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Abstract

This study explored the roles of epidemic-spread-related behaviors, vaccination status and

weather factors during the COVID-19 epidemic in 50 U.S. states since March 2020. Data

from March 1, 2020 to February 5, 2022 were incorporated into panel model. The states

were clustered by the k-means method. In addition to discussing the whole time period, we

also took multiple events nodes into account and analyzed the data in different time periods

respectively by panel linear regression method. In addition, influence of cluster grouping

and different incubation periods were been discussed. Non-segmented analysis showed the

rate of people staying at home and the vaccination dose per capita were significantly nega-

tively correlated with the daily incidence rate, while the number of long-distance trips was

positively correlated. Weather indicators also had a negative effect to a certain extent. Most

segmental results support the above view. The vaccination dose per capita was unsurpris-

ingly proved to be the most significant factor especially for epidemic dominated by Omicron

strains. 7-day was a more robust incubation period with the best model fit while weather had

different effects on the epidemic spread in different time period. The implementation of pre-

vention behaviors and the promotion of vaccination may have a successful control effect on

COVID-19, including variants’ epidemic such as Omicron. The spread of COVID-19 also

might be associated with weather, albeit to a lesser extent.

Introduction

The rapid spread of COVID-19 had seriously affected people’s health and daily life which

imposed a great burden on almost every country [1]. The COVID-19 epidemic started in

December 2019 and quickly swept the world. At the beginning of 2020, the cases in the U.S.

only showed a sporadic state [2, 3]. However in the early days of the epidemic, heated discus-

sions on ‘wearing masks’ and ‘freedom and human rights’ in the American society as well as

residents’ limited implementation of prevention measures resulted in uncontrollably spread-

ing epidemic [4]. Until December 14, 2020, when the vaccine officially began to be universally
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popularized, a total of 16,891,386 cases had been diagnosed in the U.S., and as of February 5,

2022, this number reached 77,502,221 [5].

The COVID-19 is caused by the spread of the new coronavirus SARS-CoV-2, which can

exist in the air or droplets and spread through breathing and talking when people contacting

with others face to face [6–8]. In addition, this type of virus also has the characteristics of aero-

sol transmission [9, 10]. Compared with SARS, the fatality rate of SARS-CoV-2 was a bit

lower, but its community communication power showed a higher level [11, 12]. SARS-CoV-2

mutated continuously since December 2020, and multiple SARS-CoV-2 variants have been

described. Nowadays, type Delta and Omicron are widely concerned (VOCs), and their com-

munity transmission is even gradually increasing with shortening incubation period [13].

The spread of SARS-CoV-2 depends on droplets or aerosols, thus the influence of environ-

mental factors such as temperature, humidity, rainfall, air pressure should be considered [14,

15]. Early studies showed that the survival and spread of coronavirus were affected by weather

factors to a certain degree. The daily incidence rate reached its peak at around 16–28˚C [16,

17]. Some experimental researches showed that high temperature and high humidity will

accelerate the inactivation of the virus [18, 19]. As one of the factors which was most often

been discussed, different people obtained different conclusions after conducting research on

the effect of weather towards COVID-19—there existed some controversy about the effect

sizes and regional characteristic of weather on epidemic developing [20, 21]. Research by

Hamdan. M [22] showed that air pressure supported the virus’s spread in Amman and Zarqa.

Recent study indicated that the optimal temperature for spread of COVID-19 ranging from

41–57.2˚F [23]. Therefore, it is necessary to consider the role of weather in the spread of the

COVID-19 epidemic appropriately.

Since COVID-19 is a highly contagious viral disease, public health prevention and mitiga-

tion policies such as social distancing, isolation, and quarantine were suggested to reduce the

spread of the virus [24]. Previous study demonstrated that the number of infections averted

through the use of quarantine was expected to be very low provided that isolation was effective

[25, 26]. Thus, it is reasonable to say that reducing going out may be the most effective measure

against infecting. But with the continuous advancement of herd immunity in the U.S., the pop-

ularization of the vaccine, as well as the mutation of the SARS-CoV-2 strains. . . this daily pre-

vention measure may show a different state in slowing down the development than in the early

stage of the epidemic. Therefore, it is very interesting to explore the effect of daily epidemic-

spread-related behaviors in different periods. At the same time, with the promotion of vaccina-

tion work, it is also of positive significance to check the inhibitory effect of vaccines on epi-

demic dominated by different strains.

As a data model suitable for simultaneous observation of time and space dimensions, the

panel model is very beneficial for dynamic model monitoring. Previous studies have tried to

incorporate panel model into research and achieved very good results [27, 28]. For example,

Guliyev [28] verified the optimal robustness of panel model results when exploring the rela-

tionship between confirmed COVID-19 cases, deaths, and recovered cases after treatment.

Based on panel model, we may obtain the differences in the effect of factors on the epidemic in

different spaces by integrating and analyzing the data from similar states which exist spatial

dependence.

Thus, this study aims to discuss the development of the COVID-19 epidemic in 50 states in

U.S. based on panel model, and analyze the relationship between the daily incidence rate

(DIR) and people’s implementation of preventive measures or quarantine policy and vaccina-

tion status in the later period of the epidemic after controlling for the influence of the weather.
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Materials and methods

Data sources

In this study, data of 50 states in U.S. were used as the research subjects. According to the data

released by Johns Hopkins University [5], the DIR data of each state from March 1, 2020 to

February 5, 2022 were included as the dependent variable. Independent variable data included

the proportion of daily residents at home (AHR) and the daily trips were both obtained from

the website of the Bureau of Transportation Statistics, and trips are defined as movements that

include a stay of longer than 10 minutes at an anonymized location away from home [29].

Daily trips per capita (TR) equals to the number of travel times divided by population. We also

obtained the number of medium-distance trip (TR>25 miles) and long-distance/interstate

trip (TR>250 miles) per capita. Independent variable data vaccination status expressed by the

daily administered vaccination dose per capita (AVD) obtained from CDC [30]. Missing val-

ues were completed by linear interpolation. Weather factors including daily temperature (T),

humidity (H), wind speed (WS), air pressure (AP) and precipitation (PPTN) of every state

were collected from Weather Underground website [31].

Preprocessing

The onset of COVID-19 has a certain incubation period. Previous studies found that the effect

time of exposure to coronavirus is about 5–7 days, even longer [32–34]. The result of dynamic

Public Health Surveillance of U.S. COVID-19 conducted by Dr. Post [35] suggested the coeffi-

cients on the 7-day lag were both positive and statistically significant. Thus, we chose 7 days as

the incubation period to preprocess the data, which means the respective variables would be

correspond to the DIR after 7 days. In addition, we also took into account the fact that the

SARS-CoV-2 variants may have shorter incubation period, so we also used 3-day or 10-day as

the incubation period to conduct uncertainty analysis.

In addition to analyzing the data from March 1, 2020 to February 5, 2022, we also divided

the whole process into 6 different segments according to the time of quarantine policy intro-

duction, the time of the first vaccination, the time when the mutant strain became popular in

the U.S., etc. The influencing factors at each segment were explored. The segmentation method

is as follows: At the end of March 2020, almost every state basically required the implementa-

tion of statewide stay-at-home orders for its residents [36, 37]. On July 4, 2020, almost the

entire country opened with virtually no restrictions [38]. In late 2020, U.S. residents began to

be vaccinated, and this number was recorded by the CDC from December 12, 2020 [30]. The

Delta variant was first detected in March 2021 in the U.S. [13]. The first U.S. case of COVID-

19 caused by the Omicron variant was first reported on December 1, 2021 [39]. The specific

segmentation method was shown in Fig 1.

Panel data model

Panel data is a set of two-dimensional cross-sectional data that contains both time and space.

It can be understood as a set of data formed by intercepting certain characteristic values of

Fig 1. Segmentation method of time period.

https://doi.org/10.1371/journal.pone.0273344.g001
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i objects at t different time nodes [40]. Therefore, the panel data can be represented by double

subscript variable yit.

yit ¼ ai þ
Xk

k¼1

xitkbk þ uit ð1Þ

αi: intercept
i = 1,2,3. . .N (Number of subjects)
t = 1,2,3. . .T (Point of observation of each individual)
k = Number of explanatory variables
uit: random error

We can also regard multi-indicator panel data as a composite matrix. For the same

moment, the observation values of different indicators of all samples can form a time matrix.

For the same indicator, several samples can be selected to observe it at each moment and these

data can form an indicator matrix.

This study used a panel data model to fit the DIR of 50 states in the U.S., and considered

the development of COVID-19 both in the vertical—time dimension, and the horizontal—

states dimension. Through the cluster and multiple linear regression model analysis of the

panel data, the characteristic of both space and time dimensions of the epidemic can be sepa-

rately explored.

Statistical analysis

Firstly, the cluster analysis of the panel data model was conducted based on the traditional

classic K-Means algorithm. The data in this study can be expressed as an n×d matrix X, while n
is the number of samples (n = 35350 in our study), d is the dimension of the samples (d = 9 in

our study). k cluster centers are expressed as k×d matrix C, while k = 3, and each row of C rep-

resents a cluster center. The distance from the sample to the k centers is expressed as an n×k
matrix D.

According to the optimization problem (1) to assign each sample point to the new nearest

class center (2) to form k classes and update the sample mean of this class as the class center.

Then, update the class center iteratively until the class center keep stable.

min
c1���ck

Xk

j¼1

Xn

i¼1

kxi � cjk
2

2
ð2Þ

cðiÞj ¼
1

n

Xn

i¼1

xi ð3Þ

Group visualization is completed according to the maximum number of days that each

research object belongs to a certain category in the research time. For example, according to

our study, Alaska (AK) had most days in cluster 3, thus, we classified it into the third category.

Analysis of every one of three category was completed in order to test the impact of clustering

results and explore the effect of factors among similar states.

The Hausman test was used to select random effects model or fixed effects model for panel

regression analysis. And the fitting of the linear regression of the panel data model performed

by the ordinary least square method (OLS). While based on the characteristics of panel data:

the disturbance items between different individuals are independent of each other, but there is

often autocorrelation among the disturbance items of the same individual in different periods,

so we used the robust command to perform regression analysis under the clustering robust
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standard error to reduce the overestimation of the influence of the independent variable on

the dependent variable to obtain a more accurate linear trend.

The python-based software code and Stata16.0 were used for analysis. α = 0.05.

Results

Cluster and basic situation

The above independent variables were used to cluster the 50 states, and the frequency distribu-

tion cluster graph was shown in Fig 2. The first category contained the states with characteris-

tics of lower daily AHR, TR (>250 miles), AVD, T, moderate TR, H, PPTN, higher TR (>25

miles), AP, and WS represented by Iowa (IA) and New Hampshire (NH), contains 23 states.

The second category were the states contains 7 states represented by Colorado (CO) and New

Mexico (NM), which with low daily H, AP, PPTN, high AHR, TR, TR (>250 miles), moderate

TR (>25 miles), AVD, T and WS. The third category was represented by West Virginia (WV)

and Hawaii (HI), containing the rest 20 states with low daily TR, TR (>250 miles), TR (>25

miles), WS, high AHR, AVD, T, H, AP and PPTN. The basic information of factors of these 6

states was shown in Table 1.

Multivariate analysis

After completing the Hausman test, the fixed-effects model was selected for multivariate

regression analysis. TR (>250 miles) was more stable in all models than TR or TR (>25 miles),

so Table 2 showed the results of including TR (>250 miles) as an independent variable in the

model. Model results involving TR or TR (>25 miles) were presented in the S2 and S3 Tables.

According to the unsegmented results, AHR, AVD and DIR were significant negatively cor-

related, the coefficient of T, WS, AP, PPTN was rather small, but also negatively correlated

with DIR. TR (>250 miles) had a significant negative effect on DIR (Table 2). The linear

Fig 2. The frequency distribution cluster graph.

https://doi.org/10.1371/journal.pone.0273344.g002
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regression equation was written as:

DIRus ¼ � 1:89E � 01� AHRþ 8:42E � 01� TRð> 250 milesÞ � 2:29Eþ 00 � AVD

� 5:02E � 04� T � 1:09E � 04�WS � 2:47E � 03 � AP � 2:12E � 03 � PPTN þ 1:64e � 01

The regression results of the three categories after clustering were also listed in Table 2,

basically consisted with the unsegmented results. TR (>250 miles) had a stronger effect on the

DIR of the first category with a higher regression coefficient, while the second category was

less affected by it, but vaccine had a strong inhibition on the increase of DIR (coefficient =

-3.05E+00). The results of the third category were closest to the results of the 50 states, whose

models also had similar R-squares.

In the first segment, in addition to the relatively significant effect of AHR on DIR, other

independent variable such as TR (>250 miles) and weather indicators had a little bit effect on

DIR. TR (>250 miles) even appeared weird negative correlation with DIR, while in the first

and second category, it was not significant. However, from the second segment, the relation-

ship between TR (>250 miles) and DIR became much more normal. The effect of weather on

DIR was weak, T and DIR showed a positive correlation which was different from the unseg-

mented results.

DIRs1 ¼ � 5:25E � 02 � AHR � 8:97E � 03 � TRð> 250 milesÞ

þ2:99E � 05 � T � 9:64E � 06 �H � 1:53E � 03 � AP � 2:09E � 03 � PPTN þ 8:99E � 02

In the second segment, the positive effect of TR (>250 miles) on DIR was even much higher

than that of AHR (1.91E-01>2.72E-02). Similar to the first segment, the effect of weather on

DIR was also weak, but a statistical association could be found, with both T and H positively

contributing to DIR in this segment. The results of the three classification models were basi-

cally the same.

DIRs2 ¼ � 2:72E � 02 � AHRþ 1:91E � 01� TRð> 250 milesÞ

þ6:72E � 05 � T þ 1:33E � 05 �H � 7 :78E � 05 �WS � 2:24E � 04� APþ 3:01E � 02

The third segment was the time after the full unblocking and before vaccination, and the

effect of AHR on DIR was significantly higher than that of TR (>250 miles). The first category

Table 1. The basic information of 6 representative states [X ± SD/M (P25, P75)].

Variable Iowa New Hampshire Colorado New Mexico West Virginia Hawaii

AHR 0.21(0.20,0.23) 0.18(0.17,0.20) 0.27(0.25,0.30) 0.25(0.23,0.27) 0.29(0.28,0.31) 0.24(0.23,0.27)

TR 3.76±0.69 3.87±0.71 4.07±0.80 3.92±0.70 2.76±0.55 3.00±0.62

>25 miles 0.36±0.05 0.35±0.05 0.28±0.04 0.33±0.04 0.23±0.03 0.08±0.02

>250 miles 0.007±0.003 0.004±0.001 0.01±0.004 0.01±0.003 0.008±0.002 0.005±0.001

AVD 0.14(0.28, 0.57) 0.12(0.29, 0.63) 0.19(0.35, 0.63) 0.18(0.35, 0.63) 0.21(0.35, 0.63) 0.22(0.42, 0.64)

T (˚F) 50.30±21.71 52.72±18.03 53.02±18.17 57.85±15.81 56.43±15.90 75.46±4.188

H (%) 73.6(63.4, 83.5) 63.3(51.8, 74.9) 42.9(32.7, 56.7) 36.3(26.9, 47.5) 75.6(66.6, 82.6) 73.0(64.9, 79.7)

WS (mph) 10.06±4.16 6.79±3.32 9.81±3.31 8.57±3.83 4.32±2.62 7.63±2.96

AP (Hg) 29.06±0.20 29.73±0.23 24.14±0.35 24.47±0.43 29.00±0.23 30.01±0.07

PPTN (in, daily) 0.075 0.107 0.033 0.014 0.132 0.263

AHR, the proportion of daily residents at home; TR, Daily trips per capita; AVD, daily administered vaccination dose per capita; T, temperature; H, humidity; WS, wind

speed; AP, air pressure; PPTN, precipitation.

https://doi.org/10.1371/journal.pone.0273344.t001
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Table 2. Multivariate analysis of influencing factors—DIR postponed for 7 days.

Variables 50 states the first category the second category the third category

Coef. P R2 Coef. P R2 Coef. P R2 Coef. P R2

Unsegmented

AHR -1.89E-01 0.000 0.44 -1.32E-01 0.000 0.36 -2.21E-01 0.000 0.55 -1.96E-01 0.000 0.45

TR(>250 miles) 8.42E-01 0.000 1.24E+00 0.000 4.72E-01 0.001 7.80E-01 0.000

AVD -2.29E+00 0.000 -2.59E+00 0.000 -3.05E+00 0.000 -2.18E+00 0.000

T -5.02E-04 0.000 -5.57E-04 0.000 -5.67E-04 0.000 -4.99E-04 0.000

H 9.80E-06 0.194 3.66E-05 0.141 -6.12E-05 0.002 4.14E-05 0.000

WS -1.09E-04 0.005 -6.88E-04 0.000 -3.10E-04 0.000 4.17E-05 0.363

AP -2.47E-03 0.000 -2.39E-02 0.000 -1.78E-03 0.000 -2.09E-03 0.000

PPTN -2.12E-03 0.000 -3.15E-03 0.033 -2.29E-02 0.000 -2.52E-03 0.000

constant 1.64E-01 0.000 7.89E-01 0.000 1.59E-01 0.000 1.53E-01 0.000

Segmented

I

AHR -5.25E-02 0.000 0.83 -5.77E-02 0.000 0.89 -7.51E-02 0.000 0.86 -4.73E-02 0.000 0.83

TR(>250 miles) -8.97E-03 0.000 -3.46E-03 0.182 -2.73E-02 0.377 -8.24E-03 0.000

T 2.99E-05 0.003 4.75E-05 0.107 -4.90E-05 0.188 7.30E-05 0.000

H -9.64E-06 0.045 -5.07E-05 0.000 -4.67E-05 0.002 1.46E-05 0.012

WS 2.91E-05 0.244 -2.25E-04 0.003 2.85E-04 0.002 6.21E-05 0.019

AP -1.53E-03 0.000 -9.30E-03 0.000 1.08E-03 0.592 -9.50E-04 0.002

PPTN -2.09E-03 0.000 2.14E-03 0.058 -4.31E-03 0.198 -2.24E-03 0.000

constant 8.99E-02 0.000 3.29E-01 0.000 3.60E-02 0.473 6.55E-02 0.000

II

AHR -2.72E-02 0.000 0.18 -3.73E-02 0.000 0.30 -3.26E-02 0.000 0.20 -2.35E-02 0.000 0.18

TR(>250 miles) 1.91E-01 0.000 2.04E-01 0.003 2.62E-01 0.000 1.66E-01 0.000

T 6.72E-05 0.000 1.34E-04 0.000 6.73E-05 0.000 5.78E-05 0.000

H 1.33E-05 0.000 5.15E-05 0.000 -1.11E-05 0.435 1.66E-05 0.000

WS -7.78E-05 0.000 -2.50E-05 0.710 -6.64E-05 0.252 -9.19E-05 0.000

AP -2.24E-04 0.003 4.43E-03 0.003 -2.02E-04 0.062 -7.65E-04 0.008

PPTN 3.30E-04 0.136 5.44E-04 0.263 9.53E-04 0.644 5.33E-05 0.838

constant 3.01E-02 0.000 -1.06E-01 0.017 3.29E-02 0.000 4.39E-02 0.000

III

AHR -1.80E-01 0.000 0.78 -1.88E-01 0.000 0.80 -1.53E-01 0.000 0.83 -1.85E-01 0.000 0.77

TR(>250 miles) 6.80E-03 0.000 8.42E-05 0.987 1.39E-02 0.002 7.24E-03 0.000

T -1.95E-04 0.000 -2.04E-04 0.000 -1.81E-04 0.000 -1.90E-04 0.000

H -1.62E-05 0.000 3.93E-05 0.010 3.69E-05 0.001 -1.39E-05 0.015

WS 2.01E-05 0.301 -1.57E-04 0.016 5.10E-05 0.267 4.66E-05 0.044

AP 1.00E-03 0.000 3.48E-03 0.000 1.36E-03 0.000 8.90E-04 0.000

PPTN 7.03E-04 0.006 -1.01E-03 0.052 -2.91E-02 0.000 1.37E-03 0.000

constant 1.33E-01 0.000 7.29E-02 0.019 9.91E-02 0.000 1.38E-01 0.000

IV

AHR -5.87E-02 0.000 0.69 -2.73E-02 0.026 0.73 -1.31E-02 0.164 0.72 -6.87E-02 0.000 0.70

TR(>250 miles) -5.01E-02 0.131 1.14E-01 0.255 -3.02E-02 0.689 -6.66E-02 0.087

AVD -1.05E+00 0.000 -2.35E+00 0.000 -1.51E+00 0.000 -8.99E-01 0.000

T 1.38E-04 0.000 6.66E-05 0.002 5.23E-05 0.006 1.42E-04 0.000

H 1.16E-05 0.033 -3.55E-05 0.045 1.46E-05 0.349 1.96E-05 0.002

WS -1.89E-04 0.000 -5.40E-04 0.000 -1.08E-05 0.847 -2.05E-04 0.000

AP -9.62E-04 0.006 -7.19E-03 0.000 5.97E-03 0.000 -1.55E-03 0.000

(Continued)
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of results didn’t show a significant association between TR (>250 miles) with DIR.

DIRs3 ¼ � 1:80E � 01� AHRþ 6:80E � 03 � TRð> 250 milesÞ

þ1:95E � 04� T � 1:62E � 05 � H þ 1:00E � 03 � AP þ 7 :03E � 04� PPTN þ 1:33E � 01

In the fourth segment, AHR was still negatively correlated with DIR, while the effect of the

vaccination was the most significant—its coefficient reached -1.05E+00, this negative effect

was even more obvious in the first and second category models. The effect of TR (>250 miles)

on DIR was not found.

DIRs4 ¼ � 5:87E � 02 � AHR � 1:05Eþ 00 � AVD

þ1:38E � 04� T þ 1:16E � 05 � H � 1:89E � 04�WS � 9:62E � 04� AP � 1:81E � 03 � PPTN þ 9:29E � 02

In the fifth segment, the negative effect of vaccination on DIR was slightly higher than the

positive effect of TR (>250 miles) on DIR (5.44E-01>2.26E-01), and both of them were higher

than the inhibitory effect of AHR on DIR. The results of the second category model were the

closest to the overall model, the effect of vaccination in the first category model was relatively

slight, DIR was mainly affected by TR (>250 miles).

DIRs5 ¼ � 4:51E � 02 � AHRþ 2:26E � 01� TRð> 250 milesÞ � 5:44E � 01� AVD

� 2:32E � 04� T þ 7 :59E � 05 �H � 7 :08E � 04�WS � 3:29E � 03 � AP � 2:54E � 03 � PPTN þ 1:37E � 01

Table 2. (Continued)

Variables 50 states the first category the second category the third category

Coef. P R2 Coef. P R2 Coef. P R2 Coef. P R2

PPTN -1.81E-03 0.000 -5.59E-03 0.000 -3.62E-03 0.376 -1.61E-03 0.000

constant 9.29E-02 0.000 2.52E-01 0.000 -1.15E-01 0.000 1.17E-01 0.000

V

AHR -4.51E-02 0.000 0.18 -6.87E-02 0.000 0.51 -1.78E-01 0.000 0.28 -4.48E-02 0.000 0.19

TR(>250 miles) 2.26E-01 0.000 7.65E-01 0.000 2.91E-01 0.028 1.86E-02 0.770

AVD -5.44E-01 0.000 -1.73E-05 0.000 -8.79E-01 0.000 -6.70E-01 0.000

T -2.32E-04 0.000 -1.16E-04 0.000 -2.40E-04 0.000 -2.67E-04 0.000

H 7.59E-05 0.000 2.09E-04 0.000 -3.78E-05 0.036 1.06E-04 0.000

WS -7.08E-04 0.000 -1.35E-03 0.000 -7.90E-04 0.000 -5.77E-04 0.000

AP -3.29E-03 0.000 -9.53E-03 0.000 -5.95E-04 0.216 -5.08E-03 0.000

PPTN -2.54E-03 0.000 -4.33E-03 0.000 -9.49E-03 0.001 -3.04E-03 0.000

constant 1.37E-01 0.000 3.56E-01 0.000 9.51E-02 0.000 1.92E-01 0.000

VI

AHR -1.66E-01 0.000 0.21 9.56E-02 0.581 0.11 -5.75E-01 0.000 0.34 -6.73E-02 0.133 0.27

TR(>250 miles) 2.26E+00 0.000 3.63E+00 0.019 1.50E-01 0.888 3.48E+00 0.000

AVD -2.32E+00 0.000 -1.90E+00 0.184 -6.44E+00 0.000 -2.13E+00 0.000

T -6.63E-04 0.000 -4.36E-04 0.002 4.82E-04 0.000 -7.27E-04 0.000

H 3.09E-04 0.000 1.91E-05 0.871 5.40E-04 0.000 3.82E-04 0.000

WS 2.57E-04 0.071 7.56E-04 0.286 -1.91E-03 0.000 9.36E-04 0.000

AP 1.62E-03 0.007 -7.11E-03 0.266 -8.83E-03 0.000 5.68E-03 0.000

PPTN -9.44E-03 0.000 -6.48E-03 0.400 -3.96E-02 0.050 -9.11E-03 0.000

constant 2.17E-02 0.261 2.22E-01 0.305 3.75E-01 0.000 -1.39E-01 0.000

AHR, the proportion of daily residents at home; TR, Daily trips per capita; AVD, daily administered vaccination dose per capita; T, temperature; H, humidity; WS, wind

speed; AP, air pressure; PPTN, precipitation.

https://doi.org/10.1371/journal.pone.0273344.t002
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In the last segment, both vaccination and TR (>250 miles) had significantly higher effects

on DIR than AHR. As in the previous two periods, the regression coefficient for vaccination

was higher than that of TR (>250 miles) (2.32E+00>2.26E+00). In the first category model,

DIR was also dominated by TR (>250 miles), while the effect of vaccination on DIR was not

significant. However, the results of the second category model showed that DIR in these states

was significantly affected by vaccination (reached up to 6.44E+00 high) but not TR.

DIRs6 ¼ � 1:66E � 01� AHRþ 2:26Eþ 00 � TRð> 250 milesÞ � 2:32Eþ 00 � AVD

� 6:63E � 04� T þ 3:09E � 04�H þ 1:62E � 03 � AP � 9:44E � 03 � PPTN þ 2:17E � 02

The results of the model under 3-day or 10-day incubation period were shown in the S1–S3

Tables. According to it, the R-square performance of the models under these two incubation

periods was generally lower than that of the model under the 7-day incubation period.

Moreover, the fitting results of the 3-day incubation period model for AHR were not stable

enough, and the 10-day incubation period model may underestimate the effect of vaccination

compared with 7-day. Besides, it was worth noting that in the latter three segments, the effect

of vaccination under the 7-day incubation period on DIR was consistently higher than that

from model under 3-day incubation period.

Discussion

Our study explored the roles of epidemic-spread-related behaviors and vaccination status in

different segments of COVID-19 development, and used panel model clustering and liner

regression to explore how these roles differ across spatial dimensions. Besides, compared dif-

ferent incubation periods’ model fit to observe the optimal incubation period.

With the normalization of the epidemic, the ways to prevent transmission have become

well known. The significant negative correlation between AHR, AVD and DIR and the signifi-

cant positive correlation between TR and DIR found by the unsegmented regression model all

verified without exception that the most effective ways of epidemic prevention were staying at

home, reducing the number of trips (especially long-distance interstate travel) and vaccina-

tions, etc. (Table 2). The first segment was March 2020—a period when the epidemic had not

yet fully caught on. During this period, there might not be enough cases to observe the real

effect of travel times due to insufficient awareness of COVID-19 and limited testing. But under

this premise, a slight association between AHR and DIR was found. The impact of travel

became significant in the second segment—when all 50 states became acutely aware of the dan-

gers of COVID-19 and enacted stay-at-home orders. We all know that after a month of quar-

antine, U.S. was gradually unblocking even though the outbreak was not effectively contained

[38]. Thus, in the third segment, we were able to see the significant effect of AHR and travel on

the epidemic, and compared with the second segment, AHR played a more important role.

This might be due to the increasing awareness of COVID-19 which had indeed reduced the

frequency of interstate travel. Therefore, more effective prevention behaviors—staying at

home had become the main influencing factor of DIR at this stage.

In the middle and late stages of the epidemic, vaccines came out, and the American people

begun to be vaccinated voluntarily or compulsorily since December 13, 2020 [30]. In the latter

three segments, the role of vaccination gradually became dominant—surpassing the effect of

epidemic-related behaviors on DIR. According to previous study, the effectiveness of the vac-

cine in the United States could reach 70–90% (within one month of vaccination) [41, 42]. It is

worthy of attention that the comparison among the regression models results under these

three segments for the speed of the epidemic spread has been constantly changing with the

mutant strain [43, 44]. Compared with the fifth segment dominated by the delta strain, the

PLOS ONE The analysis for the COVID-19 epidemic in the United States

PLOS ONE | https://doi.org/10.1371/journal.pone.0273344 August 19, 2022 9 / 14

https://doi.org/10.1371/journal.pone.0273344


vaccine was more effective in controlling the epidemic in the fourth segment. This may be the

rapid increase in vaccine coverage from 0 to around 30–40% in these three months [30], tar-

geted reductions in epidemic dominated by non-VOCs. In our model, AVD had a significant

effect on DIR which was far exceeding the effect of epidemic-related behaviors while they still

had significant contributions to reducing DIR.

The fifth segment model showed a decline in the impact of AVD. On the one hand, it might

due to the effectiveness of the vaccine gradually decreases, and even dropped to 47% after five

months [42]. On the other hand, the susceptibility to vaccines of the gradual dominance of the

epidemic—the Delta strain had decreased [45, 46]. At this period, the effect of travel on DIR

had risen again, but still lower than that of AVD. The last stage was when the epidemic domi-

nated by Omicron, while the government gradually canceling control policies making long-

distance travel became easier and more frequent [47]. This corresponded to our results that

TR (>250 miles) played a huge role in the development of DIR during this period, while vac-

cine inhibition of DIR was relatively more pronounced, even reaching the highest coefficient

in the second category model (6.44E+00).

After considering regression models for different cluster groups, we found that the third

category model were the closest to the overall model. 7 states in the second category often

came noteworthy results. They were more vulnerable to vaccination effect in the later period

of the epidemic. Specifically in the fourth and sixth segments, the sensitivity of DIR to the vac-

cine even masked the effect of AHR and TR. However, the states in the first category showed

different results from the overall model in the final segment, the effect of vaccine was signifi-

cantly lower than that of TR (>250 miles)—it was also the exact opposite of the second cate-

gory. It was an interesting phenomenon which was completely unavailable only from the total

model. Different states’ circumstances could really make the effect of various factors vary.

Based on the results for different incubation periods shown in the S1–S3 Tables, the 7-day

incubation period model was indeed robust overall in most periods. In addition, we also found

that the coefficient for AVD in the 7-day model was higher than 3-day model, while 3-day

higher than 10-day in the last segment, supporting the view from Dr. Post [35]. This might be

related to the reduced incubation period of the Omicron strain—previous study suggest that

the lag effect was about half of that of the original strain [48]. However, our research did not

fully support this view, not only model fitting degree of the 7-day model was higher than that

of 3-day model, but the coefficient of AVD under the 7-day model was basically higher than

that from 3-day model.

As for the research results of weather factors, it continued to maintain its relatively contro-

versial characteristics [20]. Unsegmented results whether at 3, 7 or 10 days of incubation, sug-

gested a negative effect of T, H, WS, AP, PPTN on DIR, even though the association was very

weak. But the segmented results showed different phenomenon. In the first and second seg-

ments—corresponding to March to July, 2020—from the low temperature in winter to the

high temperature in summer, T acted positively on DIR. According to the early researches, the

rise in temperature showed a positive effect on the incidence, reached its peak at 60.8–82.4˚F

[16]. Our results might fit this characteristic for U.S. is located in the northern hemisphere—

most states have average temperature lower than 82.4˚F during the first and second segments

(Table 1). However, excessive temperature in summer might inhibit the spread of the virus to

a certain degree, corresponding the third segment (mainly included the hottest summer and

autumn) model results—T and DIR were negatively correlated.

Our research had not yet found the relationship between humidity and DIR in main model,

even if it showed slight significant in some other models, the coefficient was too small which

could be ignored. WS had a certain negative effect on DIR, which might be explained by the

fact that the circulating air would take away the virus entrenched in one place, diluting the
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density and reducing the transmission power. Rainfall might also have a similar effect, espe-

cially in the late stage of the epidemic dominated by variant strains, the negative correlation

coefficients of WS, PPTN and DIR in the fifth and sixth segments even increased to a certain

extent compared with the main unsegment model.

Overall, compared with daily epidemic-related behaviors and vaccination, the effect of

weather on DIR was not of an order of magnitude, but as a controversial factor, we still insisted

on controlling the effect of weather indicators in the model, and the results might provide

some support to the future researches. In addition, our study only focused on the dependent

variable daily incidence, and the influencing factors considered also existed certain limitations.

Therefore, we expect that more studies with dynamic effects appear to deeply explore the vari-

ous factors affecting the development of the epidemic.

Conclusion

Staying at home or getting vaccinated were particularly important inhibitive behaviors for the

spread of COVID-19 in U.S, even when it’s in the period dominated by Omicron. Travel, espe-

cially long-distance interstate travel was a significant risk factor for the spread of epidemic.

The spread also might be associated with weather, albeit to a lesser extent.
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