclear

translocation of AR was not significantly affected upon

depletion of FKBP51 or FKBP52 in 22Rv1 cells

(Fig. 2D). Furthermore, we found that the expression

and nuclear translocation of AR did not change in

either single or double knockdown cells (Fig. 3A,B).

These results suggest that FKBP51 and FKBP52 do

not affect the expression and localization of AR.

3.3. Depletion of FKBP51 or FKBP52 attenuates

AR dimer formation

Ligand binding promotes homodimer formation of

steroid hormone receptors, including AR, and activates

transcription of target genes. Therefore, we examined

AR dimerization in living 22Rv1 cells using the Nano-

Luc Binary Technology (NanoBiT) system and found

that AR forms dimers immediately after the addition

of DHT (Fig. 4A,B). To verify ligand-induced AR

dimerization using another independent approach, we

transfected HEK293T cells with two expression vectors

for AR tagged with V5 or HA. The cell lysates were

prepared at 0, 0.5, and 1 h after the onset of DHT

treatment. Co-IP analysis revealed that AR dimeriza-

tion was promoted upon DHT treatment (Fig. 4C). Of

note, the luminescence emission induced by AR dimer

formation was reduced 0.54-fold in FKBP51-deficient

cells and 0.30-fold in FKBP52-deficient cells compared

to the highest signal value in shControl cells (Fig. 4A,

B). We confirmed the deficiency of AR dimerization in

FKBP51- or FKBP52-depleted cells using distinct

shRNA targets (Fig. S1). These results suggest that

both FKBP51 and FKBP52 are essential for ligand-

induced dimerization of AR. In addition, we found

that deficiency of AR dimerization in cells depleted of

both FKBP51 and FKBP52 was not significantly dif-

ferent from that of FKBP51-depleted cells (Fig. 4D).

These results suggest that both FKBP51 and FKBP52

contribute to AR signaling via the same pathway.

Furthermore, there was an increase in chromatin-

bound AR and active form of AR (AR-Ser81) upon

DHT treatment in shControl 22Rv1 cells, but the

extent was significantly decreased in FKBP51- or/and

FKBP52-depleted cells (Fig. 5A), indicating insuffi-

cient activation of AR in these cells. DHT-induced

AR activity, as measured by reporter gene assays,

was significantly reduced in FKBP51- or FKBP52-

depleted PC3 and 293T cells (Fig. 5B,C). We further

confirmed that double knockdown cells did not

enhance the deficiency of AR activity compared to

the single knockdown cells. Together, these results

suggest that both FKBP51 and FKBP52 are required

not only for AR dimerization but also for its tran-

scriptional activity.
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Fig. 3. Expression and nuclear localization of AR are not affected by

FKBP51 or FKBP52 depletion. (A) 22Rv1 cells expressing Dox-

inducible shControl, shFKBP51, or/and shFKBP52 were cultured in

the presence of Dox for 2 days. The cells were collected after

treatment with or without 10 nM DHT for 12 h, following which the

total cell lysates were analyzed using immunoblotting with the

indicated antibodies. The relative band intensity of AR was

normalized to that of b-Actin. The relative ratios of AR/b-Actin are

shown at the bottom (n = 3). (B) 22Rv1 cells expressing Dox-

inducible shControl, shFKBP51, or/and shFKBP52 were prepared as

mentioned in Fig. 2A,B. Nuclear and cytosolic fractions were

analyzed using immunoblotting with the indicated antibodies (n = 3).
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3.4. The PPIase activity of FKBP51 contributes

toward AR dimerization

FKBPs possess PPIase domains that catalyze intercon-

version between the prolyl cis/trans conformations,

thereby altering the conformation of their target pro-

teins and acting as molecular switches. We next inves-

tigated whether multiple inhibitors of FKBPs affect

AR dimerization in 293T cells. AR dimerization was

found to be abrogated in the presence of the above-

mentioned FK506, FKBP51 PPIase inhibitor or

SAFit2 (Fig. 6A,B). Furthermore, treatment with

MJC13, which impairs FKBP52-mediated AR func-

tion [29], also suppressed AR dimerization (Fig. 6C).

These results are consistent with previous studies,

which have shown that FK506 and MJC13 inhibit

prostate cancer cell proliferation and AR activity

[29,30].

A reduction in AR dimerization in cells treated with

the FKBP51 PPIase inhibitor suggests that FKBP51
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Fig. 4. FKBP51 and FKBP52 are essential for AR dimer formation. (A, B) Dimer formation of AR was determined using NanoBiT analysis in

HEK293T cells expressing shRNA. LgBiT-AR and AR-SmBiT expression vectors were cotransfected into HEK293T cells expressing Dox-

inducible shControl, shFKBP51, or shFKBP52. Cells were cultured in the serum-starved condition in the presence of Dox for 48 h and

treated with 10 nM DHT or MeOH as a control. The arrow indicates the time-point of addition of DHT or MeOH. The luminescence was

monitored by Nivo (PerkinElmer), values for which have been expressed as mean � SEM of triplicate experiments. Immunoblots of cells

subjected to NanoBiT analysis are shown on the right. Cells were cultured in the presence of Dox for 2 days. (C) Co-IP of AR-HA and V5-

AR. HEK293T cells transiently expressing AR-HA and V5-AR were cultured in the serum-starved condition in the presence of Dox for 48 h

and treated with or without 10 nM DHT. The cells were collected after culturing for the indicated times, following which the cell lysates

were incubated with a-V5 antibodies to precipitate AR. Coprecipitated proteins were analyzed by immunoblotting with a-HA or a-V5. The HA

relative density toward V5 was measured using IMAGE LAB Software (Hercules, CA, USA). NC–negative control sample. The relative ratios of

HA/V5 have been mentioned at the bottom. (D) Dimer formation of AR was determined using NanoBiT analysis in HEK293T cells expressing

shRNA. HEK293T shControl, shFKBP52, or shFKBP51/52 cells were assayed as in A. The arrow indicates the time-point of addition of DHT

or MeOH. The luminescence was monitored by Nivo (PerkinElmer), values for which have been expressed as mean � SEM of triplicate

experiments. Immunoblots of cells subjected to NanoBiT analysis are shown on the right. Cells were cultured in the presence of Dox for

2 days.
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may isomerize proline in AR. It was reported that AR

Pro767 mutated to Ala remains a monomer, even in

the presence of DHT [21]. We confirmed that the AR

P767A mutant was defective in dimer formation

compared to wild-type AR (Fig. 6D). We next exam-

ined the effect of the PPIase activity of FKBP52 on

AR dimerization. Overexpression of FKBP52 wild-

type (WT) substantially promoted AR dimerization

P P P P P P

A

B C

Fig. 5. Transcriptional activity of AR is reduced in FKBP51- or FKBP52-depleted cells. (A) 22Rv1 cells expressing Dox-inducible shControl,

shFKBP51, or/and shFKBP52 were cultured in the serum-starved condition for 48 h and treated with 10 nM DHT for 12 h. Cells were

collected for subcellular fractionation, following which the chromatin fractions were subjected to immunoblotting using the indicated

antibodies. The relative band intensities of AR and AR-pS81 were normalized to those of H3 and AR, respectively. The relative ratios of AR/

b-Actin or AR-pS81/AR are shown at the bottom (n = 3). (B) HEK293T cells transfected with PSA-430-pGL3, pCMV Rluc, and expression

plasmids for AR were treated with MeOH (0 nM) or DHT (10 nM) for 24 h. Firefly luciferase activities were normalized with Renilla luciferase

activities. Values are the mean � SEM (n = 3). **P < 0.01 and ****P < 0.001 (Dunnett’s test vs DHT-treated shControl expressed group).

Immunoblots of cells subjected to Luciferase reporter assay are shown on the right. Cells were cultured in the presence of Dox for 2 days.

(C) PC-3 cells transfected with PSA-430-pGL3, pCMV Rluc, and expression plasmids for AR were treated with MeOH (0 nM) or DHT (10 nM)

for 24 h. Firefly luciferase activities were normalized with Renilla luciferase activities. Values are the mean � SEM (n = 3). *P < 0.05,

**P < 0.01 (Dunnett’s test vs DHT-treated shControl expressed group). Immunoblots of cells subjected to Luciferase reporter assay are

shown at the bottom. Cells were cultured in the presence of Dox for 2 days.
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upon DHT treatment (Fig. 6E), consistent with previ-

ous studies, which have shown that overexpression of

FKBP52 increases AR transcriptional activity in yeast

reporter assay [5]. Of note, the WT as well as the

FKBP52 PPIase-deficient mutant, F67Y, which may

also lack proper protein–protein interactions, sup-

pressed the defect in FKBP52 depletion. These results

suggest that the PPIase activity of FKBP51, but not of

FKBP52, plays a key role in AR dimerization upon

ligand binding.

For proper AR signaling, assembly and disassembly

of protein–protein complexes need to be dynamically

controlled. In particular, dissociation of a ligand-

bound active form of AR from the Hsp90-containing

complex is required for its transactivation [31],

although the exact molecular events that govern this

effect remain unclear. To examine the association of

AR-Hsp90-FKBP complexes upon ligand binding, we

investigated the dynamics of these interactions using

NanoBiT assay. The interaction between Hsp90 and

AR was attenuated as shown previously (Fig. 7A) [32],

whereas the interactions between Hsp90 and FKBPs

remained unchanged upon DHT treatment (Fig. 7B,

C). Consistent with these results, upon DHT addition,
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Fig. 6. The involvement of PPIase activities in AR dimerization. (A) Dimer formation of AR was determined using NanoBiT analysis in

HEK293T cells. LgBiT-AR and AR-SmBiT expression vectors were cotransfected into HEK293T cells. The cells were treated with 50 lM

FK506 for 3 h or 250 lM FKBP51 PPIase inhibitor for 24 h. The arrow indicates the time-point of addition of DHT or MeOH. The

luminescence was monitored by ARVO X4 (PerkinElmer), values for which have been expressed as mean � SEM of triplicate experiments.

(B) Dimer formation of AR was determined using NanoBiT analysis in HEK293T cells. Cells were treated with the indicated 10 lM SAFit2 for

24 h. The arrow indicates the time-point of addition of DHT. The luminescence was monitored by Nivo (PerkinElmer), values for which have

been expressed as mean � SEM of triplicate experiments. (C) Dimer formation of AR was determined using NanoBiT analysis in HEK293T

cells. LgBiT-AR and AR-SmBiT expression vectors were cotransfected into HEK293T cells. Cells were treated with the indicated

concentration of MJC13 for 3 h. The arrow indicates the time-point of addition of DHT or MeOH. The luminescence was monitored by

GloMax� Navigator (Promega), values for which have been expressed as mean � SEM of triplicate experiments. (D) Dimer formation of AR

WT or AR P767A was determined using NanoBiT analysis. The arrow indicates the time-point of addition of DHT or MeOH. The

luminescence was monitored by Nivo (PerkinElmer), values of which are expressed as mean � SEM of triplicate experiments. (E) Dimer

formation of AR was determined using NanoBiT analysis. HEK293T shControl or shFKBP52 cells constitutively expressing FKBP52 WT and

PPIase mutant (F67Y), which may also lack proper protein–protein interactions, were assayed as in Fig. 4A. Immunoblots of cells subjected

to NanoBiT analysis are shown on the right. Cells were cultured in the presence of Dox for 2 days.
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there was a decrease in the interaction of FKBPs and

AR as well (Fig. 7D). We confirmed the dissociation

of FKBP-AR upon DHT treatment using immunopre-

cipitation (Fig. 7E). These results suggest that promot-

ing the dissociation of the steroid receptor from both

chaperones and cochaperones triggers events such as

nuclear translocation, dimer formation, or recognition

of the DNA-binding domain for the promoter

sequences.

3.5. High expression of FKBP52 is related to

prostate-specific antigen recurrence rate in

prostate cancer patients

We next examined the expression of FKBP51 and

FKBP52 using The Cancer Genome Atlas (TCGA)

Pan-Cancer dataset (9858 samples) and found that the

expression of FKBP51 was highest in prostate cancer,

among various cancers (Fig. 8A). Similarly, the

expression of FKBP52 was the 4th highest in prostate

cancer, after tenosynovial giant cell tumor, breast car-

cinoma, and uterine carcinosarcomas (Fig. 8B).

Specimens obtained from prostate cancer patients

were subjected to immunohistochemical (IHC) analysis

with antibodies against FKBP52, following which the

patients were classified into two categories based on

FKBP52 expression. These groups of patients were

tested for the blood level of prostate-specific antigen

(PSA), elevation of which is indicative of metastasis or

recurrence after castration. PSA recurrence occurred in

75% of patients in the FKBP52-positive group within

100 months, a significantly shorter time to recurrence

than in the negative group (Fig. 8C). We performed a

similar analysis for FKBP51 and found that expression

of FKBP51 was not significantly correlated with the

recurrence of prostate cancer after total resection. IHC

analysis revealed that the expression of FKBP52 in the

prostate cancer specimens was high in both the nucleus
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Protein–interactions between AR and FKBP51 or FKBP52 were determined using NanoBiT analysis in HEK293T cells. AR-LgBiT and FKBP-

SmBiT expression vectors were cotransfected into HEK293T cells. Cells were treated with methanol or DHT for 4 h. The bar graphs show

the level of luminescence 15 min after addition of the Nano-Glo� Live Cell Reagent. The luminescence was monitored by ARVO X4

(PerkinElmer), values for which have been expressed as mean � SEM of triplicate experiments. Statistical significance was determined

using Student’s t-test. *P < 0.05 and ***P < 0.001. (E) Immunoprecipitation was carried out to detect the interaction of FKBP51 or FKBP52

with HSP90 and AR, with and without DHT, in 22Rv1 cells (n = 3).
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and the cytoplasm (Fig. 8D). These results indicated

that FKBP51 and FKBP52 are highly expressed in

prostate cancer and that high expression of FKBP52 is

associated with a poor time until PSA recurrence in

prostate cancer.

4. Discussion

In this study, we showed that the two immunophilins,

FKBP51 and FKBP52, are known to be regulators of

AR and are required for prostate cancer proliferation.

The growth of prostate cancer is largely dependent on

activation of AR. AR activity is regulated in a highly

coordinated dynamic manner at multiple levels such as

expression, androgen binding, nuclear translocation,

homodimer formation, and DNA binding of AR. In

the nucleus, an AR dimer binds to androgen-

responsive elements in the regulatory regions of its tar-

get genes [4]. Multiple reports have shown that

FKBP52 promotes the activities of GR, MR, and AR,

while FKBP51 attenuates GR and MR activity [33].

Indeed, FKBP51 overexpression was shown to increase

AR transcriptional activity by promoting both the

ligand binding to AR and AR assembly with Hsp90-

p23 complexes [34]. Previous studies have proposed

that FKBP52 facilitates efficient transport of steroid

receptors from the cytoplasm to the nucleus as a result

of interaction with dynein [33]. However, our results

showed that the translocation of AR to the nucleus

was not affected by the depletion of either or both
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FKBP51 and FKBP52, suggesting that neither FKBP

contributes to the translocation of AR.

Of note, the depletion of FKBP51 or FKBP52

reduced dimer formation, chromatin binding, phos-

phorylation, and transcriptional activity of AR, sug-

gestive of defective AR signaling. Furthermore, the

FKBP51 PPIase inhibitor and SAFit1/2 suppressed cell

proliferation and colony-forming ability, and inhibited

ligand-induced AR dimer formation. Treatment of

prostate cancer cells with FK506, which binds to the

FK1 domain of FKBPs, or with MJC13, an inhibitor

of FKBP52-AR signaling, also inhibited AR dimer

formation.

FKBP51 was previously shown to attenuate the

activity of Cdk4 by inhibiting the phosphorylation of

Thr172 through the isomerization of Cdk4-Pro173 in

myocytes [35]. Based on this study, our results suggest

the following regulatory model: In the absence of

DHT, AR, HSP90, and FKBP51/52 form a complex

in the cytoplasm. DHT may induce FKBP51 to iso-

merize proline of AR, a conformational change that

leads to AR dimerization. Indeed, AR contains a

proline-rich region in the transcriptional activation

domain. Furthermore, several mutants of AR that are

causative of androgen insensitivity syndrome, including

Pro767 mutated to Ala, remain as monomers even in

the presence of DHT [21]. Consistent with the previous

study, we found that the dimerization of AR-P767A

mutant was substantially attenuated compared with

that of wild-type AR. Thus, it is likely that FKBP51

may control AR conformation through isomerization

at Pro767, which may trigger dimer formation. The

enzymatic activity of FKBP52 is not involved in AR

dimerization, suggesting that effects other than isomer-

ization are important for AR dimerization. Dissocia-

tion of AR from the HSP90-FKBP51/52 complex

leads to nuclear translocation of AR, subsequent

dimerization, and transcriptional activation of target

genes (Fig. 8E).

FKBP51 and FKBP52 might be linked to the etiol-

ogy of prostate cancer, given that the levels of

FKBP51 and FKBP52 have been found to be elevated

in human prostate cancer, compared to the noncancer-

ous part of the prostate gland [36–39]. Furthermore,

expression of FKBP51 has been shown to be corre-

lated with aggressiveness of cancers, such as glioma

[40] and melanoma [41,42]. In addition, elevated

expression of FKBP52 correlates with tumor progres-

sion and predicts poor prognosis in individuals with

breast cancer [43]. In the present study, we also

demonstrated a correlation between FKBP52 expres-

sion and prognosis in prostate cancer patients. To our

knowledge, this is the first study to show that FKBP52

expression is associated with the PSA recurrence of

prostate cancer after total resection.

Collectively, our results suggest that inhibition of

FKBP51 and FKBP52 activity might have a therapeu-

tic effect on prostate cancer by abrogating AR dimer

formation. In addition, dysregulation of FKBP51 or

FKBP52 has been implicated in a variety of diseases,

including stress-related diseases and neurodegenerative

disorders [28]. A better understanding of the molecular

function of FKBP may, therefore, help in the treat-

ment of these diseases.

5. Conclusion

Two immunophilins, FKBP51 and FKBP52, are

known to be positive regulators of AR; however, the

precise mechanism by which they control AR activity

remains unclear. We found that both FKBPs were

important for dimer formation and chromatin binding

of AR. Furthermore, the PPIase activity of FKBP51

was found to be required for AR dimer formation and

cancer cell growth. Of note, elevated expression of

FKBP52 was associated with the PSA recurrence rate

of prostate cancer. Collectively, these results suggest

that FKBP51 and FKBP52 might be promising targets

for prostate cancer treatment through the inhibition of

AR dimer formation.
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