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SUMMARY
The current strategy to detect immunodominant T cell responses focuses on the antigen, employing large
peptide pools to screen for functional cell activation. However, these approaches are labor and sample inten-
sive and scale poorly with increasing size of the pathogen peptidome. T cell receptors (TCRs) recognizing the
same epitope frequently have highly similar sequences, and thus, the presence of large sequence similarity
clusters in the TCR repertoire likely identify the most public and immunodominant responses. Here, we
perform a meta-analysis of large, publicly available single-cell and bulk TCR datasets from severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals to identify public CD4+ responses. We
report more than 1,200 abTCRs forming six prominent similarity clusters and validate histocompatibility
leukocyte antigen (HLA) restriction and epitope specificity predictions for five clusters using transgenic
T cell lines. Collectively, these data provide information on immunodominant CD4+ T cell responses to
SARS-CoV-2 and demonstrate the utility of the reverse epitope discovery approach.
INTRODUCTION

The global scientific effort to overcome the COVID-19 pandemic

has led to the generation of an extraordinarily large amount of

publicly available data describing the human immune response

to severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2). Many of these studies point to the importance of robust

T cell responses in resolving COVID-19, as well as providing

long-term protection against newly emerging SARS-CoV-2

variants.6–13 One increasingly popular method to study T cell

response complexity is to characterize the T cell receptor

(TCR) repertoires of activated T cells following infection or vacci-

nation.14 The TCR is a heterodimer of alpha and beta chains,

both of which are formed in a semi-random DNA recombination

process resulting in a unique repertoire in each individual that

can be resolved through sequencing.15 However, despite their

complex and unique nature, TCR repertoires often have similar

and definable features across individuals encountering the

same antigens. In particular, responses to immunodominant epi-

topes trigger large clonal expansions, and TCRs recognizing

such epitopes frequently have highly similar sequences.16–18

Thus, analysis of TCR repertoires could shed light on the differ-

ences and commonalities of the T cell immune response across

individuals, help discern the identities of the most dominant

immunogenic antigens, and provide targets for development of

diagnostic and therapeutic strategies, such as adoptive T cell
Cell Rep
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transfer. Indeed, identification of T cell clonotypes reactive to

SARS-CoV-2 antigens has led to the development of a novel

diagnostic test for SARS-CoV-2 authorized for emergency use

by the US Food and Drug Administration (FDA).19

In order to identify TCR repertoire signatures related to

COVID-19, multiple groups have utilized either bulk TCR reper-

toire sequencing methods,3,20–24 which quantitatively measure

the frequencies of large numbers of unpaired TCR alpha or

beta chain clonotypes, or single-cell TCR-sequencing tech-

niques,1,2,25–31 which produce fewer but paired alpha/beta

TCR sequences. One of the major challenges of TCR-

sequencing approaches is that only a small fraction of total pe-

ripheral T cells recognize viral epitopes, even at the peak of

anti-SARS-CoV-2 immune responses. Hence, many studies

rely on methods designed to enrich antigen-specific T cell re-

sponses prior to TCR sequencing, such as the antigen-reactive

T cell enrichment strategy (ARTE), activation-induced marker

(AIM), andmultiplex identification of T cell receptor antigen spec-

ificity (MIRA) assays,32–35 which combine major histocompatibil-

ity complex (MHC)-multimer staining or peptide stimulation with

subsequent selection of activated T cells. These methods in-

crease the number of SARS-CoV-2-specific TCRs detected in

each sample and help to identify immunodominant epitopes (re-

viewed in Grifoni et al.36). Stimulating T cells with peptide li-

braries is the most frequently used approach in SARS-CoV-2

epitope discovery.28,37–42 However, peptide stimulation across
orts Medicine 3, 100697, August 16, 2022 ª 2022 The Author(s). 1
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Figure 1. Merged analysis of single-cell CD4+ SARS-CoV-2-reactive T cell public datasets

(A) Uniform Manifold Approximation and Projection (UMAP) of single cells from merged datasets containing SARS-CoV-2-antigen-enriched CD4 T cells. Colors

indicate clusters of cells with distinct gene expression profiles.

(B) Differentially expressed genes in each gene expression (GEX) cluster.

(C) Distribution of cells between GEX clusters is plotted for each donor; clusters of healthy donors do not contain Tfh cells (populations 1 and 2).

(D) Boxplots depicting the fraction of cells among functional clusters for each participant (Mann-Whitney U test; Bonferroni multiple comparison correction, *p <

0.05, **p < 0.005, ***p < 0.0005).
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the whole viral peptidome requires very large sample sizes,

which becomes increasingly challenging and cost prohibitive

for bigger pathogens, such as SARS-CoV-2. Moreover, instead

of a uniform response against all available peptides, the immune

system tends to focus on several so-called ‘‘immunodominant’’

epitopes that we are yet unable to predict based on epitope fea-

tures alone. Here, we propose a reverse epitope discovery tech-

nique, which moves the burden of T cell epitope detection away

from large peptide screens and rather utilizes rich TCR repertoire

datasets as the means to identify unbiased immunodominant re-

sponses. We performed a comprehensive TCR meta-analysis of

publicly available single-cell and bulk CD4+ TCR repertoire

datasets and identified more than 1,200 highly public SARS-

CoV-2-reactive TCRs with complete TCR alpha and beta chain

information and inferred their corresponding HLA restriction.

Moreover, by clustering TCRs based on sequence similarity,

we were able to (1) identify several prominent alpha/beta TCR

motifs, (2) predict their antigen specificity, and (3) validate the

prediction experimentally using transgenic T cell lines, demon-

strating the utility of the reverse epitope discovery approach.

RESULTS

In this report, we jointly analyzed multiple datasets across three

study groupings. The first grouping focused on two published

single-cell datasets of SARS-CoV-2-reactive CD4+ T cells
2 Cell Reports Medicine 3, 100697, August 16, 2022
identified based on CD154+ up-regulation after peptide pool

stimulation,33 with associated gene expression and TCR infor-

mation from a total of 59 individuals (49 COVID-19 positive; 10

healthy unexposed unvaccinated controls).1,2 The second

grouping utilized the largest published bulk TCRbeta datasets

currently available, which together comprise 786 healthy pre-

pandemic samples4 and 1,414 COVID-19 patients3 and include

a TCR sub-dataset (MIRA class II dataset) with known specificity

for certain SARS-CoV-2 peptide pools.22 Lastly, our third group,

which was used to validate our findings, included a published

bulk TCR dataset obtained from SARS-CoV-2-unexposed par-

ticipants sampled before and after immunization with the

AstraZeneca ChAdOx1 SARS-CoV-2 vaccine.5

In order to find public CD4+ T cell responses to SARS-CoV-2

infection, we first merged two publicly available single-cell data-

sets of CD4+ SARS-CoV-2-reactive T cells.1,2 Both datasets

were obtained using the same antigen-reactive T cell enrichment

strategy (ARTE assay). Of note, in the study from Bacher et al.,1

the peptide pools span the spike, membrane, and nucleocapsid

proteins, while peptide pools used in Meckiff et al.2 only include

peptides from the spike (without N-terminal domain) and mem-

brane proteins. The combined dataset contained 125,258 cells

that passed quality control steps, which resulted in 13 functional

clusters after unsupervised analysis (Figure 1A). Cluster pheno-

types were defined using cell-population markers used in the

original publications.1,2 In particular, we found clusters
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corresponding to T follicular helper (Tfh) cells (clusters 1 and 2),

type 1 T helper (Th1) cells (cluster 3), transitional Tfh and T central

memory (Tcm) cells (cluster 4), fully differentiated Tcm cells

(cluster 5), Th17 phenotypes (clusters 6 and 7), effector memory

T (Tem) cells (cluster 8), type I interferon (IFN)-signature T cells

(clusters 9 and 10), cytotoxic T cells (clusters 11 and 12), and

cycling T cells (cluster 13) (Figures 1A and 1B; Table S1). Using

this extended dataset, we also confirmed findings reported in

the study from Meckiff et al.2 of significant Tfh enrichment (clus-

ters 1 and 2) in COVID-19 patients compared with unexposed

healthy controls (Figures 1C and 1D). Interestingly, the abun-

dance of the two main Tfh subsets was significantly different in

hospitalized versus non-hospitalized COVID-19 patients (Fig-

ure 1D). In particular, cluster 2 was significantly enriched in se-

vere disease (p = 0.004; after Benjamini-Hochberg multiple

testing correction) and expressed higher cytotoxic markers,

such as CCL3, CCL4, CCL5, XCL1, XCL2, GZMB, and GNLY.

In contrast, cluster 1, expressing high levels of IL-2 and CD69

and genes of the TNF family, was more prevalent in patients

with mild disease, as previously shown in Meckiff et al.,2

although not reaching statistical significance in themerged data-

set (p = 0.4 after Benjamini-Hochbergmultiple testing correction)

(Figure 1D; Table S1).

In order to select TCRs corresponding to themost public CD4+

T cell responses, we next searched TCRbeta sequences from

the combined TCR alpha/beta single-cell dataset in the TCRbeta

repertoires from a large cohort of COVID-19 patients,3 as well as

from pre-pandemic COVID19-naive controls.4 We identified

1,248 unique alpha/beta TCRs shared among individuals that

are strongly enriched in COVID-19 patients as compared with

controls (COVID-enriched TCRs) (p < 0.05; after Benjamini-

Hochberg correction; Fisher’s exact test), which are reported

in Table S2. We also identified 594 alpha/beta TCRs, which

were significantly decreased in COVID-19 patients as compared

with the healthy pre-pandemic controls (COVID-depleted TCRs),

reported in Table S3 (Figure 2A). Notably, whenmapping COVID-

enriched TCRs to the single-cell RNA sequencing (RNA-seq)

data, these TCRs significantly accumulated in Tfh-containing

clusters (clusters 1, 2, and 4), while COVID-depleted TCRs, on

the other hand, accumulated in Tem subpopulations (clusters

6–8) (Figure 2B). The overall effect size (log2-fold enrichment)

for COVID-depleted TCRswasmuch smaller than for COVID-en-

riched TCRs (Figure 2A). Moreover, COVID-depleted TCRs were

present in a large fraction of donors from both the control and the

COVID-19 cohorts (Figure 2C); in particular, 465 out of 594 were

simultaneously found in >100 controls and in >100 COVID-19

patients. We hypothesize these COVID-depleted clonotypes

are a consequence of COVID-19-associated lymphopenia. In

fact, the number of unique T cell clones in a subset of the

analyzed COVID-19 patients was lower in comparison to healthy

controls. This could lead to small yet significant underrepresen-

tation of highly public clonotypes in the COVID-19 cohort. We

therefore focused on the COVID-enriched TCR clonotypes for

further analysis, as the occurrence pattern and phenotype of

this group is consistent with expansion of T cell clones specific

for SARS-CoV-2 antigens.

In order to assess the sequence similarity among TCRs en-

riched in COVID-19, we used TCRdist,16 which calculates a
TCR sequence distance (similarity) measure optimized for clus-

tering highly similar TCRs often with the same specificity. This

analysis showed the presence of several prominent TCR clusters

(Figure 2D). Interestingly, cluster 3 is largely defined by a

conserved beta chain motif, allowing for diverse alpha chains,

while in cluster 2, there is an almost invariant alpha chain paired

with a set of very diverse TCRbeta chains. In a few other large

clusters, both TCR chains show strongly conserved amino acid

motifs (Figure 2D). These differences could be potentially ex-

plained by the variable number of contacts of TCR alpha/beta

chains with the antigenic peptide and MHC. Thus, alpha-driven,

beta-driven, and alpha/beta-driven motifs are interesting targets

for solving TCR-peptide MHC (pMHC) ternary structures.

As a TCR only binds its cognate epitope presented in the

context of a specific HLA molecule, an individual’s HLA

background can strongly influence the composition of the

TCR repertoire. Thus, people with overlapping HLA alleles will

have more similar TCR repertoires than people with different

HLA backgrounds. This feature of the TCR repertoire was suc-

cessfully exploited in an elegant study by De-Witt et al.,43

where the authors were able to identify a set of TCR sequences

associated with certain HLA alleles. Using this set of HLA-asso-

ciated TCRs, we inferred the HLA types of the COVID-19 pa-

tients within the bulk TCR dataset,3 in which conventional

HLA typing information was not available. Therefore, to derive

associations between TCR clonotypes and HLA, we first deter-

mined whether participants with specific COVID-19-enriched

TCR clonotypes carried a common HLA allele when compared

with TCR-negative patients. Using this approach, we were then

able to predict a potential HLA association of our COVID-en-

riched TCR set using Fisher’s exact test to evaluate enrichment

within different HLA contexts. See Figure 2E for the repres-

entative Manhattan plot and Table S2 for predicted HLA

restrictions.

To predict the potential antigen reactivity of the TCR clus-

ters, we next cross-referenced the COVID-enriched TCRbeta

sequences with the MIRA MHC class II dataset.22 This dataset

contains TCRbeta sequences of CD4+ T cells with known

specificity to 1 of 56 peptide pools containing one to six over-

lapping 19-mer peptides spanning the membrane (M), nucleo-

capsid (N), and spike (S) SARS-CoV-2 proteins. Based on TCR

similarity, 428 of 1,242 (34%) COVID-enriched TCRs were suc-

cessfully mapped to 22 of 56 peptide pools from the MIRA da-

taset, with most matches to the M149–191, N46–96, and S743–801

protein pools. Most TCRs belonging to the same TCRdist clus-

ter were assigned to the same peptide pool. Interestingly, the

biggest TCRdist cluster (cluster 1) included mostly TCRs map-

ping to the membrane protein pool M149–191; however, a few

TCRs in this cluster were assigned to multiple pools and pro-

teins of the MIRA database, which we hypothesize to be a mi-

nor confounding effect of the antigen-reactivity deconvolution

approach of the MIRA assay. To further narrow down the

specificity prediction to the epitope level, we used NetMHCII-

pan4.0 to identify potential binding peptides within SARS-

CoV-2 S, M, and N regions covered by the predicted MIRA

peptide pools and restricted by HLA alleles determined for

each cluster. Potential binders were identified within each re-

gion. Large TCR similarity clusters—those containing high
Cell Reports Medicine 3, 100697, August 16, 2022 3
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Figure 2. Reverse epitope discovery of SARS-Cov-2-reactive public CD4+ T cell clonotypes

(A) Volcano plot shows enrichment of TCRbeta chains from merged single-cell TCR sequencing (scTCR-seq) datasets in a large (n = 1,414) collection of bulk

TCRbeta repertoires from COVID-19 patients3 (purple) in comparison to the healthy donor cohort from Emerson et al.4 (n = 786) (x axis) versus p value (y axis). ns,

not significant.

(B) Barplot showing the distribution of COVID-enriched (purple) and COVID-depleted (green) TCR clonotypes in GEX clusters. Fisher’s exact test was used for the

comparison, with Bonferroni multiple comparison correction. *p < 0.05, **p < 0.005, ***p < 0.0005, ns, not significant.

(C) The boxplots show the fraction of donors from healthy and COVID-19 cohorts sharing significantly COVID-depleted (green) and COVID-enriched (purple) clo-

notypes.

(D) A similarity network of COVID-associated public TCR clonotypes. Each vertex represents a TCR alpha/beta clonotype, and edges connect vertices with <120

TCRdist units. Colors show predicted specificity to SARS-CoV-2 peptide pools from the MIRA class II dataset. Bottom: TCRdist logos for the most prominent

clonotype clusters with predicted peptide specificity and HLA restriction are shown.

(E) Manhattan plot for association of representative clonotypes from cluster 2 with various HLA types.

(F) A tree map showing the fraction of T cells of the merged single-cell dataset carrying clonotypes from the prominent TCR similarity clusters from (C).

(G) Occurrence of TCRbeta from six large clusters from (C) prior to and following SARS-CoV-2 vaccination with theChAdOx1 (AstraZeneca) vaccine. Significantly

more TCRs from spike specific (clusters 2 and 5) are found after vaccination (one-sided Wilcoxon rank-sum test with Benjamini-Hochberg multiple testing

correction).
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numbers of unique clonotypes found in many different individ-

uals—are likely to recognize immunodominant epitopes.

Indeed, the three TCR similarity clusters with the greatest
4 Cell Reports Medicine 3, 100697, August 16, 2022
number of TCR clones also correspond to the largest magni-

tude of response when accounting for the clone size

(Figure 2F).
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To further validate the set of COVID-enriched CD4+ clono-

types using an independent dataset, we used a large collection

of TCRbeta repertoires from healthy unexposed individuals

before and after immunization with ChAdOx1,5 a replication-

deficient simian adenovirus-vectored vaccine encoding the

SARS-CoV-2 S protein produced by AstraZeneca. For each indi-

vidual, we calculated the fraction of unique TCRbeta clonotypes

identified in our largest antigen-specific TCR clusters out of total

clonotypes sampled at either the pre-vaccination (day 0) or post-

vaccination (day 28) time point (Figure 2D). As expected, only

TCRs reactive to S protein antigens (clusters 2 and 5) were signif-

icantly enriched after vaccination, while the frequency of TCR

clusters reactive to the M (1 and 6) or N proteins (3 and 4) re-

mained unchanged (Figure 2G). The same significant enrichment

was observed when analyzing all TCR clusters predicted to be

reactive for the S protein (Figure S1A). Interestingly, at least

one of the prominent orphan TCR clusters (defined here as

TCR clusters without a match in the MIRA dataset and thus

unknown antigen reactivity) also showed significant enrichment

after vaccination, suggesting TCR reactivity to the S protein

(Figure S1B). This result serves as an independent validation

that our reverse epitope discovery approach correctly predicts

antigen reactivity, at least at the protein level, and at the same

time demonstrates how the TCR clusters we resolved may be

used to identify SARS-CoV-2 epitope-specific TCRs. Excitingly,

as we correctly identified epitopes within the context of both

vaccination and natural infection, this approach may have the

potential to distinguish between these two conditions and,

further, to define the relative contribution of external and internal

proteins to the overall individual immune response.

Next, we sought to experimentally validate our predicted

pMHC epitopes using assays to probe pMHC and TCR engage-

ment and evaluate functional activation. To do this, we trans-

duced TCR-null Jurkat cells with constructs encoding TCRs

with representative TCR sequences from five of the six largest

TCR clusters (Figure 2D). These individual Jurkat-TCR cell lines,

now expressing the encoded TCRs at the cell surface, were co-

cultured with peripheral blood mononuclear cells (PBMCs) from

healthy donors carrying the predicted HLA restriction necessary

to bind and present the peptide epitopes. The co-cultured cells

were then pulsed with overlapping 17-mer peptides spanning

the predicted MIRA peptide pools and evaluated for TCR activa-

tion using the endogenous NFAT-GFP reporter in the transgenic

Jurkat cells (Figure 3A). All generated T cell lines reacted to one

or two specific peptides (Figure 3B), confirming our specificity

prediction and allowing us to precisely determine the epitope

location within a MIRA pool. Importantly, for four of five TCRs,

the experimentally determined reactive peptide region overlaps

with the peptide region identified to be a binder by NetMHC

within the context of a specific MIRA pool and HLA allele. More-

over, the predicted antigenic peptide and HLA restriction for

TCRdist cluster 2 and cluster 5 also exactly match the experi-

mental results from two independent studies.28,44 However, for

cluster 6, the predicted immunogenic region did not match the

experimental results, likely due to a misassigned HLA restriction.

To test this, we compared NetMHC binding estimates for

the reactive peptides across all HLA class II alleles present

on the donor PBMCs (Figure 3C). While, for four out of five
TCRs, the highest binding affinity towards the experimentally

defined cognate peptide was in the context of the predicted

HLAs, for cluster 6, the HLA allele predicted to have the highest

binding to the identified reactive peptides was DRB3*02:02,

rather than the predicted allele, DQB1*03:01/DQA1*05:05.

Importantly, DRB3 allele information is absent in many standard

HLA-typing datasets and in the reference dataset43 utilized by us

and thus could not be predicted by our approach.

Together, our data demonstrate the utility of using T cell reper-

toire and individual specificity to predict antigen binding down to

single epitope resolution. Although the quality of these predic-

tions depends on the limitations of the source datasets, it is clear

that this method is a viable alternative to peptide-focused

epitope discovery approaches and will only improve as more

datasets are published. Future expansion of public resources,

including TCR repertoire sequencing data, will further improve

TCR specificity prediction accuracy andmay also allow the iden-

tification of certain TCR repertoire features correlated with pro-

tection from SARS-CoV-2 infection and/or severe disease,

such as a high frequency of SARS-CoV-2-specific clones or

sharing of certain public clonotypes recognizing immunodomi-

nant epitopes.

DISCUSSION

Here, we describe an approach to identify public immunodomi-

nant CD4+ T cell responses based on TCR amino acid sequence

similarity. Combined with other datasets and methods, this

approach may help to resolve new epitopes across different im-

mune response contexts. As a proof of concept, we identified

1,248 paired TCR clonotypes potentially specific to highly immu-

nogenic epitopes from SARS-CoV-2. Many of these were so-

called orphan TCRs without defined epitopes. However, using

an approachwe term reverse epitope discovery, we successfully

identified and inferred antigen specificity for 428 TCRs with the

aid of the MIRA dataset.22 We also inferred possible HLA restric-

tions for most of these TCRs (88%). TCR-HLA pairings were

further validated based on NetMHC binding predictions and

functional experiments in this study and by others.28,44 The re-

sulting set of highly characterized public TCRs reactive to

SARS-CoV-2 covers more than 76% of individuals from Snyder

et al.,3 indicating that at least 20 unique COVID-enriched TCR

sequences per individual were found using this approach. Inter-

estingly, two out of six major responses were restricted by HLA

alleles with low variability among the human population (DPB1-

04:01/02 and DRB3-02:02), thus providing a means to further

investigate immunodominant responses in genetically diverse

individuals. Furthermore, the high publicity of the characterized

clonotypes makes them promising candidates for further studies

on CD4+ T cell immune responses mounted against SARS-CoV-

2 aswell as for immunotherapeutic applications aimed at utilizing

highly specific, immunodominant T cell responses in the context

of precision and personalized medicine.45–47

Limitations of the study
The described method is strongly focused on public T cell

responses, which provide the necessary power for a robust sta-

tistical analysis and, further, hold the highest potential for
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Figure 3. Results of TCR specificity validation experiment

(A) Gating strategy. Jurkat activation is tracked by GFP expression under NFAT control.

(B) Peptides triggering the response for each analyzed cell line are shown on the corresponding regions of SARS-CoV-2 M, N, and S proteins. The height of the

bars indicates the percentage of antigen-specific response of the NFAT-GFP TCR transgenic Jurkat cell lines in co-culture with PBMCs from healthy donors

pulsed with overlapping 17-mer peptides covering the predicted antigenic region. Dashed lines show the background activation level of the corresponding

transgenic Jurkat cell line in an unstimulated sample. The previously computationally predicted epitope and HLA are indicated above each plot in blue or red lines

for weak and strong predicted HLA binders, respectively.

(C) HLA restriction prediction by NetMHC: the identified immunogenic peptides are computationally tested for HLA binding against the HLA alleles present on the

donor PBMCs used in the experiment; colors show peptides overlapping with weak (blue) and strong (red) HLA-binding cores.
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additional population-wide applications. However, in many

cases, immunodominant responses within a particular individual

may be driven by private clonotypes or clonotypes without an

identifiable motif cluster, which would be missed by the current

approach or would not appear among the most interesting hits.

Applying different sequence similarity measures and integrating

more datasets will likely expand the number of identified T cell

responses with this approach. The major limitation for the

TCR-repertoire-based HLA typing algorithm utilized here is the

co-inheritance of certain HLA alleles. Since the algorithm is
6 Cell Reports Medicine 3, 100697, August 16, 2022
based on the co-occurrence of a TCR sequence with a particular

HLA allele, linked HLA alleles from a haplotype can be difficult to

distinguish. However, even narrowing down the possible HLA

restriction to several HLA alleles can significantly facilitate TCR

specificity determination. HLA typing based on TCR repertoire

data is also challenging for rare, non-classical, or low-diversity

alleles (e.g., DRB3/4/5), as no known TCRs have been associ-

ated with these loci to date. More datasets, including deeply

sequenced TCR repertoires from HLA-typed individuals can

address this limitation in the future.
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While the detection of TCR clusters relies on bulk and/or sin-

gle-cell TCR sequencing, peptide target prediction requires

more sophisticated datasets containing TCR antigen-specificity

information, such as VDJdb48 and the MIRA dataset.22 The

incompletely overlapping peptide pools utilized for our reference

single-cell datasets can limit the reverse epitope discovery

approach. For example, cluster 2 from Figure 2 is formed mostly

by clonotypes from Bacher et al.1 and absent in Meckiff et al.2

Indeed, the peptide pools used in the latter did not cover the

N-terminal domain of the S protein and thus did not include the

target peptide of the TCRs in cluster 2. Although this is a limita-

tion of these datasets, it also indirectly confirms the predicted

antigen specificity of cluster 2. The expansion of these resources

is of the utmost importance for target identification of orphan

TCRs. The strong general interest in the COVID-19 pandemic

led to an unprecedented production of high amounts of publicly

available TCR repertoire data, which still far exceed data avail-

able for other antigens or diseases.

Despite these limitations, the reverse epitope discovery

approach described here has already proven valuable for identi-

fying both cross-reactive49 and immunodominant responses to

SARS-CoV-2,44 and it holds potential for application in other

disease contexts.
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Targeted T cell receptor gene editing provides predictable T cell product

function for immunotherapy. Cell Rep. Med. 2, 100374. https://doi.org/

10.1016/j.xcrm.2021.100374.
46. O’Reilly, R.J., Prockop, S., Hasan, A.N., Koehne, G., and Doubrovina, E.

(2016). Virus-specific T-cell banks for ‘off the shelf’ adoptive therapy of re-

fractory infections. Bone Marrow Transplant. 51, 1163–1172. https://doi.

org/10.1038/bmt.2016.17.

47. Qian, C., Wang, Y., Reppel, L., D’aveni, M., Campidelli, A., Decot, V., and

Bensoussan, D. (2018). Viral-specific T-cell transfer from HSCT donor for

the treatment of viral infections or diseases after HSCT. Bone Marrow

Transplant. 53, 114–122. https://doi.org/10.1038/bmt.2017.232.

48. Bagaev, D.V., Vroomans, R.M.A., Samir, J., Stervbo, U., Rius, C., Dolton,

G., Greenshields-Watson, A., Attaf, M., Egorov, E.S., Zvyagin, I.V., et al.

(2020). VDJdb in 2019: database extension, new analysis infrastructure

and a T-cell receptor motif compendium. Nucleic Acids Res. 48, D1057–

D1062. https://doi.org/10.1093/nar/gkz874.

49. Minervina, A.A., Pogorelyy, M.V., Kirk, A.M., Crawford, J.C., Allen, E.K.,

Chou, C.H., Mettelman, R.C., Allison, K.J., Lin, C.Y., Brice, D.C., et al.

(2022). SARS-CoV-2 antigen exposure history shapes phenotypes and

specificity of memory CD8+ T cells. Nat. Immunol. 23, 781–790. https://

doi.org/10.1038/s41590-022-01184-4.

50. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Inte-

grating single-cell transcriptomic data across different conditions, tech-

nologies, and species. Nature Biotechnology 36 (5), 411–420. https://

doi.org/10.1038/nbt.4096.

51. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Ba-

glaenko, Y., Brenner, M., Loh, P., and Raychaudhuri, S. (2019). Fast, sen-

sitive and accurate integration of single-cell data with Harmony. Nat.

Methods 16, 1289–1296. https://doi.org/10.1038/s41592-019-0619-0.

52. Shugay, M., Britanova, O.V., Merzlyak, E.M., Turchaninova, M.A., Mame-

dov, I.Z., Tuganbaev, T.R., et al. (2014). Towards error-free profiling of im-

mune repertoires. Nature Methods 11 (6), 653–655. https://doi.org/10.

1038/nmeth.2960.

53. Bolotin, D. A., Poslavsky, S., Mitrophanov, I., Shugay, M., Mamedov, I. Z.,

Putintseva, E. V., & Chudakov, D. M. MiXCR: Software for comprehensive

adaptive immunity profiling. NatureMethods 2015, 12(5), 380–381. https://

doi.org/10.1038/nmeth.3364

54. Schattgen, S.A., Guion, K., Crawford, J.C., Souquette, A., Barrio, A.M.,

Stubbington, M.J.T., Thomas, P.G., and Bradley, P. (2021). Integrating

T cell receptor sequences and transcriptional profiles by clonotype

neighbor graph analysis (CoNGA). Nat. Biotechnol. 40, 54–63. https://

doi.org/10.1038/s41587-021-00989-2.

55. Csardi, G., and Nepusz, T. (2006). The igraph software package for com-

plex network research. Int. J. Complex Syst. 1695, 1–9.

56. Jacomy, M., Venturini, T., Heymann, S., and Bastian, M. (2014). ForceAt-

las2, a continuous graph layout algorithm for handy network visualization

designed for the gephi software. PLoS One 9, e98679. https://doi.org/10.

1371/journal.pone.0098679.

57. Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K.,

Slichter, C.K., Miller, H.W., McElrath, M.J., Prlic, M., et al. (2015). MAST:

a flexible statistical framework for assessing transcriptional changes and

characterizing heterogeneity in single-cell RNA sequencing data. Genome

Biol. 16, 278. https://doi.org/10.1186/s13059-015-0844-5.

58. Reynisson, B., Alvarez, B., Paul, S., Peters, B., and Nielsen, M. (2020).

NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC an-

tigen presentation by concurrent motif deconvolution and integration of

MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454.

https://doi.org/10.1093/nar/gkaa379.
Cell Reports Medicine 3, 100697, August 16, 2022 9

https://doi.org/10.1371/journal.pone.0141561
https://doi.org/10.1371/journal.pone.0141561
https://doi.org/10.1371/journal.pone.0186998
https://doi.org/10.1016/j.chom.2021.05.010
https://doi.org/10.1016/j.chom.2021.05.010
https://doi.org/10.1038/s41586-020-2598-9
https://doi.org/10.1038/s41586-020-2598-9
https://doi.org/10.1016/j.cell.2020.05.015
https://doi.org/10.1126/science.abd3871
https://doi.org/10.1038/s41590-020-00808-x
https://doi.org/10.1038/s41590-020-00808-x
https://doi.org/10.1038/s41590-020-0782-6
https://doi.org/10.1038/s41590-020-0782-6
https://doi.org/10.1016/j.xcrm.2021.100204
https://doi.org/10.1016/j.xcrm.2021.100204
https://doi.org/10.7554/elife.38358
https://doi.org/10.1016/j.cell.2021.12.026
https://doi.org/10.1016/j.cell.2021.12.026
https://doi.org/10.1016/j.xcrm.2021.100374
https://doi.org/10.1016/j.xcrm.2021.100374
https://doi.org/10.1038/bmt.2016.17
https://doi.org/10.1038/bmt.2016.17
https://doi.org/10.1038/bmt.2017.232
https://doi.org/10.1093/nar/gkz874
https://doi.org/10.1038/s41590-022-01184-4
https://doi.org/10.1038/s41590-022-01184-4
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/nmeth.2960
https://doi.org/10.1038/nmeth.2960
https://doi.org/10.1038/nmeth.3364
https://doi.org/10.1038/nmeth.3364
https://doi.org/10.1038/s41587-021-00989-2
https://doi.org/10.1038/s41587-021-00989-2
http://refhub.elsevier.com/S2666-3791(22)00233-6/sref53
http://refhub.elsevier.com/S2666-3791(22)00233-6/sref53
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1093/nar/gkaa379


Report
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Co-stimulatory anti-human CD28 antibody (clone CD28.2) BD Biosciences cat#: 555725 RRID: AB_396068

Co-stimulatory anti-human CD49d antibody (clone 9F10) BD Biosciences cat#: 555501 RRID: AB_2130052

Chemicals, peptides, and recombinant proteins

Lenti-X Concentrator Clontech cat#: 631232

1x Cell Stimulation cocktail eBioscience cat#: 00-4970-93

SARS-CoV-2 peptides (>95% purity) This paper Genbank acc: MT019529.1

Deposited data

Single-cell RNA-seq of SARS-CoV-2-reactive CD4+ T cells Bacher et al.1 SRA: SRP293741

Single-cell RNA-seq of SARS-CoV-2-reactive CD4+ T cells Meckiff et al.2 SRA: SRP267404

Bulk TCR repertoire from SARS-CoV-2-infected individuals Snyder et al.3 https://clients.adaptivebiotech.com/

pub/covid-2020

Bulk TCR repertoire from healthy individuals Emerson et al.4 https://clients.adaptivebiotech.com/

pub/emerson-2017-natgen

Bulk TCR repertoire from SARS-CoV-2 unexposed participants

sampled before and after immunization with the AstraZeneca

ChAdOx1 SARS-CoV-2 vaccine

Swanson et al.5 https://clients.adaptivebiotech.com/

pub/emerson-2017-natgen

MIRA class II bulk TCR dataset with known specificity for

certain SARS-CoV-2 peptide pools (release 002.1)

Nolan et al.22 https://clients.adaptivebiotech.com/

pub/covid-2020

Original code for data processing This paper https://github.com/pogorely/reverse_

epitope_discovery

Experimental models: Cell lines

293T ATCC cat#:CRL-3216

Jurkat 76.7 (variant of TCR-null Jurkat 76.7 cells that

expresses human CD8 and an NFAT-GFP reporter)

gift from Wouter Scheper

Recombinant DNA

pLVX-EF1a-IRES-Puro Clontech cat#: 631253

TCR_cluster1-mCherry This paper

TCR_cluster2-mCherry This paper

TCR_cluster3-mCherry This paper

TCR_cluster5-mCherry This paper

TCR_cluster6-mCherry This paper

psPAX2 packaging plasmid gift from Didier Trono Addgene plasmid #12260

RRID: Addgene_12260

pMD2.G envelope plasmid gift from Didier Trono Addgene plasmid #12259

RRID: Addgene_12259

Software and algorithms

FlowJo v10.7.1 BD Biosciences https://www.flowjo.com/solutions/

flowjo/downloads

Cell Ranger v3.1.0 10x Genomics https://www.10xgenomics.com

Seurat v.3.2.0 Butler et al.50 https://www.satijalab.org/seurat

Harmony v1.0 Korsunsky et al.51 https://portals.broadinstitute.org/

harmony/articles/quickstart.html

R v. 4.0.2 https://www.r-project.org

Biorender https://biorender.com

MiGEC v. 1.2.7 Shugay et al.52 https://github.com/mikessh/migec

MiXCR v. 3.0.3 Bolotin et al.53 https://github.com/milaboratory/mixcr
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CoNGA python package Schattgen et al.54 https://github.com/phbradley/conga

data.table R package v. 1.14.0 https://github.com/Rdatatable/

data.table/wiki

stringdist R package v. 0.9.6.3 https://github.com/markvanderloo/

stringdist

igraph R package v. 1.2.6 Csardi and Nepusz55 https://igraph.org/r/

gephi v. 0.9.2 Jacomy et al.56 https://gephi.org

ggplot2 R package v. 3.3.3 https://cran.r-project.org/web/

packages/ggplot2/index.html
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Paul G.

Thomas (paul.thomas@stjude.org).

Materials availability
All transgenic T cell lines generated in this study are available from the lead contact with a completed Materials Transfer Agreement.

No other unique reagents were generated in this study.

Data and code availability
Single-cell data can be found under SRA accession numbers SRA: SRP293741 for ref. 1 and SRA: SRP267404 for ref. 2. Bulk TCR

repertoire data from SARS-CoV-2-infected subjects, and theMIRA Class II dataset (release 002.1)3 are publicly available from the

ImmuneAccess database (https://clients.adaptivebiotech.com/pub/covid-2020). Data obtained fromhealthy participants4 can be

located in (https://clients.adaptivebiotech.com/pub/emerson-2017-natgen) and in (https://doi.org/10.21417/PAS2021STM) for

ChAdOx1 immunized cohort dataset.5

Original code used to analyze merged single-cell datasets are available on the GitHub repository https://github.com/pogorely/

reverse_epitope_discovery.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
TCR-null Jurkat 76.7 cell lines with endogenous NFAT-GFP reporter were generously provided by Wouter Scheper and were main-

tained in RPMI (Gibco) containing 10% FBS and 1% penicillin/streptomycin.

Utilized public data
Single-cell data of SARS-CoV-2 reactive CD154+ T cells were obtained from refs. 1 and 2. Bulk TCR data of healthy individuals and

COVID-19 patients were obtained from ref. 4 and ref. 3, respectively.

METHOD DETAILS

Transgenic T cell lines generation
For the six most prominent TCR similarity clusters from Figure 2, we selected a representative TCR sequence (the sequence with the

most number of neighbors) for cloning into a TCR-null Jurkat 76.7 cell line (generously provided by Wouter Scheper), which express

an NFAT-GFP reporter. TCRalpha and TCRbeta sequences were altered to use murine constant regions (murine TRAC*01 and mu-

rine TRBC2*01) to facilitate surface expression of the TCR. Six gene fragments were synthesized by Genscript to encode TCRalpha,

TCRbeta chain, and mCherry fluorescent protein, linked together by 2A sites and put into the pLVX-EF1a-IRES-Puro lentiviral back-

bone (Clontech). To generate transducing particles, HEK 293T packaging cells (ATCC CRL-3216) were transfected with an individual

TCR-encoding lentiviral vector, psPAX2 packaging plasmid (Addgene plasmid #12260), and pMD2.G envelope plasmid (Addgene

plasmid #12259). We collected transducing particle-containing media 24- and 48-h post-transfection and concentrated the lentivirus

with Lenti-X Concentrator (Clontech) according to the manufacturer’s protocol. Jurkat 76.7 cells were transduced, then antibiotic

selected for 1 week using 1 mg/mL puromycin in RPMI (Gibco) containing 10% FBS and 1% penicillin/streptomycin. Five out of

six Jurkat cell lines were successfully transduced as confirmed by expression of mCherry.
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Peptide stimulation assay
Jurkat cell line expressing select TCRs (105) were co-cultured with PBMCs from pre-pandemic healthy donors (2 3 105) in cRPMI,

pulsed with 1 mM of peptide, and co-stimulated with 1 mg/mL each of anti-human CD28 and CD49d (BD Biosciences). Negative

unstimulated (no peptide; CD28, CD49d) and positive (CD28, CD49d, 1X Cell Stimulation Cocktail, PMA/ionomycin; eBioscience)

controls were included in each assay. Cells were incubated for 18 h (37�C, 5% CO2). After incubation cells were washed twice

with FACS buffer (PBS, 2% FBS, 1 mM EDTA), and analyzed by flow cytometry on a custom-configured BD Fortessa using

FACSDiva software (Becton Dickinson). Flow cytometry data were analyzed using FlowJo software (BD Biosciences). Responsive-

ness to peptide stimulation was determined by measuring the frequency of cells positive for endogenous NFAT-GFP expression

(Table S4).

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell datasets integration and filtering
Preprocessing of scRNAseq data was performed with 10x Genomics’ Cell Ranger software v3.1.0 using the human genome refer-

ence GRCh38 v3.0.0 for themapping. The resulting raw feature-barcodematrix files were analyzed with the Seurat v.3.2.0 R package

(Butler et al., 2018). All genes with detected expression in less than 0.1% of the cells were excluded. TCR genes were not considered

for further analyses to avoid functional clustering of cells based on TCR information. For cell quality control only cells harboring be-

tween 400 and 3000 RNA features and less than 5% mitochondrial RNA were selected for further processing.

TCR information was integrated into the Seurat object metadata after filtering cells containing more than 2 TCRalpha or 2 TCRbeta

chains. After merging of Seurat metadata and TCR information, cells without TCR information were excluded from further analysis.

Afterwards, data were log-normalized and scaled based on all genes. After performing a PCA dimensionality reduction (40 dimen-

sions) with the RunPCA function, expression values were corrected for batch effects caused by different sources of the data, sample

preparation batches, and sequencing run batches using the R package Harmony v1.0.51 In the final steps, the Uniform Mani-fold

Approximation and Projection (UMAP) dimensional reduction was performed with the RunUMAP function using 40 dimensions, a

shared nearest neighbor graph was created with the FindNeighbors method, and the clusters identification was performed with a

resolution of 0.4 using the FindClusters function. 13 clusters were identified. Cluster marker genes were determined using

FindMarkers with the MAST method57 and are available in Table S1.

COVID-19 TCR association using bulk TCR public datasets
To identify public TCRbeta clonotypes we used two large datasets, one of TCRbeta repertoires from COVID-19 patients (n = 1414)3

and one of healthy subjects sampled pre-pandemic (n = 786).4 For each TCRbeta from the combined single-cell TCRseq dataset we

calculated the number of unique donors from the both bulk TCRbeta repertoire cohorts sharing the clonotype. TCRbeta clonotypes

were considered shared if both CDR3 amino acid sequences and V segment families matched. Next, we use a two-sided Fisher’s

exact test with Benjamini-Hochberg multiple-comparisons correction to identify overrepresented (i.e. found in more donors)

TCRbeta clonotypes in either COVID-19 or healthy donors (adjusted p-value<0.05 is used as significance threshold).

Identification of motifs in TCR amino acid sequences using TCRdist
We used the TCRdist implementation in the CoNGA python package to calculate pairwise TCRdist between unique alpha/betaTCR

sequences and to plot sequence logos for TCRmotifs.54We define TCRmotifs as a cluster on the TCR similarity network, where each

node is a unique alpha/betaTCR clonotype, and edges connect nodes if the distance between them is less than 120 TCRdist units. To

filter TCR chimeras and other artifacts occuring during 10x Genomics sequencing leading to rare spurious connections between TCR

motif clusters, we deleted the top 1% of nodes and vertices by network betweenness centrality values. The igraph R package was

used to manipulate similarity networks,55 gephi was used for network layout and visualization.56

HLA specificity imputation from TCR data
For each donor from refs. 3,4 we use HLA-types inferred as previously described in ref. 20. In brief, for each TCRbeta significantly

enriched in the COVID-19 cohort we performed a one-sided Fisher’s exact test with Benjamini-Hochberg multiple-comparisons

correction to check if a given TCRbeta co-occurs with a certain HLA-allele. To determine an HLA restriction within a TCR similarity

cluster we considered the HLA with the most significant association for each individual TCR in the cluster. If the HLA-allele was the

best prediction for 25% or more TCRs of the cluster, it was considered associated with that cluster.

Prediction of COVID-enriched TCR specificity
We mapped the TCRbeta chain sequences from the merged aggregated single-cell dataset to peptide pool-specific TCRbeta

clonotypes of the MIRA class II dataset (release 002.1) allowing for one amino acid mismatch between CDR3 amino acid sequences.

Next we selected six large clusters on the TCRdist similarity network with distinct MIRA peptide pool assignments. The cluster was

assigned a certain MIRA pool if at least 20% of TCR sequences within a cluster mapped to a MIRA pool; it was considered ‘‘orphan’’

otherwise. We calculated the consensus MIRA pool and HLA-restriction within each TCR cluster. We then used NetMHCIIpan-4.058

to predict the epitope location within the MIRA pool, for the specific HLA-restriction. We ran NetMHCIIpan-4.0 on the complete
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SARS-CoV-2 Wuhan-1 S, M, N protein sequences (Genbank acc: MT019529.1) for peptide lengths 9–15, for predicted HLAs (see

Figure 2D), all other parameters were set to default. We then checked for presence of strongly (Rank_EL<1%) and weakly

(Rank_EL<5%) HLA-binding peptide cores within the predicted MIRA region. To confirm the HLA-restriction of responding peptides

in the validation experiments, we used the samemethodwith slight modifications: HLA-binding peptide cores were first predicted for

each of the antigen-presenting cell donors’ HLA alleles, after which we checked for overlap of these binding cores within peptides

eliciting a response in the cloned TCR-expressing Jurkat cell lines (see Figure 3C).

Statistical analysis
Statistical analyses were performed in R version 4.0.2. Wilcoxon rank-sum test (Mann-Whitney U test) was used to compare the pro-

portion of cells in each Seurat functional cluster between healthy controls and COVID-19 patients as well as between severe andmild

COVID-19 cases. Fisher exact test was used to compare the number of COVID-depleted and COVID-enriched clonotypes being part

of each functional Seurat cluster. Multiple testing correctionwas performed using the Benjamini-Hochberg procedure. Not significant

(ns); *p < 0.5, **p < 0.01, ***p < 0.001.
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