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Is a spice missing from the recipe? The intra-cellular localization
of vanillin biosynthesis needs further investigations
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ABSTRACT

Vanillin is the most popular flavor compound in the world. Substantial effort were
made in the last decades to completely elucidate the metabolic pathway that leads to
vanillin in plants, with some controversy reported. In V. planifolia, vanillin biosyn-
thesis occurs in plastids or in redifferentiated-plastids termed ‘‘phenyloplasts’’. More
recently, it was shown that all enzymes required for the conversion of [14C]-
phenylalanine to [14C]-vanillin-glucoside are confined within that organelle. How-
ever, knowing that some of these enzymes are cytosolic or ER-membrane bound in
most plant species, it raises questions on the interpretation of data obtained from
the technique used and on the true localization of the biosynthetic enzymes in
V.planifolia. In addition, intense debate has emerged about the real participation of
last enzyme of the pathway involving vanillin synthase (VpVAN) in the direct con-
version of ferulic acid to vanillin. With the discovery of another enzyme capable of
this conversion and the lack of activity of VpVAN in vitro, further disagreement
emerged. One additional challenge to VpVAN being necessary and sufficient is that
the transcript for this protein is abundant invarious non-vanillin-producing tissues
of the vanilla plant. In this viewpoint, we discuss the findings surrounding the
cellular-localization and activity of enzymes of vanillin biosynthesis. This will help
to further understand the pathway and urge for additional research study to resolve
the debate.

INTRODUCTION

Vanilla extract is a complex mix of over 200 aromatic com-
pounds extracted from cured vanilla pods, from which vanillin
(4-hydroxy-3-methoxybenzaldehyde) is the major and most
popular flavour compound in the world (Sinha et al. 2008).
The main natural resource is obtained from the pods obtained
by cultivating vanilla orchids, mainly Vanilla 9 tahitienis,
V. pompona and V. planifolia, the last being the most cultivated
for commercial production because of its aromatic qualities
(Gallage & Møller 2018). Considerable efforts have been made
to completely elucidate the vanillin biosynthesis pathway in
V. planifolia, with some disagreement reported. However, it is
widely accepted that L-phenylalanine and hydroxycinnamic
acids (cinnamic, p-coumaric, caffeic and ferulic acids) are pre-
cursors of vanillin biosynthesis (Fig. 1a) (Negishi et al. 2009;
Gallage et al. 2018). However, there is still debate around the
identity of the final enzyme and the intracellular localization of
the metabolic pathway. Given its commercial importance,
vanillin biosynthesis needs to be resolved to provide a promis-
ing toolkit that synthetic biologists can use for alternative pro-
duction.

VANILLIN BIOSYNTHESIS

Several possible phenylpropanoid metabolic pathways (CoA-
dependent or not, b-oxidative or not) leading to vanillin have

been proposed. Pulse-chase experiments with 14C-labelled
compounds showed that the biosynthetic pathway for vanillin
is cinnamic acid ? 4-coumaric acid ? caffeic acid ? ferulic
acid ? vanillin in mature vanilla pods (Negishi et al. 2009). In
V. planifolia, vanillin biosynthesis occurs in plastids or ‘pheny-
loplasts’, which are differentiated plastids. It was reported
that all the enzymes required for the conversion of [14C]-
phenylalanine to [14C]-vanillin glucoside are confined within
that organelle (Gallage et al. 2018).
Vanillin biosynthesis starts from primary metabolism via

the amino acid L-phenylalanine (Fig. 1a). It is first converted
into cinnamic acid by phenylalanine ammonia lyase (PAL) and
then cinnamate 4-hydroxylase (C4H), a cytochrome P450-
dependent monooxygenase that catalyses hydroxylation to
form p-coumaric acid. Next, coumarate 3-hydroxylase (C3H)
[also known as p-coumaroyl (shikimate/quinate) 3-
hydroxylase] hydroxylates free p-coumaric acid or p-
coumaroyl residue at C3 to produce caffeic acid or caffeoyl
residue, respectively (Fig. 1a). Recently, a non-membrane
bound C3H enzyme (also known as bifunctional cytosolic
ascorbate peroxidase) catalysing the direct 3-hydroxylation of
p-coumaric acid to caffeic acid was characterized from Brachy-
podium distachyon and A. thaliana (Barros et al. 2019), but as
of yet has not been reported in V. planifolia. The CoA-
dependent non-b-oxidative pathway would act through the
enzymatic activities of 4-hydroxycinnamoyl-CoA ligase (4CL),
hydroxycinnamoyl transferase (HCT) and C3H to yield caffeic

Plant Biology 25 (2023) 3–7 © 2022 The Authors. Plant Biology published by John Wiley & Sons Ltd on behalf of German Society for Plant Sciences,

Royal Botanical Society of the Netherlands. 3
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and

distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Plant Biology ISSN 1435-8603

https://orcid.org/0000-0001-8808-877X
https://orcid.org/0000-0001-8808-877X
https://orcid.org/0000-0002-4355-5503
https://orcid.org/0000-0002-4355-5503
mailto:
http://creativecommons.org/licenses/by-nc-nd/4.0/


acid, which is methylated by caffeic acid O-methyl transferase
(COMT) to produce ferulic acid (Fig. 1a).
A CoA-independent, non-b-oxidative pathway has been pro-

posed, where hydroxycinnamic acid intermediates undergo lat-
eral chain shortening via a reverse aldol reaction, releasing
acetate and benzaldehyde. In V. planifolia, a 4-
hydroxybenzaldehyde synthase (HBS) has been purified and
shown to convert p-coumaric acid to 4-hydroxybenzaldehyde
and acetate (Podstolski et al. 2002).
Gallage et al. (2014) identified the last reaction involving the

conversion of ferulic acid to vanillin. The enzyme, named
vanillin synthase (VpVAN), belongs to the hydratase/lyase type
(Gallage et al. 2014). Even though a complete biosynthetic
pathway has been proposed for vanillin, there is still disagree-
ment around the catalytic activity of VpVAN. Indeed, Yang
et al. (2017) investigated the enzymatic activity of VpVAN in
heterologous organisms (Escherichia coli, Saccharomyces cere-
visiae, Medicago truncatula hairy roots, and Arabidopsis
thaliana seedlings) and repeated the in vitro transcrip-
tion/translation experiment that was first used to characterize

VpVAN, but were unable to confirm the activity of this enzyme
(Yang et al. 2017). The differences in the results might be
explained by the lack of codon optimizations in the systems
used and the use of less sensitive analytical equipment, as dis-
cussed by Gallage et al. (2018). Dixon (2018) suggested that
VpVAN may be part of a protein complex in which another
enzyme could assist in vanillin biosynthesis. This suggestion
would support the hypothesis that VpVAN alone may not be
sufficient to catalyse the conversion of ferulic acid into vanillin
(Yang et al. 2017). In light of the conflicting results, the debate
around VpVAN activity remains. In addition, a second enzyme,
named phenylpropanoid 2,3-dioxygenase (PPDiox), was
reported to catalyse cleavage of the ferulic acid side chain to
form vanillin in V. planifolia (Negishi & Negishi 2017).
Remarkably, it appears that proteins from two different protein
families can catalyse the same reaction.

Independent studies using heterologous systems support the
ability of VpVAN to convert ferulic acid into vanillin (Havkin-
Frenkel et al. 2006; Havkin-Frenkel & Podstolski 2007; Chee
et al. 2017; Arya et al. 2022). For example, Chee et al. (2017)

Fig. 1. Simplified biosynthetic pathway of vanillin and its potential intra-cellular localization. (a) Enzymes proposed by Gallage et al. (2014, 2018) to convert

vanillin from L-phenylalanine. (b) Schematic representation of proposed intra-cellular localization of enzymes involved in vanillin biosynthesis. The basis of the

diagram showing the continuity of chloroplast and ER membranes used freeze-fracturing techniques, � complementation and regulation of enzyme activities

(McLean et al. 1988; Mehrshahi et al. 2013). Overlapping black and green lines depict the two outer leaflets merging on each side. Full names of compounds

are provided in the text.
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expressed VpVAN in callus cultures of Capsicum frutescens
(where vanillin is naturally produced as a precursor of cap-
saicin biosynthesis) and reported an increase in vanillin accu-
mulation. Furthermore, metabolically engineered rice cell
cultures with VpVAN have been used as a plant-based alterna-
tive to microbial vanillin production systems (Arya et al.
2022). In this study, rice calli derived from embryonic rice cells
were engineered with a codon-optimized VpVAN gene using
Agrobacterium-mediated transformation. High-performance
liquid chromatography identified the biosynthesis of vanillin
in transgenic calli lines (Arya et al. 2022). Although neither
study directly investigates the catalytic activity of VpVAN, they
serve as proof-of-concept to confirm its involvement in vanillin
production.

THE CHLOROPLAST WAS REPORTED TO BE SUFFICIENT
TO CONVERT L-PHENYLALANINE INTO VANILLIN

In vanilla pods, vanillin is stored as vanillin glucoside in pheny-
loplasts (Brillouet et al. 2014) and using immunochemistry
and confocal micrsocopy, the enzyme VpVAN was also located
in chloroplasts (Gallage et al. 2018), thus making the conver-
sion site of vanillin the same as its storage site. Gallage and col-
leagues investigated whether chloroplasts contain the whole
vanillin biosynthesis pathway using a radioactive labelling tech-
nique. Intact chloroplasts from V. planifolia pods were isolated
using Percoll gradients, then incubated with the radiolabelled
precursor [14C]-phenylalanine, resulting in [14C]-vanillin glu-
coside production, which was detected using thin-layer chro-
matography. They concluded that all enzymes necessary to
convert L-phenylalanine into vanillin glucoside were present in
the chloroplast. In this investigation, intactness and purity of
the isolated chloroplasts were determined with light micro-
scopy; however, this method does not allow detection of co-
isolated fragments from other organelles.

It should be noted that few studies have reported presence of
enzymes of the phenylpropanoid pathway in chloroplasts,
including PAL and C4H (Saunders & McClure 1975), and
unidentified enzymes that can convert p-coumaric acid into
caffeic acid (Satô 1966). It was also reported that the major iso-
form of PAL extracted from spinach leaves was located outside
of the chloroplast, although two other isoforms were present
inside the chloroplast (Nishizawa et al. 1979). Subsequently, it
was proposed that the interaction between the endoplasmic
reticulum (ER) and the chloroplast may be necessary for com-
plete biosynthetic machinery (Møller & Laursen 2021). From a
review of various publications, we suggest that the above
hypothesis should be seriously considered to clarify the intra-
cellular localization of the conversion of L-phenylalanine into
vanillin (Fig. 1b).

CYTOSOLIC- AND ER-ANCHORED VANILLIN BIOSYN-
THETIC ENZYMES MAY CO-PURIFY WITH ISOLATED
CHLOROPLASTS

Even though some enzymes are considered to be localized in
different cellular compartments, they can sometime interact.
As such, it was demonstrated that the cytosolic enzyme PAL1,
an isoform from Nicotiana tabacum involved in lignin biosyn-
thesis, was able to associate with C4H, a membrane enzyme
anchored in the ER with its active site located in the cytoplasm,

to form a ‘metabolon’ (i.e. multi-protein complex) (Achnine
et al. 2004; Bassard et al. 2012a; Bassard et al. 2012b). The for-
mation of this protein complex was considered to promote a
synergy between these two enzymes. This association was stud-
ied in microsomes, vesicle-like particles formed during the
breakdown of cells and mostly made of ER fragments. PAL was
reported as partially associated with microsomes (Rasmussen
& Dixon 1999). It was also demonstrated that, in microsome
extracts, p-coumaric acid was produced from L-phenylalanine
more efficiently than from cinnamic acid (Czichi & Kindl 1975,
1977; Rasmussen & Dixon 1999). This implies that in cell
lysates, PAL could associate with the ER through its interaction
with C4H. This association could provide the catalytic activity
necessary to convert L-phenylalanine to p-coumaric acid
through the first steps of the phenylpropanoid pathway.
Gallage et al. (2018) suggested the chloroplast as the unique

site of vanillin biosynthesis from L-phenylalanine. However,
this conclusion neglects the proximity and near continuity
between the ER and plastids, which has been demonstrated
through electron microscopy and trans-organellar complemen-
tation investigations (McLean et al. 1988; Whatley et al. 1991;
Kaneko & Keegstra 1996; Mehrshahi et al. 2013). The literature
regarding the membrane contact sites (MCS) between those two
organelles has recently been reviewed (Block & Jouhet 2015;
Wang & Dehesh 2018; Liu & Li 2019). Indeed, MCS could be
important in several metabolic processes. The ER–plastid MCS
have been proposed to allow transfer of intermediate metabo-
lites involved in the biosynthesis of specialized metabolites, such
as vitamins and lipids (Mehrshahi et al. 2013; Negi et al. 2018;
Michaud & Jouhet 2019). For example, the disruption of toco-
pherol biosynthesis through mutation of three plastid-localized
enzymes was complemented via retargeting of these enzymes to
the ER (Mehrshahi et al. 2013), suggesting that enzymes local-
ized in the ER could have access to the nonpolar metabolite pool
of the plastids. Another example involves the lipid metabolism
of stomatal guard cells Negi et al. (2018). It was demonstrated
that, compared to mesophyll cells, the low biosynthesis of lipids
in the prokaryotic pathway, which is restricted to the plastids,
was compensated by the eukaryotic pathway involving interme-
diates from the ER. The possible metabolism of lipids from the
ER–plastid MCS was reviewed by Michaud & Jouhet (2019).
The interaction between the ER and the plastids during biosyn-
thesis of vanillin or other phenylpropanoids has not previously
been reported. This could be a topic for further studies on vanil-
lin biosynthesis.
In addition, the strong attraction between the ER and

chloroplasts has been demonstrated through optical fragmenta-
tion of A. thaliana protoplasts (Andersson et al. 2007a,b). Pro-
toplasts were fragmented with a nitrogen laser, and a
chloroplast captured using optical tweezers. The displacement
of the captured chloroplast caused stretching of the ER strands
that accompanied the moving plastid (Andersson et al. 2007b).
Moreover, confocal microscopy observation of isolated chloro-
plasts showed co-localization between fluorescence from GFP,
coming from the ER lumen, and the chloroplasts (Andersson
et al. 2007a,b). These authors also detected activity from
two ER-associated enzymes, NADH-dependent cytochrome c
reductase and phosphatidylcholine synthase, in isolated chloro-
plasts (Andersson et al. 2007b), highlighting the possibility
that ER fragments, potentially attached through MCS, could be
co-isolated with chloroplasts.
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Additional investigations based on ‘omics’ sciences might
identify candidate enzymes of the vanillin biosynthetic pathway
as well as their subcellular localization. Multiple strategies
based on subcellular proteomics have been reviewed recently
(Christopher et al. 2021) and could be useful for this analysis.
A starting point could be identifying candidate enzymes
involved in vanillin biosynthesis that are found in isolated
chloroplasts, then confirming their localization using
immunofluorescence in intact cells. If all the necessary enzymes
are detected into the plastids, this would reinforce the conclu-
sion of Gallage et al. (2018). If the enzymes proposed by Gal-
lage et al. (2018) are located inside the chloroplast, a method
could be developed to inactivate enzymes found outside the
isolated chloroplast before incubating them with the radiola-
belled precursors. Using this method, the precursors will not
be consumed by enzymes co-purified with the intact chloro-
plasts. The impact of contaminating proteins will be the main
challenge faced by researchers working on vanillin synthesis.

CONCLUSION

Vanillin is the most widely used flavour compound in the
world, and is employed extensively in food, beverage, perfume
and pharmaceutical industries. Several biosynthetic pathways
for vanillin have been proposed (Havkin-Frenkel & Belanger
2007; Dixon 2010; Kundu 2017; Khoyratty et al. 2018), but a
complete CoA-independent non-b-oxidative pathway involv-
ing VpVAN for the last step was suggested (Gallage et al. 2014).
Although there is intense debate on VpVAN activity, recent
independent studies using heterologous systems support the
ability of VpVAN to convert ferulic acid into vanillin. Gallage
et al. (2018) isolated chloroplasts to describe their biosynthetic
capacity to form vanillin. In their study, the method used to
isolate chloroplasts did not preclude the co-isolation of frag-
ments from other organelles that could contain vanillin biosyn-
thetic enzymes. The chloroplastic localization of VpVAN has

been demonstrated, but the localization of other enzymes of
the vanillin biosynthetic pathway has not (Gallage et al. 2018).
We propose that cytosolic and ER-anchored enzymes could
have been co-isolated with the chloroplasts studied by Gallage
and colleagues. Furthermore, it’s possible that those extra-
chloroplastic enzymes could be implicated or even necessary to
complete the conversion of L-phenylalanine into vanillin
(Fig. 1b). Based on the diverse investigations presented herein,
we suggest that localization of the vanillin biosynthetic
machinery needs re-evaluation.
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