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Clinical trials of treatments for coronavirus disease 2019 (COVID-
19) draw intense public attention. More than ever, valid, trans-
parent, and intuitive summaries of the treatment effects, includ-
ing efficacy and harm, are needed. In recently published and
ongoing randomized comparative trials evaluating treatments
for COVID-19, time to a positive outcome, such as recovery or
improvement, has repeatedly been used as either the primary or
key secondary end point. Because patients may die before re-
covery or improvement, data analysis of this end point faces a
competing risk problem. Commonly used survival analysis tech-
niques, such as the Kaplan–Meier method, often are not appro-
priate for such situations. Moreover, almost all trials have quan-
tified treatment effects by using the hazard ratio, which is difficult
to interpret for a positive event, especially in the presence of

competing risks. Using 2 recent trials evaluating treatments (rem-
desivir and convalescent plasma) for COVID-19 as examples, a
valid, well-established yet underused procedure is presented for
estimating the cumulative recovery or improvement rate curve
across the study period. Furthermore, an intuitive and clinically
interpretable summary of treatment efficacy based on this curve
is also proposed. Clinical investigators are encouraged to con-
sider applying these methods for quantifying treatment effects in
future studies of COVID-19.
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Several recent randomized, comparative trials of
treatments for coronavirus disease 2019 (COVID-

19) used time to a positive outcome, such as improve-
ment or recovery, as either the primary end point or a
key secondary end point (1–7). The Supplement Table
(in Part A of the Supplement, available at Annals.org)
provides detailed descriptions of the end points, effi-
cacy measures, and analysis results from several re-
cently published studies of COVID-19. This article dis-
cusses the issues and challenges that commonly arise
in the analysis of such trials, and using examples from 2
trials, presents well-established yet underused analytic
procedures that provide robust and clinically interpre-
table summaries of treatment efficacy.

EXAMPLES OF COMPARATIVE COVID-19
TRIALS
Example 1

ACTT-1 (Adaptive COVID-19 Treatment Trial) is an
ongoing double-blind, randomized, placebo-controlled
trial of remdesivir versus placebo in adults hospitalized
with COVID-19 who have evidence of lower respiratory
tract involvement (5). Patient health was closely monitored
across 28 days of follow-up and classified on an 8-
point ordinal scale (Part B of the Supplement, available at
Annals.org), with category 1 being the most favorable
outcome (discharge from hospital with no limitation of ac-
tivities) and category 8 being death. The primary end
point was time to recovery, defined as the first time dur-
ing the 28 days of follow-up the patient attained category
1, 2, or 3.

Example 2
Li and colleagues (7) conducted an open-label,

randomized, comparative trial of convalescent plasma
versus standard care among adults hospitalized with

confirmed COVID-19 and severe or life-threatening
symptoms. As in ACTT-1, patient health was closely
monitored across 28 days and classified on a 6-point
ordinal scale (Part C of the Supplement, available at
Annals.org), with category 1 being discharge from the
hospital and category 6 being death. The primary end
point was time to clinical improvement, defined as hos-
pital discharge or a 2-point reduction on the 6-point
disease severity scale.

RECOVERY AND DEATH AS COMPETING EVENTS
Figure 1 illustrates the 4 possible outcome patterns

for hypothetical patients in the remdesivir and conva-
lescent plasma trials. In case 1, the patient recovered
(or improved) on day 7 and had a postrecovery time
span of 21 days. In case 2, the patient died on day 14
without recovery. Both trials assigned such patients an
arbitrary recovery time that was censored at the end of
follow-up. In fact, the recovery times of patients who
have died could not be defined or estimated. By con-
trast, the postrecovery time span for these patients is
well-defined as 0 days. In case 3, the patient was alive
but had not recovered by day 21. Time to recovery was
censored, for example, because of the patient's late en-
try into the trial; the postrecovery time span would be
less than 7 days. In case 4, the patient survived the 28
days of follow-up without recovery, and the postrecov-
ery time span was 0 days.

In the remdesivir and convalescent plasma studies,
the death of a patient before the end of the study pre-

See also:

Web-Only
Supplement

Annals of Internal Medicine RESEARCH AND REPORTING METHODS

Annals.org Annals of Internal Medicine © 2020 American College of Physicians 1

http://www.annals.org
http://www.annals.org
http://www.annals.org
http://www.annals.org
http://www.annals.org
http://www.annals.org


vents us from observing recovery or improvement. Be-
cause death is a negative outcome, whereas recovery
or improvement is positive, the standard technique of
defining a composite end point, such as the time to
recovery or improvement or the time to death, is not
applicable. Moreover, because the potential death and
recovery times of each patient are probably correlated,
standard survival analysis methods that treat death as
independent censoring are not appropriate.

ESTIMATING THE CUMULATIVE RECOVERY

RATE OVER TIME FOR ACTT-1 AND THE

CONVALESCENT PLASMA STUDY
Example 1: ACTT-1

In ACTT-1 (5), 538 patients were assigned to rem-
desivir and 521 to placebo. Respectively, 334 and 273
patients recovered and 132 and 169 observations were
censored, as in case 3. By day 15, 33 and 55 patients in
the remdesivir and placebo groups, respectively, had

died. Figure S3 of the original paper depicts the overall
survival curves through day 29.

To further explore the reported analysis (8), we
scanned the cumulative recovery curves in Figure 2A
and the overall survival curves in Figure S3 of the orig-
inal ACTT-1 article to recreate the individual patient-
level observations that we present in our Figure 1. The
details of this reconstruction procedure are given in
Part D of the Supplement (available at Annals.org). For
the original analysis, the authors assigned a censored
recovery time of 29 days to patients who died before
recovery and applied the standard Kaplan–Meier
method for estimating the time to recovery. Using the
reconstructed data, our Figure 2 presents 1 minus the
Kaplan–Meier curves constructed via the method used
in ACTT-1, which are almost identical to those reported
in Figure 2A of the original article (5). In the presence of
death as a competing risk and censored observations
before day 28, the Kaplan–Meier curve does not pro-
vide a valid estimate of the proportion of patients who
survived and recovered by each time point (9–12). In
ACTT-1, 301 cases (132 + 169) were censored before
day 28 at the interim analysis.

The strategy adopted by ACTT-1 investigators for
managing death as a competing risk is unusual. The
more common—although controversial—approach is to
apply Kaplan–Meier while using the cause-specific haz-
ard argument to treat the recovery times of patients
who have died as being independently censored. Un-
fortunately, in such competing risk approaches, the cor-
responding Kaplan–Meier curve cannot be used to es-
timate the cumulative recovery rate curve (13, 14).

A valid and interpretable procedure for analyzing
data from such studies is to construct cumulative inci-
dence curves, rather than Kaplan–Meier curves, for es-
timating the proportion of surviving patients whose re-
covery time is less than any specific time point (9–12).
Using the reconstructed patient-level time-to-event
data, we were able to estimate the cumulative inci-
dence curves for time to recovery for remdesivir and
placebo (Figure 3, A). For example, among patients re-

Figure 1. Possible patterns for time to recovery for ACTT-1
(Adaptive COVID-19 Treatment Trial) and the study by Li
and colleagues (7).
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Figure 2. Kaplan–Meier curves for the cumulative proportion of patients recovered, obtained by using reconstructed data
from Beigel and colleagues (5).
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ceiving remdesivir, 60% survived and recovered within
15 days, whereas in the placebo group, only 50% of
patients survived and recovered. The curve for remde-
sivir is higher than that for placebo over the entire 28
days, indicating that the patients receiving remdesivir
tended to recover faster than those receiving placebo.
Note that for ACTT-1, except for the tails, the cumula-
tive incidence curves in Figure 3, A, are quite similar to
the Kaplan–Meier curves from the original study; thus,
the study's conclusion remains valid. The next section
discusses when the Kaplan–Meier method used by
ACTT-1 can be seriously biased.

Example 2: Convalescent Plasma Study
The study by Li and colleagues (7) also faced the

issue of death as a competing risk. In this study, 52
patients were randomly assigned to receive convales-
cent plasma and 51 patients to receive standard care.
For convalescent plasma and standard care, respec-
tively, 27 and 22 patients recovered whereas 8 and 12
died. Using reconstructed data from the authors' re-
ported Figures 2A and e2 (7), the cumulative incidence
curves are presented in Supplement Figure 1 (Part E of
the Supplement, available at Annals.org). Among pa-
tients receiving convalescent plasma, 53% had survived
and improved by day 28, compared with 42% of pa-
tients in the standard care group. The difference was
11 percentage points (95% CI, �9 to 29 percentage
points; P = 0.27).

KAPLAN–MEIER ANALYSIS CAN BE SERIOUSLY

BIASED
We conducted a numerical study to investigate

when the Kaplan–Meier method used by ACTT-1 and Li
and colleagues (7) may have serious issues estimating
the cumulative rate of recovery or improvement. The
Kaplan–Meier curve may be severely biased if the mor-
tality and censoring rates are elevated during follow-
up. The details are in Part F of the Supplement (avail-
able at Annals.org). Because the 2 studies discussed
here had relatively low mortality and censoring rates,
the bias was not severe. However, for studies with pa-
tients at elevated risk—for instance, those with acute re-
spiratory distress syndrome—the short-term mortality
rate may exceed 30%. In future studies, in which
follow-up may extend well beyond 28 days, one may
expect more censored observations, especially at the
interim analysis, accentuating the risk of severe bias.
Moreover, those studies may define a more stringent
primary outcome, such as “complete recovery,” in con-
trast to “discharged from hospital,” which may include
patients who have sustained irreversible physical or
mental damage. Defining a more demanding desirable
outcome may decrease the rate of complete recovery,
whereas expanding the scope of the undesirable com-
peting outcome may increase the rate of the compet-
ing event. As demonstrated via the numerical study re-
ported in Part F of the Supplement, the Kaplan–Meier

Figure 3. Cumulative incidence curves (A) and mean postrecovery times (B and C).
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A. Cumulative incidence curves from ACTT-1 (Adaptive COVID-19 Treatment Trial) for the proportion of patients recovered, treating death 
as a competing risk and depicting days corresponding to the median recovery. B and C. Mean time in recovery, as the area under the 
cumulative incidence curve, across the 28 days of study follow-up.
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estimate of the cumulative recovery curve applied by
the aforementioned studies may be severely biased un-
der these situations. In any event, to avoid any potential
bias, a valid method for estimating the recovery or im-
provement rate curve is strongly recommended.

SUMMARIZING CUMULATIVE RECOVERY

CURVES: ALTERNATIVES TO THE HAZARD

RATIO FOR TIME TO RECOVERY
ACTT-1 assessed the comparative efficacy of rem-

desivir versus placebo by using the hazard ratio (1.32
[CI, 1.12 to 1.55]; P < 0.001). However, a 32% increase
in the “hazard” of recovery from remdesivir is difficult to
interpret, because unlike “risk,” hazard is not a proba-
bility measure; that is, patients receiving remdesivir
were not 32% more likely to recover than patients re-
ceiving placebo. With competing risks, the validity and
interpretability of the hazard ratio become even more
questionable (10, 11). Moreover, without a reference
hazard curve from the placebo group, the hazard ratio
by itself cannot assess the clinical utility of remdesivir.

Using the cumulative incidence curve (Figure 3, A)
for recovery, we can quantify the between-group differ-
ence by using summary measures that are more robust
and interpretable than the hazard ratio. Standard
choices include the median time to recovery, as well as
the cumulative recovery rate at a specific time point.
From Figure 3, A, the median recovery times were 11
and 15 days, respectively, for remdesivir and placebo.
The difference was 4 days (CI, 1.0 to 7.0 days; P = 0.003).
However, the precision of a median estimate is often quite
low, as reflected by the wide CI. Moreover, if the recovery
rate on day 28 was less than 50%, then the median recov-
ery time cannot be empirically estimated.

The cumulative recovery rate on day 28 is also a
reasonable summary if the time to recovery during the
study is not of primary interest. Estimates for these rates
correspond to the vertical distance from the x-axis to
the cumulative incidence curves in Figure 3, A. In the
present case, these were 74% and 70%, respectively,
for remdesivir and placebo. The difference is 4.7 per-
centage points (CI, �2.8 to 11.6 percentage points; P =
0.20). Thus, whether remdesivir was superior to pla-
cebo with respect to the cumulative recovery rate on
day 28 is inconclusive.

An alternative summary of the cumulative recovery
rate over time is the area under the cumulative inci-
dence curve up to 28 days. Intuitively, the larger the
area, the better the therapy. In Figure 3, B and C, we
present these areas of 11.9 and 14.1 days for the rem-
desivir and placebo groups, respectively. The clinical
interpretation is informative; the area under the cumu-
lative recovery curve is the average postrecovery time
that study patients spent, as displayed for hypothetical
patients on the right-hand side of Figure 1. Therefore,
across the 28 days of follow-up, patients receiving rem-
desivir spent 14.1 postrecovery days, on average,
whereas patients receiving placebo spent only 11.9
days. The difference of 2.2 days (CI, 0.89 to 3.52 days;

P < 0.001) favors remdesivir. Zhao and colleagues (12)
recently presented a similarly intuitive summary mea-
sure for cardiovascular clinical studies in the presence
of competing risks.

For the study by Li and colleagues (7), the hazard
ratio for time to improvement was 1.40 (CI, 0.79 to
2.49; P = 0.26). Across the 28 days of follow-up, the
area under the cumulative incidence curve (Supple-
ment Figure 1) was 7.4 days for convalescent plasma
and 5.2 days for standard care, for a difference of 2.2
days (CI, �0.96 to 5.2 days; P = 0.17). That is, across the
28 days of follow-up, patients receiving convalescent
plasma spent 2.2 more postimprovement days, on av-
erage, than patients receiving standard care.

SURVIVAL ANALYSIS VIA THE MEAN SURVIVAL

TIME ACROSS THE STUDY PERIOD
For the standard overall survival time in these ex-

amples, competing risks are not present and the stan-
dard Kaplan–Meier curves are appropriate. For overall
survival, as for recovery, the higher the curve, the better
the treatment. Thus, the area under the overall survival
curve also provides a summary of treatment efficacy. In
fact, the area under the Kaplan–Meier curve across a
specific time window is the restricted mean survival
time, which has been discussed extensively in the liter-
ature (15–18). For ACTT-1, by using reconstructed data
from Figure S3 in the original paper (5), the 28-day re-
stricted mean survival times were 26.1 days for remde-
sivir and 25.3 days for placebo (Supplement Figure 3 in
Part G of the Supplement, available at Annals.org). The
difference was 0.76 days (CI, �0.09 to 1.61 days; P =
0.079). That is, across the 28 days of follow-up, patients
receiving remdesivir survived 0.76 days longer, on av-
erage, than those receiving placebo. These summaries
are much easier to contextualize than the correspond-
ing hazard ratio of 0.70 (CI, 0.47 to 1.04; P = 0.07). The
overall survival rates on day 28 were 88% and 85% for
remdesivir and placebo, with a difference of 3.1 per-
centage points (CI, �2.2 to 8.3 percentage points; P =
0.25). For mortality, the 28-day rate difference is prob-
ably a better summary than either the hazard ratio or
the mean survival time difference, considering the short
follow-up.

For the study by Li and colleagues (7), the hazard
ratio for overall survival was 0.74 (CI, 0.30 to 1.84; P =
0.52), whereas the 28-day restricted mean survival
times were 25.5 days for convalescent plasma and 24.9
days for standard care, with a difference of 0.53 days
(CI, �1.9 to 3.0 days; P = 0.67). The day 28 mortality
rates were 83% and 69% for convalescent plasma and
standard care, respectively, with a difference of 13.9
percentage points (CI, �4.9 to 33 percentage points;
P = 0.15).

DISCUSSION
Most published and ongoing studies of COVID-19

that involve both recovery and death as outcomes have
applied analytic methods similar to those of the studies
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discussed here (Part A of the Supplement) (1, 4, 5, 7).
Accordingly, our proposal has potentially broad impli-
cations. Because time to recovery is not defined for pa-
tients who die before recovering, the mean time to re-
covery in the presence of death cannot be determined.
In ACTT-1 and the convalescent plasma trial, the inves-
tigators arbitrarily censored the time to recovery or im-
provement at the end of study follow-up. By contrast,
for a specific follow-up time, such as 28 days, the time
spent after recovery is always well-defined, as shown in
Figure 1, because a patient who has died does not
spend any postrecovery time. Naturally, a prespecified
time window, such as 28 days, is crucial for assessing
and interpreting treatment efficacy using this metric.
Future trials may extend the follow-up to gather more
information.

No single summary measure can capture all the in-
formation provided by the cumulative recovery curves
in Figure 3. On the other hand, an intuitive and clini-
cally meaningful summary is essential for designing
studies and making treatment selection decisions. Es-
pecially for COVID-19 trials, we need transparent and
unambiguous summaries of treatment efficacy that are
easily comprehended by practitioners, patients, and
regulatory agencies.

The choice of end point is also crucial for short-
term clinical studies in the critical care arena. For the
end point of recovery, one must consider whether hav-
ing recovered within a specific period, such as 28 days,
or the time to recovery is of primary clinical interest. For
COVID-19, both end points provide useful information
about the clinical utility of a new therapy. On the other
hand, for overall survival, it is not clear whether the
0.76-day difference in the time to death in ACTT-1 or
the 0.53-day difference in the convalescent plasma trial
is clinically informative. In this case, the mortality rate at
a specific time point across a longer follow-up may be
more relevant.

Some of the treatment trials listed in Part A of the
Supplement (4–7) applied a stratified Cox model to ad-
just for baseline factors, such as baseline disease sever-
ity. Generalizing the simple 2-sample procedure for es-
timating the difference in areas under the curve to
allow for several strata is straightforward (19). Specifi-
cally, we first estimate the treatment effect within each
stratum by calculating the difference in the areas under
the cumulative incidence curves. We then summarize
the overall treatment effect via the average of the afore-
mentioned stratum-specific differences, weighted by
the stratum sizes.

All our analyses were performed in the R statistical
computing environment (3.6.2; R Foundation for Statis-
tical Computing) (20). Kaplan–Meier curves were con-
structed by using the survival package (21), cumulative
incidence curves were estimated by using the cmprsk
package (22), and survival differences and restricted
mean survival time analyses were conducted by using
the surv2sampleComp package (23). We have made
software for analyzing the area under the cumulative
incidence curve publicly available (24).
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