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ABSTRACT
◥

Background: Methods synthesizing multiple data sources with-
out prospective datasets have been proposed for absolute riskmodel
development. This study proposed methods for adapting risk
models for another population without prospective cohorts, which
would help alleviate the health disparities caused by advances in
absolute risk models. To exemplify, we adapted the lung cancer risk
model PLCOM2012, well studied in the west, for Taiwan.

Methods: Using Taiwanese multiple data sources, we formed
an age-matched case–control study of ever-smokers (AMCCSE),
estimated the number of ever-smoking lung cancer patients in
2011–2016 (NESLP2011), and synthesized a dataset resembling
the population of cancer-free ever-smokers in 2010 regarding
the PLCOM2012 risk factors (SPES2010). The AMCCSE was used
to estimate the overall calibration slope, and the requirement
that NESLP2011 equals the estimated total risk of individuals

in SPES2010 was used to handle the calibration-in-the-large
problem.

Results: The adaptedmodel PLCOT-1 (PLCOT-2) had anAUCof
0.78 (0.75). They had high performance in calibration and clinical
usefulness on subgroups of SPES2010 defined by age and smoking
experience. Selecting the same number of individuals for low-dose
computed tomography screening using PLCOT-1 (PLCOT-2) would
have identified approximately 6% (8%)more lung cancers than theUS
Preventive Services Task Forces 2021 criteria. Smokers having 40þ
pack-years had an average PLCOT-1 (PLCOT-2) risk of 3.8% (2.6%).

Conclusions: The adapted PLCOT models had high predictive
performance.

Impact: The PLCOTmodels could be used to design lung cancer
screening programs in Taiwan. The methods could be applicable to
other cancer models.

Introduction
Absolute risk models estimate disease risk in an upcoming time

interval based on known risk factors for a healthy individual in a
population, accounting for competing causes of death (1, 2). Absolute
risk models have important clinical and public health applica-
tions (3, 4). Strategies to develop, validate, and update absolute risk
models have been important research topics in recent decades (2, 5, 6).

Although prospective cohorts are ideal for their development, valida-
tion, and updating, the required sample size would be large and follow-
up periods long if the disease incidence rate is low, such as cancers at
specific sites. Methods that synthesize multiple data sources without
using prospective datasets have been proposed formodel development
following the seminal contribution of Gail and colleagues (1, 7–11).

Indeed, both Gail and colleagues and Costantino and colleagues
combined estimates of relative risks associated with certain risk factors
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and estimates of the baseline hazard and attributable risk to obtain
estimates of the probability of developing breast cancer, using com-
peting risk models. The modification by Costantino and colleagues
used age-specific invasive breast cancer rates and attributable risk
estimates from the Surveillance, Epidemiology, and End Results rather
than from the Breast Cancer Detection Demonstration Project (1, 8).
Recognizing a growing demand to develop and apply models for
absolute risk prediction, the iCARE package builds competing risk
models by synthesizing multiple data sources containing information
on relative risks, the distribution of risk factors in the population, and
age-specific incidence rates (11).

Chien and colleagues developed logistic regression models for
predicting lung cancer occurrence in the upcoming 6 years among
never-smoking Taiwanese females, based on an age-matched case–
control study (AMCCS) and the age-specific 6-year lung cancer
incidence rates (ASSIR) for never-smoking females in Taiwan (10).
The AMCCS was used to estimate the effects of risk factors other than
age and the intercept; given these effect estimates, they used the ASSIR
and risk factor distributions among the controls to estimate the age
effect and intercept. The AMCCS was obtained from a case–control
study of lung cancer; ASSIR, accounting for competing causes of death,
was estimated using the Taiwan Cancer Registry (TCR), the Taiwan
Cause of Death Database (TCOD), age-specific population size, never-
smoking rates in the female population and in female patients with
lung cancer, and the Taiwan life table.

Because validating and updating risk models are essential toward
better risk prediction models (12–14) and except for discrimination,
are currently carried out using prospective cohorts, we aimed to
propose methods for validating or adapting absolute risk models for
another population by synthesizing multiple data sources, when no
suitable prospective cohorts are available. This would help alleviate the
disparities due to riskmodels, with or without incorporating polygenic
risk scores (15, 16).

To make the presentation concrete, we exemplified the methods by
adapting the Prostate, Lung, Colorectal, andOvarianCancer Screening
Trial 2012 model (PLCOM2012) for Taiwan. It is a logistic regression
model that estimates the probability of a smoker developing lung
cancer in a 6-year period, using age, ethnicity, education, body mass
index (BMI), chronic obstructive pulmonary disease (COPD), family
history of lung cancer, personal history of cancer, smoking status,
average number of cigarettes smoked per day, years smoked, and quit
time (17). It was used to guide the selection of participants for low-dose
computed tomography (LDCT) lung cancer screening trials (18) and
was prospectively validated in the United States, Germany, Australia,
Canada, U.K., Brazil, and Poland (18–28). It was also used to assess the
clinical utility of polygenic risk scores for risk stratification regarding
LDCT screening (29). The National Comprehensive Cancer Network
2018 guidelines approve selection based on PLCOM2012 risk (30).
However, the validation or adaptation of the PLCOM2012 model has
not been reported in Asia.

To take advantage of the excellent performance of the PLCOM2012

model in the west and to reduce the possibility of overfitting, we
considered two parsimonious approaches to adapting: Approach 1
updated only the intercept to deal with the calibration-in-the-large
problem andApproach 2 derived the overall calibration slope and then
handled the calibration-in-the-large problem (12, 13). For these, we
formed population datasets and derived summary statistics or infor-
mation for Taiwan and then used them to recalibrate and assess the
risk model. We (i) constructed an age-matched case–control study of
ever-smokers (AMCCSE), (ii) estimated the number of ever-smoking
lung cancer patients diagnosed in 2011–2016 (NESLP2011), and

(iii) synthesized a dataset resembling the population of cancer-free
ever-smokers in Taiwan at the end of 2010 (SPES2010) with respect to
the risk factors in the PLCOM2012 model. In this paper, a person is
cancer-free at a time point in her/his life if she/he has never been
diagnosed with any cancer before that time point, and a person is a
cancer survivor at a time point in her/his life if she/he has been
diagnosed with certain cancer before that time point.

For Approach 1, we changed the intercept by requiring the
resulting total risk of individuals in the SPES2010 equal NESLP2011.
For Approach 2, we decomposed its linear predictor into two parts:
the intercept and age term and the remaining term. We first used
AMCCSE to conduct the “calibration slope” step that recalibrated
the remaining term. Given the calibration slope, we then performed
the calibration-in-the-large step that recalibrated the intercept and
the age term by requiring the resulting total risk of individuals in the
SPES2010 equal NESLP2011. In either approach, we assessed the
performance of the adapted model in terms of discrimination,
subgroup calibration, and clinical usefulness (12) using SPES2010
and other datasets.

Materials and Methods
AMCCSE

The ever-smoking patients with lung cancer in the AMCCSE were
collected from the case–control component of the Taiwan Genetic
Epidemiology Study of Lung Adenocarcinoma (GELAC) and the
Taiwan Lung Cancer Pharmacogenomics Study (LCPG). The ever-
smoking healthy controls were from the Taiwan Biobank (RRID:
SCR_010557) and the case–control component of the GELAC.
Limiting to the age range 50 to 74, we formed a total of 798 age-
matched groups, where each group had exactly one case and one
to five age-matched healthy controls, involving a total of 3,508
controls. Figure 1A presents the procedure formatting the AMCCSE,
including the inclusion and exclusion criteria applied to the Taiwan
Biobank. Supplementary Materials and Methods Texts S1–S4 have
the details. Inclusion and exclusion criteria for individuals from the
GELAC and LCPGwere described in earlier publications (10, 31–33).
Although blinding was not applied to this study, individuals in the
Taiwan Biobank were deidentified before being provided to us.

SPES2010
We used the Taiwan Biobank, consisting of cancer-free individuals

at recruitment, to construct the dataset SPES2010, which consequently
included only cancer-free individuals. We first determined the age-
and sex-specific numbers of cancer-free ever-smokers in the
SPES2010. It was constructed on the basis of (D1) the age- and
sex-specific Taiwanese population size at the end of 2010 using
Monthly Bulletin of Interior Statistics (MBIS) from the Taiwan
Ministry of the Interior (34); (D2) estimates of age- and sex-
specific numbers of cancer survivors (cancer prevalence) in Taiwan
at the end of 2010 using the linkage of the TCR, TCOD, National
Health Insurance Research Database (NHIRD); (D3) the age- and sex-
specific smoking rate for the year 2010 using the Taiwan Adult
Smoking Behavior Survey (ASBS); (D4) the age- and sex-specific
number of ever-smokers in the Taiwan Biobank having information
on all the risk factors in the PLCOM2012model. The procedures leading
to the estimates in datasets D2 andD3 are given below in the section on
data sources. These datasets are included in Supplementary Tables S1–
S3. For each age and sex, Supplementary Table S1 reports the smoking
rates (percentage of ever-smokers) in the population; Supplementary
Table S2 reports the cancer prevalence at the end of 2010.

Recalibrating Risk Models by Synthesizing Data Sources
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Because a person was either cancer-free or a cancer survivor, we
used D1 and D2 (Supplementary Table S2) to obtain age- and sex-
specific cancer-free population sizes by subtraction. Assuming the age-
and sex-specific smoking rates in the cancer-free population approx-
imated those in the general population (Supplementary Table S1), we
report in Supplementary Table S3 the estimated age- and sex-specific
numbers of cancer-free ever-smokers; Supplementary Table S3A for
females, Supplementary Table S3B for males, and Supplementary
Table S3C for females and males combined. They determined the
age- and sex-specific population size of the SPES2010. Given an
individual in SPES2010, we assigned to this individual the risk-
factor profile of an ever-smoker randomly selected from the Taiwan
Biobank having the same age and sex andwithoutmissing information
on the risk factors in the PLCOM2012model. This suggests that the age-
and sex-specific distribution of these risk factors in the SPES2010
resembled those in the Taiwan Biobank. Figure 1B outlines the above
procedure.

NESLP2011
According to the TCR and TCR Long Form (TCRLF), approxi-

mately 83% of the lung cancer patients diagnosed in 2011–2016
reported whether they were ever-smokers or never-smokers; see
Supplementary Table S4A. On the basis of the age-, sex-, and calendar
year–specific smoking rates among patients with lung cancer derived
from the TCRLF, we estimated the age-specific numbers of ever-
smoking lung cancer patients in the TCR for 2011–2016 (Supplemen-
tary Table S4B). These were used to estimate, among those aged 50 to
74 at the beginning of 2011, the number of ever-smoking lung cancer
patients diagnosed in 2011–2016. Supplementary Table S4B was also
used to estimate the age-specific 6-year lung cancer incidence rates
among ever-smokers (ASSIRE; Supplementary Table S4C).

Adapting the PLCOM2012 model
Here, we only explain Approach 2, because Approach 1 is similar to

the second step of Approach 2. Because AMCCSE was suitable for
modifying the effects for all the risk factors other than age and the
intercept and because we preferred a parsimonious approach, we
decomposed the linear predictor of the PLCOM2012 model (17, 35)
into two components: its weighted sum of the intercept and the age
effect, �4.532506þ0.0778868 (Age - 62), is called the intercept-age
factor. The remaining part of the linear predictor is called the non–
intercept-age factor, which is a weighted sum of the effects of the other
risk factors.

We fitted a logistic regression model with the intercept-age factor
and the non–intercept-age factor only. Treating the former as the
matching variable, we first fitted the logistic regression model, using
a conditional likelihood approach (36), to the AMCCSE to obtain
the OR of the non–intercept-age factor. Given the OR of the non–
intercept-age factor from the first step, the second step estimated
the OR of the intercept-age factor by requiring the resulting total
risk of individuals aged 50 to 74 in the SPES2010 to be equal to
NESLP2011.

The adapted model is called PLCOT-1 if Approach 1 is used and
PLCOT-2 if Approach 2. Note that in this adaptation, what we need
from SPES2010 was the distribution of the risk factors in the popu-
lation and the population size. Details are in Supplementary Materials
and Methods Text 5.

All computations are carried out using R language. The conditional
likelihood approach to logistic regression was implemented using the
clogit function in R, which was also used to obtain the 95% confidence
interval (CI).

Assessing discrimination, calibration, and clinical usefulness for
the PLCOT models

We assessed discrimination for PLCOT-1 by computing the area
under the receiver operating characteristic curve (AUC) using all the
cases and controls from the AMCCSE, which was not used in the
PLCOT-1 adaptation.

We assessed discrimination for PLCOT-2 by bootstrap. On the basis
of the AMCCSE, we obtained bootstrapping optimism-corrected
discrimination in terms of AUC. Here one bootstrap sample was a
set of age-matched case–control groups sampled from the AMCCSE
with replacement and having the same sample size as that of AMCCSE.
A total of 1,000 bootstrap samples were used and the correction
method is detailed in Section 5.3.4, Steyerberg (6).

Because the TCR and TCRLF during 2011–2016 are follow-up data
of the Taiwanese population at the end of 2010, comparison of
SPES2010 and the TCR and TCRLF provided opportunities for
assessing the calibration and clinical usefulness of the PLCOT models
in terms of subgroups defined by age and smoking experiences. We
considered sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) for risk-based criteria as well as those
defined by age and smoking experiences.

Consider, for example, the condition that individuals smoked ≥ 20
pack-years, smoked within the past 15 years, and were aged 50 to 74 at
the beginning of 2011. We estimated the number of lung cancer
patients diagnosed in 2011–2016 satisfied this condition using the
information in the TCR and TCRLF. Because this information in the
TCRLF pertained to time at cancer diagnosis, correction was properly
made; details are provided in Supplementary Materials and Methods
Text S6. We also estimated the total PLCOT risk of individuals
satisfying the condition in the SPES2010. The ratio of the former
(observed) to the latter (predicted) provided the calibration assessment
on this subgroup. The predicted number was also used to study clinical
usefulness. For example, we report sensitivity to be the ratio of the
predicted number to NESLP2011, assuming the number of cases
developed during 2011–2016 among the SPES2010 equaled
NESLP2011. We considered here the predicted, rather than the
observed, because we wanted to compare the performance of simpli-
fied criteria with the corresponding PLCOT risk-based criteria.

The following simplified criteria appeared in the literature. The 2013
US Preventive Services Task Force (USPSTF) criterion is smoking ≥ 30
pack-years, smoking within the past 15 years, and aged 55 to 80
(USPSTF13; ref. 37). The 2021USPSTF criterion is smoking≥ 20 pack-
years, smoking within the past 15 years, and aged 50 to 80 (USPSTF21;
refs. 38, 39). Another criterion was studied in the Nederlands-Leuvens
Longkanker Screenings Onderzoek (NELSON) trial (40). Onemet this
criterion if one was aged 50 to 74, smoked at least 10 cigarettes per day
for at least 30 years or 15 cigarettes per day for at least 25 years, and
smoked within the past 10 years. In this study we considered
USPSTF21, NELSON, 40–10 (smoked 40 or more pack-years and
smoked in the past 10 years), and 30–15 (smoked ≥ 30 pack-years and
smoked in the past 15 years).

Data sources
The TCR, launched in 1979, is a population-based cancer registry

collecting information on newly diagnosed cancers at all hospitals in
Taiwan with 50 or more beds. Its quality has been improving and was
recently reviewed (41, 42). The TCRLF has included smoking infor-
mation on patients with cancer since 2011. This study considered only
lung cancers that were the first invasive cancers in patients.

The TCOD includes cause-of-death information for individuals in
Taiwan since 1971. It is maintained by the Department of Statistics,

Chien et al.
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Figure 1.

A, The procedures to build AMCCSE. The right panel describes the procedure to select healthy ever-smokers from the Taiwan Biobank for use as controls in the
AMCCSE; see also box (a3) in the left panel. The left panel gives the procedures resulting in the AMCCSE. Thematching process from box (c) to box (d) is detailed in
Supplementary Materials and Methods, Text S4. B, The procedures to build SPES2010. The numbers at the right-bottom corner in the boxes (b1), (b2), (b3), (c1), and
(c2) refer to those for age 50 and male sex. For example, using the TCR, TCOD, and NHIRD shown in Box (a), we obtained age- and sex-specific number of cancer
survivors in Box (b2); that for age 50 andmale sexwas 3,596. Box (c1) shows that the SPES2010 included 112,574men having age 50, and Box (c2) indicates that their
risk-factor profiles were assigned randomly based on 501 ever-smoking men of the same age from the Taiwan Biobank.

Recalibrating Risk Models by Synthesizing Data Sources
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TaiwanMinistry of Health andWelfare; its quality has been previously
described (43). The TCOD adopted the national identification card
number (NICN) in 1985. During 1985–2018, there were 4,398,359
unique death records that included individuals’NICN, sex, birth date,
death date, and cause of death. The original TCOD contains 4,405,868
records for this period; thus, < 0.2% of the data were excluded during
data cleaning.

Taiwan’s NHIRD was based on the administrative database of the
National Health Insurance Program, which started in 1995 and has a
coverage higher than 99% of its population of 23þ million. The
NHIRD has been shown to be a valuable research resource (44).

Taiwan Biobank, started in 2008, is an ongoing community-
based cohort of Taiwanese participants aged 30 to 70 who are
cancer-free at enrollment and have information from basic physical
examinations, questionnaires, and blood samples taken at enroll-
ment. Information was also collected during follow-up appoint-
ments. This study used all the Taiwan Biobank data provided to us
by November 2020, including a total of 122,071 participants; among
them, 27,209 had follow-up data. Among those with follow-up data,
417 participants had a cancer diagnosis. To include participants
older than 70 years, we used follow-up data for those who were
cancer-free at the follow-up appointment. Figure 1A includes the
data-cleaning process; details are provided in the Supplementary
Materials and Methods. Chien and colleagues contains additional
information (10).

Starting in 2007, the Taiwan ASBS reports the sample size and the
proportion of ever-smokers for each survey by year, age, and sex. Using
these, we obtained the number of ever-smokers in each survey and then
calculated the "locally averaged" age-specific smoking rate for each year
and sex. For example, the smoking rate for males aged 50 in 2010 was
the proportion of ever-smokers among the male samples aged 49 to 51
in 2009–2011. Supplementary Table S1 reports the age- and sex-
specific smoking rates for 2010.

Using the linkage of the TCR for 1979–2016, TCOD for 1985–2018,
NHIRD for 2000–2017, we estimated the number of cancer survivors
at the end of 2010. A cancer survivor is one included in the TCR for
1979–2010, not in the TCOD for 1985–2010, and in the NHIRD 2000–
2010. Supplementary Table S2A presents the age- and sex-specific
numbers of cancer survivors. Supplementary Table S2B reports the
number of cancer survivors whose diagnoses were in the years between
1979 and 1988. Supplementary Table S2B suggests that the underes-
timation of cancer prevalence due to diagnoses before 1979 is likely
minimal.

Cases in the GELAC were Han Chinese aged 18 or older with
incident lung cancer diagnosed during 2000–2015 in Taiwan. No
limitations on sex, smoking status, histology, or stage were imposed.
The controls in the GELAC study were recruited from the health
examination centers. The GELAC has been used to study lung cancer
in never-smoking females and ever-smokers (10, 32, 33, 45). Supple-
mentary Materials and Methods provides more information.

The LCPG recruited from health records late-stage lung cancer
patients for whom epidermal growth factor receptor mutation statuses
were available during 2015–2017 (10). More information about the
LCPG is provided in Supplementary Materials and Methods. The
structured questionnaires were administered to theGELAC and LCPG
participants.

This study was approved by the institutional review board of the
National Health Research Institutes in Taiwan (RRID: SCR_000335)
and conforms to the Declaration of Helsinki provisions. All the
datasets used in this study were provided to us after deidentification
except GELAC and LCPG. All study subjects in the GELAC and LCPG

provided signed informed consent prior to the commencement of this
study.

Data availability
The linkage of TCR, TCOD, and NHIRD can be performed and

used for research upon approval of the Data Science Center, MOHW,
Taiwan. The Taiwan Biobank dataset can be used for research upon
approval of the Taiwan Biobank (https://taiwanview.twbiobank.org.
tw/index). ASBS can be freely downloaded from theHealth Promotion
Administration, MOHW, Taiwan. Age-, year- and sex-specific pop-
ulation sizes can be freely downloaded from MBIS, Ministry of
Interior, Taiwan. The use of datasets for the GELAC and LCPG studies
need the approval of the NHRI IRB.

Results
the AMCCSE and SPES2010 datasets and other summary
statistics

Using the Taiwan Biobank, GELAC, and LCPG, we followed the
procedures in Fig. 1A to form the AMCCSE. Using the MBIS, ASBS,
TCR, TCOD, and NHIRD, we followed the procedures in Fig. 1B to
form the SPES2010. Table 1 presents the characteristics of the
AMCCSE and SPES2010, in view of the risk factors in the PLCOM2012

model. Supplementary Table S5 presents the smoking-related char-
acteristics of these data sources. Table 1 shows that for these risk
factors, their distributions among the AMCCSE cases were different
from those among the controls, confirming that these were indeed risk
factors for lung cancer among the ever-smokers in Taiwan. The
characteristics of the SPES2010 shows that there were approximately
1,562,798 cancer-free ever-smokers aged 50 to 74 in Taiwan, and
among them, more than 94% were males. These cancer-free ever-
smokers accounted for approximately 27% of the Taiwanese popula-
tion aged 50 to 74, which was approximately 5,765,938, according to
Supplementary Table S5C. A comparison of Table 1 with the Sup-
plementary Table S6 in Chien and colleagues (10) suggests that COPD
and family history of lung cancer were more prevalent among ever-
smokers than those among never-smoking females.

It follows from Supplementary Table S4B that among those aged 50
to 74 at the beginning of 2011, the number of ever-smoking patients
with lung cancer diagnosed in 2011–2016 (NESLP2011) was estimated
to be 17,374. Combinedwith the age-specific cancer-free ever-smokers
at the end of 2010 reported in Supplementary Table S3C, we report in
Supplementary Table S4C the ASSIRE.

Supplementary Table S5A indicates that, according to the TCRLF
dataset, approximately 45% of the patients with lung cancer in Taiwan
were ever-smokers (46); that only 36% in the GELAC and LCPG
studies were ever-smokers probably reflects their recruitment criteria.
The difference in the age and sex distribution reported in Supplemen-
tary Table S6 and Supplementary Table S5A suggests that some
selection bias exists in the Taiwan Biobank.

The Taiwan adapted PLCOT models
By requiring that NESLP2011, being 17,374, equals the estimated

total risk of individuals in SPES2010, we obtained the adapted model
PLCOT-1, whose beta coefficients were the same as those of
PLCOM2012 except for the intercept.Table 2presents these coefficients.

By fitting a logistic regression model with the intercept-age factor
and the non–intercept-age factor defined by PLCOM2012 to the
AMCCSE, we first obtained the OR 0.514 for the non–intercept-age
risk factor; given this, we obtained the OR 0.859 for the intercept-
age factor by requiring that NESLP2011, being 17,374, equals the

Chien et al.
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Table 1. Characteristics of the AMCCSE and the SPES2010.

AMCCSE
Variablea Case (n ¼ 798) Control (n ¼ 3,508) OR P SPES2010 (n ¼ 1,562,798)

Age 62.45 (7.07) 61.07 (6.40) 58.47 (6.66)
Gender 0.91 4.8E-01

Female 72 (9.02) 317 (9.04) 91,226 (5.84)
Male 726 (90.98) 3,191 (90.96) 1,471,572 (94.16)

BMI 24.09 (3.50) 25.29 (3.32) 0.90 1.5E-16 25.43 (3.34)
Educationb 0.57 4.1E-61

Level 1 534 (66.92) 859 (24.49) 260,937 (16.70)
Level 2 163 (20.43) 1,142 (32.55) 525,214 (33.61)
Level 3 0 (0) 0 (0) 0 (0)
Level 4 0 (0) 0 (0) 0 (0)
Level 5 93 (11.65) 1,326 (37.80) 663,790 (42.47)
Level 6 8 (1.00) 181 (5.16) 112,857 (7.22)

COPD 1.55 4.4E-02
No 765 (95.86) 3,431 (97.81) 1,526,156 (97.66)
Yes 33 (4.14) 77 (2.19) 36,642 (2.34)

Family history 2.23 3.8E-11
No 677 (84.84) 3,238 (92.30) 1,428,700 (91.42)
Yes 121 (15.16) 270 (7.70) 134,098 (8.58)

Smoking status 1.27 4.3E-03
Current 332 (41.60) 1,324 (37.74) 581,406 (37.20)
Former 466 (58.40) 2,184 (62.26) 981,392 (62.80)

Duration of smoking 37.19 (12.19) 23.98 (15.24) 1.07 2.4E-68 22.33 (14.66)
Smoking intensityc 25.90 (15.21) 17.90 (13.97) 1.03 5.5E-39 17.45 (13.84)
Smoking quit time 4.15 (8.28) 9.92 (12.01) 0.94 3.9E-36 10.17 (11.93)

aAge, BMI, duration of smoking, smoking intensity, and smoking quit time are summarized inmean (sd); gender, education, COPD, family history, and smoking status
are summarized in no. (%).
bEducation was measured in six ordinal levels: less than high-school graduate (1), high-school graduate (2), some training after high school (3), some college (4),
college graduate (5), and postgraduate or professional degree (6).
cSmoking intensity (the average number of cigarettes smoked per day).

Table 2. The coefficients of the linear predictor for the PLCOT risk modelsa.

PLCOT-1 PLCOT-2
Variable Beta coefficient OR Beta coefficient OR

Constant �3.83644550 �3.89173311
Ageb 0.07788680 1.081 0.06687573 1.069
Asian �0.46658500 0.627 �0.23984514 0.787
Educationb,c �0.08127440 0.922 �0.04177860 0.959
BMIb �0.02741940 0.973 �0.01409477 0.986
COPD 0.35530630 1.427 0.18264301 1.200
Personal history of cancer 0.45899710 1.582 0.23594462 1.266
Family history of cancer 0.58718500 1.799 0.30183882 1.352
Smoking status 0.25974310 1.297 0.13351934 1.143
Duration of smokingb 0.03173210 1.032 0.01631169 1.016
Smoking intensityd �1.82260600 �0.93689935
Smoking quit timeb �0.03085720 0.97 �0.01586195 0.984

aThe PLCOT risk is computed in the same way as the PLCOM2012 risk except using different beta coefficients. Supplementary Materials and Methods Text S5 provide
the details. Briefly, for categorical variables, multiply the variable or the level beta coefficient of the variable by 1 if the factor is present and by 0 if it is absent. For
continuous variables other than smoking intensity, subtract the centering value from the person’s value and multiply the difference by the beta coefficient of the
variable. For smoking intensity, calculate the contribution of the variable to the model by dividing by 10, exponentiating by the power�1, centering by subtracting
0.4021541613, andmultiplying this number by the beta coefficient of the variable. Add together all the previously calculated beta-coefficient products and themodel
constant. This sum is called the linear predictor of PLCOT, LPPLCOT. The risk is eLPPLCOT/1þeLPPLCOT.
bAge was centered on 62 years, education on level 4, BMI on 27, duration of smoking on 27 years, and smoking quit time on 10 years.
cEducation was measured in six ordinal levels: less than high-school graduate (1), high-school graduate (2), some training after high school (3), some college (4),
college graduate (5), and postgraduate or professional degree (6).
dSmoking intensity (the average number of cigarettes smoked per day) had a nonlinear association with lung cancer, and this variable was transformed. See
Supplementary Materials and Methods Text S5.
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estimated total risk of individuals in SPES2010. This resulted in the
adapted PLCOT-2model.Table 2 also includes the beta coefficients of
PLCOT-2. TheORof the non–intercept-age factor had 95%CI (0.443–
0.585). Details are in Supplementary Materials and Methods Text S5.

Performance of the PLCOT models
The AUC for PLCOT-1 was 0.7776, and the bootstrapping opti-

mism-corrected AUC of PLCOT-2 was 0.7549, and its apparent AUC
was 0.7553.

Table 3 evaluates the PLCOT models using SPES2010 and
NESLP2011. It reports the calibration assessment for both PLCOT-
1 and PLCOT-2 on subgroups defined by 40–10, 30–15, USPSTF21,
and NELSON and shows that PLCOT-1 had excellent subgroup
calibration and that PLCOT-2 had good calibration.

For each of the PLCOT models, Table 3 also compares the sensi-
tivity, specificity, PPV, and NPV of the four simplified LDCT lung
cancer screening criteria with those of the four PLCOT risk-based
criteria selecting the same number of individuals for screening. They

Table 3. Calibration of the PLCOT models on 4 subgroups of SPES2010 defined by age and smoking experience; clinical usefulness of
these 4 simplified LDCT lung cancer screening criteria and that of the 4 PLCOT risk-based criteria selecting the same numbers of
SPES2010 as these 4 simplified criteria.

Calibration Assessment

40–10a 30–15a USPSTF21b NELSONc

PLCOT-1 Predicted 6,730 10,470 12,870 12,094
Observed 8,167 11,245 13,801 12,750
Observed/Predicted 1.21 1.07 1.07 1.05

PLCOT-2 Predicted 4,471 7,708 10,194 9,527
Observed 8,167 11,245 13,801 12,750
Observed/Predicted 1.83 1.46 1.35 1.34

Sensitivity, Specificity, PPV and NPV

PLCOT-1 PLCOT-2

Criteria
With cancer
(N ¼ 17,374)

No cancer
(N ¼ 1,545,424) Predictivity Criteria

With cancer
(N ¼ 17,374)

No cancer
(N ¼ 1,545,424) Predictivity

40–10a 40–10a

Positive 6,730 158,631 PPV, 4.1% Positive 4,471 160,890 PPV, 2.7%
Negative 10,644 1,386,793 NPV, 99.2% Negative 12,903 1,384,534 NPV, 99.1%

Sen.d, 38.7% 1-Spe.e, 10.3% Sen.d, 25.7% 1-Spe.e, 10.4%
PLCOT PLCOT
≥0.0266 8,193 157,168 PPV, 5.0% ≥0.0231 5,734 159,627 PPV, 3.5%
<0.0266 9,181 1,388,256 NPV, 99.3% <0.0231 11,640 1,385,797 NPV, 99.2%

Sen.d, 47.2% 1-Spe.e, 10.2% Sen.d, 33.0% 1-Spe.e, 10.3%
30–15a 30–15a

Positive 10,470 342,493 PPV, 3.0% Positive 7,708 345,255 PPV, 2.2%
Negative 6,904 1,202,931 NPV, 99.4% Negative 9,666 1,200,169 NPV, 99.2%

Sen.d, 60.3% 1-Spe.e, 22.2% Sen.d, 44.4% 1-Spe.e, 22.3%
PLCOT PLCOT
≥0.0150 11,912 341,051 PPV, 3.4% ≥0.0158 9,280 343,683 PPV, 2.6%
<0.0150 5,462 1,204,373 NPV, 99.5% <0.0158 8,094 1,201,741 NPV, 99.3%

Sen.d, 68.6% 1-Spe.e, 22.1% Sen.d, 53.4% 1-Spe.e, 22.2%
NELSONb NELSONb

Positive 12,094 491,102 PPV, 2.4% Positive 9,527 493,669 PPV, 1.9%
Negative 5,280 1,054,322 NPV, 99.5% Negative 7,847 1,051,755 NPV, 99.3%

Sen.d, 69.6% 1-Spe.e, 31.8% Sen.d, 54.8% 1-Spe.e, 31.9%
PLCOT PLCOT
≥0.0106 13,811 489,385 PPV, 2.7% ≥0.0127 11,397 491,799 PPV, 2.3%
<0.0106 3,563 1,056,039 NPV, 99.7% <0.0127 5,977 1,053,625 NPV, 99.4%

Sen.d, 79.5% 1-Spe.e, 31.7% Sen.d, 65.6% 1-Spe.e, 31.8%
USPSTF21c USPSTF21c

Positive 12,870 505,369 PPV, 2.5% Positive 10,194 508,045 PPV, 2.0%
Negative 4,504 1,040,055 NPV, 99.6% Negative 7,180 1,037,379 NPV, 99.3%

Sen.d, 74.1% 1-Spee., 32.7% Sen.d, 58.7% 1-Spe.e, 32.9%
PLCOT PLCOT
≥0.0102 13,968 504,271 PPV, 2.7% ≥0.0124 11,585 506,654 PPV, 2.2%
<0.0102 3,406 1,041,153 NPV, 99.7% <0.0124 5,789 1,038,770 NPV, 99.4%

Sen.d, 80.4% 1-Spe.e, 32.6% Sen.d, 66.7% 1-Spe.e, 32.8%

a40–10 means having smoked 40 pack-years and smoked in the past 10 years; 30–15 means having smoked 30 pack-years and smoked in the past 15 years.
bUSPSTF21 restricted to SPES2010 means having smoked 20 pack-years and smoked in the past 15 years.
cOne met this criterion if one was aged 50 to 74, smoked at least 10 cigarettes per day for at least 30 years or 15 cigarettes per day for at least 25 years, and smoked
within the past 10 years.
dSen. ¼ Sensitivity.
e1-Spe. ¼ 1-specificity.
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show that the corresponding PLCOT risk-based criteria performed
better than their simplified criteria counterparts in terms of these
measurements. Consider USPSTF21, for example. A total of 518,239
(33.1%) individuals among all the 1,562,798 individuals in the
SPES2010 satisfied the USPSTF21 criteria. The PLCOT-2 risk thresh-
old 0.0124 would select the same number of individuals from
SPES2010. The latter had a sensitivity of 66.7% and a PPV of 2.2%,
while the former had a sensitivity of 58.7% and a PPV of 2.0%. Thus,
the PLCOTmodel risk-based criteria would have potentially identified
approximately 8% more cancers than the USPSTF21 criteria if the
same number of individuals had been selected for screening.

To help communicate sensitivity and PPV, we present in Sup-
plementary Figures S1 and S2 the Lorenz curves for the PLCOT-
based risk distribution on the SPES2010, which plot predicted total
lung cancer incidence against the number of individuals at highest
risk (6).

Figure 2 presents the densities of risk among subgroups of
SPES2010 by smoking levels, Figs. 2A and B regarding pack-years
smoked and Figs. 2C and D regarding quit time. While Fig. 2 shows
that both PLCOTmodels vary with smoking experiences, they suggest
that PLCOT-1 risks vary more, in line with the fact that the OR of the
non–intercept-age factor is less than 1. Indeed, for PLCOT-2, themean
6-year risk was 2.7% for those who smoked 40þ pack-years, 1.7%
between 30 and 40 pack-years, 1.5% between 20 and 30 pack-years,
0.6% less than 20 pack-years and the corresponding mean risks for

PLCOT-1 were 3.8%, 2.0%, 1.4%, and 0.3%, respectively. Similar
results hold for quit time.

For the clinically relevant 6-year lung cancer risk threshold of
0.0151 (35), Fig. 2A and B show that the vast majority of those who
smoked 40þ pack-years had risks higher than 0.0151 and very few of
those who smoked less than 20 pack-years had risks above this
threshold. Figure 2C and D suggest that the proportion of high-
risk individuals decreased persistently with the number of cessation
years.

Figure 3 presents studies about smoking cessation effects on lung
cancer risk. Figure 3A andB compare the densities of the PLCOT risks
of lung cancer among 60-year-old current smokers in the SPES2010
who had smoked more than 10 years with more than 20 cigarettes per
day with those of the same people if they had quit smoking when they
were 50 years of age. Figure 3C andD compare the age-specific means
of PLCOT risk of lung cancer for each age from 50 to 74 among the 50-
year-old current smokers in SPES2010 who smoked at least 20
cigarettes per day with those among the same people if they had quit
smoking at age 50. Figure 3A and B suggest a great risk reduction in
terms of the 0.0151 threshold. Indeed, nearly no one had risks less than
the threshold for eithermodel; however, if they had quit smoking at 50,
then 64% (55%) of them had risk less than 0.0151 under PLCOT-1
(PLCOT-2). Figure 3C andD suggest that the reduction in lung cancer
risk increased considerably with quitting time, with PLCOT-1 report-
ing a much larger reduction.

Figure 2.

The distributions of PLCOT-1 risks (A)
and PLCOT-2 risks (B) in SPES2010
according to smoking pack-year, and
the distribution of PLCOT-1 risks (C)
and PLCOT-2 risks (D) in SPES2010
according to smoking quit time.
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Discussion
This paper presented methods for adapting risk prediction

models without prospective cohorts. Having formed an AMCCSE,
estimated the number of ever-smoking lung cancer patients in
2011–2016, and prepared the dataset resembling the population
of cancer-free ever-smokers at the end of 2010, we exemplified the
methods by adapting the PLCOM2012 model for Taiwan use. The
PLCOT-1 model had an AUC of 0.78 and excellent performance in
terms of subgroup calibration and clinical usefulness. The PLCOT-2
model had a bootstrapping optimism-corrected AUC of 0.75 and
quite good performance in terms of subgroup calibration and
clinical usefulness. Using these models, we reported risk distribu-
tions according to smoking exposure levels and described the effects
of smoking cessation on risk reduction. To the best of our knowl-
edge, the PLCOT models represent the first attempts to recalibrate
or validate the PLCOM2012 model in Asia.

In line with the literature that risk model updating methods
range from simply updating the intercept to reestimating for each
risk factor (5, 6), we synthesized datasets so that we could conduct
updating at roughly three levels of sophistication. At the basic level,
Approach 1 used SPES2010 and NESLP2011 to modify only the
intercept to handle the calibration-in-the-large problem, resulting
in PLCOT-1. At the second level, Approach 2 used the additional
dataset AMCCSE to consider both the overall calibration slope and

calibration-in-the-large problem, resulting in PLCOT-2. At the next
level, we could replace the calibration slope step in Approach 2 by
reestimating the effect of each risk factor other than the intercept
and age, using the same AMCCSE. Following the approach in Chien
and colleagues (10), we could also replace the calibration-in-the-
large step in Approach 2 by reestimating the age effect and intercept
using the age-specific 6-year lung cancer incidence rates among
cancer-free ever-smokers, reported in Supplementary Table S4C.
However, extensive model revision requires larger datasets in
general. Indeed, we considered several such extensive model revi-
sions and found poor subgroup calibration.

Although PLCOT-1 performed a little better than PLCOT-2 in
terms of discrimination, subgroup calibration, sensitivity, specificity,
PPV, and NPV, we presented both models in this paper because we
intended to exemplify themethodologymore fully, andwe think future
studies using prospective cohorts would give more conclusive com-
parisons. Indeed, we expect to conduct a validation study when more
follow-up data are collected prospectively from the Taiwan Biobank.
Because the cases used in adapting the PLCOT models do not overlap
with the cases to be developed in the Taiwan Biobank and because the
Taiwan Biobank has a large dataset, we could use datasets nonover-
lapping with those used for adaptation to give an independent
validation study and obtain a more conclusive comparison of
PLCOT-1 and PLCOT-2; in particular, we will pay attention to the

Figure 3.

The distributions of PLCOT-1 (A) risks
and PLCOT-2 risks (B) of lung cancer
among SPES2010 current smokers
who were 60-year-old and had
smokedmore than 10 years with aver-
age number cigarettes smoked per
day more than 20 (solid lines) and
those among the same people if they
had quit smoking when they were
50 years of age (dashed lines). The
age-specific means of PLCOT-1 risks
(C) and PLCOT-2 risks (D) of lung
cancer for each age from 50 to 74
among the 50-year-old current smo-
kers in SPES2010who smoked at least
20 cigarettes per day (solid lines) and
those among the same people if they
had quit smoking at age 50 (dashed
lines).
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calibration and discrimination around or above the risk thresholds
relevant to the LDCT lung cancer screening thresholds. Note that only
6 ever-smokers aged 50 to 74 in the Taiwan Biobank developed lung
cancer based on the current follow-up dataset.

Because the smoking rate among males has been decreasing in
Taiwan, especially since the 2009 implementation of the Tobacco
Hazards Prevention Act (47), constantly updating risk models involv-
ing smoking exposure is especially desirable.

This study takes advantage of datasets and information from
multiple sources in Taiwan, which have been shown to be valuable
research resources. A particular strength of this study is that the TCR
from 2011 to 2016 provided smoking status information on approx-
imately 83% of the lung cancer patients in the TCR and that among the
ever-smokers, 82% had their number of pack-years smoked and quit
time available; see Tables S4A and S5A.

This paper considered an age-matched case–control study because
the GELAC was initially a frequency matched design. However, it
seems possible to extend the current methods to the situation where
cases and controls are independently sampled from their respective
populations.

The methods described in this paper could adapt other well-studied
absolute risk models for different populations, which would help
alleviate healthdisparities due to the lackof risk predictionmodels (15).
For example, the Gail model for breast cancer among Asian American
females (1, 8, 48), lung cancer risk models studied in Ten Haaf and
colleagues (21) and Katki and colleagues (22), and more recent breast
and lung cancer risk models that incorporated polygenic risk
scores (29, 49) could be validated or adapted for Taiwan use following
the same methods of this paper.

Although this paper provided information useful for designing lung
cancer screening programs in Taiwan, it implicitly assumed the
efficacy reported in the US National Lung Screening Trial that a
reduction of 20% in lung cancer mortality was observed in the LDCT
screening arm (50). Eventually, an efficacy study of LDCT screening in
Taiwan is desirable, and the results of this papermight be useful in such
a study.

This paper presented methodologies for recalibrating or adapting
risk models by synthesizing data sources without prospective
cohorts and offered preliminary information useful for policy-
making on designing lung cancer screening programs in Taiwan.
Further studies regarding implementation, such as cost-effective-
ness, are warranted.
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