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i Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, 32004 Ourense, Spain   

A R T I C L E  I N F O   

Keywords: 
Metaheuristic 
Food process optimization 
Nature-inspired algorithm 
Food industry 

A B S T R A C T   

Bio-inspired optimization techniques (BOT) are part of intelligent computing techniques. There are several BOTs 
available and many new BOTs are evolving in this era of industrial revolution 4.0. Genetic algorithm, particle 
swarm optimization, artificial bee colony, and grey wolf optimization are the techniques explored by researchers 
in the field of food processing technology. Although, there are other potential methods that may efficiently solve 
the optimum related problem in food industries. In this review, the mathematical background of the techniques, 
their application and the potential microbial-based optimization methods with higher precision has been sur-
veyed for a complete and comprehensive understanding of BOTs along with their mechanism of functioning. 
These techniques can simulate the process efficiently and able to find the near-to-optimal value expeditiously.   

1. Introduction 

In recent times, a remarkable innovation has been seen in the field of 
computational science and technology specifically in the field of appli-
cation of computer-aided technology development in process design 
segment both in industrial and laboratory scale (Corradini, 2020; Peleg 
et al., 2007; Peña-Delgado et al., 2020). Ease of processing with cost 
optimization, maximum productivity and optimum quality – these are 
the major area of concern in today’s industry arena (Lahiri et al., 2021; 
Lahiri et al., 2021a; Sarkar et al., 2021). To cope up with all these major 
concerns, the maximum focus has been given to the product develop-
ment part where process optimization is the prime factor. 

Conventionally process has been optimized by using different sta-
tistical techniques like response surface methodology, which is widely 
used in both industry and laboratory. But in the case of the too high 
volume of complex process parameters, difficulty arises in using such a 

conventional optimization method. In the last decade after the popu-
larization of computer technology for different purposes both in indus-
trial and lab process operation, based on artificial intelligence and 
machine learning several new optimization techniques are coming out 
as a need of time and within a very short span of time, these computer- 
based optimization techniques have become very popular for their 
excellent performance in process optimization. 

All induction algorithms execute identically across a symmetrical 
allocation of inductive problems (learning or search problems), ac-
cording to the No Free Lunch (NFL) theorems (Wolpert and Macready, 
1997). In other words, all quasi optimization strategies work similarly 
and/or substantially when applied to all optimization tasks (McDermott, 
2020). Therefore from the NFL, it is obvious that no such OA is there that 
can perform well for all types of problems, this is the reason for devel-
opment of new metaheuristic algorithms. By the virtue of the NFL, not 
only the explicit dynamics of an optimization algorithm (OA) can be 
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understood, the way these dynamics are related to the OA can also be 
traced (Joyce and Herrmann, 2018). 

Like other industries, the food industry also replaced the conven-
tional optimization techniques with newly developed different com-
puter technology-based optimization techniques. Among the different 
computer-based optimization techniques in the last decade, bio- 
inspired algorithms have been coming out as one of the best prom-
ising optimization techniques in the agri-food sector. Bio-inspired 
computing optimization algorithms is an emerging approach that is 
based on the principles and inspiration of the biological evolution of 
nature to develop new and robust competing techniques (TalbiEl-Gha-
zali, 2021). Depending on the behaviour of a group of animals or insects 
or birds or fishes, computer technology scientists are developing 
different types of bio-inspired optimization tools. There are several types 
of bio-inspired algorithms such as Genetic Bee Colony (GBC) Algorithm 
(Alshamlan et al., 2015), Fish Swarm Algorithm (FSA) (Xiao, 2002), Cat 
Swarm Optimization (CSO) (Chu et al., 2006), Whale Optimization Al-
gorithm (WOA) (Mirjalili and Lewis, 2016), Artificial Algae Algorithm 
(AAA) (Uymaz et al., 2015), Elephant Search Algorithm (ESA) (Deb 
et al., 2015), Chicken Swarm Optimization Algorithm (CSOA) (Meng 
et al., 2014), Moth flame optimization (MFO) (Mirjalili, 2015), and Grey 
Wolf Optimization (GWO) algorithm (Mirjalili et al., 2014), Particle 
swarm optimization (PSO) (Kennedy and Eberhart, 1995). These 
evolutionary algorithms are widely used in single and multi-objective 
optimization in food processing process design. Banga, Balsa-Canto, 
Moles and Alonso (2003) reported a summary of Evolutionary Compu-
tation optimization methods for the different food processing engi-
neering operations such as thermal, drying, contact cooking, microwave 
heating and other processing technologies (Banga et al., 2003). Re-
searchers have reported the use of Tabu Search and Genetic Algorithm 
(GA) for optimization in different food engineering areas such as ther-
mal processing, vehicle routing and heat exchangers design (Wari and 
Zhu, 2016). The food processing industries have used Evolutionary Al-
gorithms (GA, Differential Evolution (DE) and their hybrids with other 
techniques) in thermal processing, food quality, process design, drying, 
fermentation and hydrogenation processes and they found the extensive 
application of GA and DE in most of the cases and also reported that 
about the other algorithms which have proven to be quite as effective 
and in some cases better in terms of the best result attained and run time 
required (Nayak et al., 2020). 

In this study, we have reviewed the research work based on the 
application of different bio-inspired algorithms (BOT) in different food 
processing and related operations, the basic mathematical operations 
and the algorithms associated with these algorithms are also studied 

aiming the food industry experts who need ways to solve their problems 
and the readers looking for different optimization tools. The potential 
microorganism-based optimization algorithms for food process design 
has also be addressed. 

2. Mathematical models used in the food industry 

The real system may be represented with the help of a mathematical 
model that may build with a set of preferred features and properties of 
the system. Modern system and process engineering (control, optimi-
zation, and simulation) driven food industries are very much dependent 
on these models (Banga et al., 2003). The models are classified as white, 
grey and black box models in a broader view (Fig. 1). The software 
available in food process modelling is presented in Table 1. 

The white box models generally consider the microscopic and/or 
macroscopic features of the system properties like momentum, energy 
and mass along with further interconnections with other physicochem-
ical properties and kinetics behavior. Due to the presence of empirical 
relationships in a system the white-box model is relatively rare. Though 
this particular type of model is desired most due to the ease of scaling 
and extrapolation related benefits. The complex food process modelling 
is generally resources consuming and complicated task. Thus, the grey 
box and the black box modelling approach are the better possible choice 
as well as the more popular option for the industry application. 

Food process industries generally deal with dynamic (more often) 
and static (less frequent instances) variables (Peleg et al., 2009; Sendín 
et al., 2010). The mathematical approaches to an optimization problem 
in the area of food processing is mainly concerned with process 
designing, optimization of operational policy, and model calibration. 

Process designing: in food production units both static and dynamic 
parameters need to be modelled simultaneously. Number of the units, 
their sizes are the examples of static variables while most of the other 
variables are dynamic in nature e.g. flow variables (velocity, viscosity), 
issues related directly to the process design (controller) (Meneghetti and 
Monti, 2015; Perrot et al., 2011). The operational and capital investment 
need to be minimized with simultaneous optimization of process dy-
namics (Jagtap et al., 2021). 

Optimization of operational policy: the open loop or dynamic 
optimization is one of the most popular field in food process optimiza-
tion. Here, the optimum operational condition need to be computed for a 
dynamic model with specific parameters by which performance can be 
maximised (Banga et al., 2003; He et al., 2018). 

Model calibration: it is the most practiced field in food processing 
optimization. Here, the parameters need to be searched for a nonlinear 

Fig. 1. The white, grey and black box models used in the food processing industry.  
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Table 1 
Software available in the field of optimization.  

Name of software Open source 
(OS) 
/licensed 
software (LS) 

Country of origin/Developer Operating system URL 

Advanced Simulation 
Library (ASL) 

OS Avtech Scientific Mac, Linux, Windows, 
FreeBSD 

http://asl.org.il/ 

APMonitor OS APMonitor Linux, Windows http://apmonitor.com/ 
Aspen HYSYS LS Aspen Technology Windows https://www.aspentech.com/ 

en/products/engineering/aspen-hysys 
Aspen Plus LS Aspen Technology Windows https://www.aspentech.com/ 

products/engineering/aspen-plus 
BatchColumn LS ProSim Windows https://www.prosim.net/en/product/batch-column-simula 

tion-and-optimization-of-batch-distillation-columns/ 
ChromWorks LS YPSO-FACTO Windows http://www.ypso-facto.com/ 
Cycle-Tempo LS Asimptote Windows http://www.asimptote.nl/software/cycle-tempo/ 
DynoChem LS Scale-up Systems Windows https://www.scale-up.com/Dynochem 
OptiRamp LS Statistics & Control, Inc. Windows https://web.archive.org/web/20170919004510/ 

http://www.stctrl.com/ 
Prode Process Interface LS Prode Software Windows https://www.prode.com 

/en/opcgashydrocarbon.htm 
ProSimPlus LS ProSim Windows https://www.prosim.net/en/product/prosimplus-stead 

y-state-simulation-and-optimization-of-processes/ 
ROMeo LS AVEVA Windows https://www.aveva.com 

/en/products/process-optimization/ 
Reaction Lab LS Scale-up Systems Windows https://www.scale-up.com/ReactionLab 
AIMMS OS AIMMS Windows https://www.aimms.com/ 
AMPL OS ALGLIB Project Windows POSIX, Linux http://www.alglib.net/ 
ASTOS OS Astos 

Solutions 
Mac, Linux, Windows, 
FreeBSD 

http://www.astos.de/products/astos 

CPLEX OS IBM Linux 
macOS 
Windows 
AIX 

https://www.ibm.com/products/ilog-cplex-optimization- 
studio 

Couenne OS COIN-OR Linux 
Windows 

https://github.com/coin-or/Couenne 

FICO Xpress OS FICO 
(NYSE: FICO) 

Linux 
macOS 
Windows 

https://www.fico.com/en/products/fico-xpress-optimizat 
ion 

GEKKO Python OS GEKKO Linux 
Windows 

http://gekko.readthedocs.io/en/latest/ 

Gurobi OS Gurobi Optimization Linux 
MAC OSX 
Windows 

http://gurobi.com/ 

LIONsolver OS LIONLAB Linux 
macOS 
Windows 

http://lionoso.com/ 

MIDACO-Solver OS MIDACO-SOLVER Linux 
Windows 

http://www.midaco-solver.com/ 

MINTO OS CORAL Linux 
macOS 
Windows 

https://coral.ise.lehigh.edu/~minto/ 

MOSEK OS MOSEK ApS Linux 
Mac 
Windows 

https://www.mosek.com/ 

PottersWheel OS PottersWheel Linux 
Macintosh Windows 

http://www.potterswheel.de/ 

SCIP OS Zuse Institute Berlin (ZIB) Linux 
MacOS 
Windows 
Raspberry 

http://scip.zib.de/ 

WORHP OS WORHP Linux http://www.worhp.de/ 
ALGLIB LS ALGLIB Project Windows POSIX, Linux http://www.alglib.net/ 
Altair HyperStudy LS Altair Engineering, Inc. Linux 

Mac 
Windows 

https://www.altair.com/ 

Artelys Kniutro LS ARTELYS Linux 
Mac 
Windows 

https://www.artelys.com/ 
en/optimization-tools/knitro 

BARON LS The Optimization Firm Mac 
Windows 

http://minlp.com/ 

COMSOL Multiphysics LS COMSOL Linux 
macOS 
Windows 

http://www.comsol.com/ 

FEATool Multiphysics LS Precise Simulation Mac 
Windows 

http://www.featool.com/ 

(continued on next page) 
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dynamic model that provide the best fit to the dataset derived experi-
mentally (Shoaib et al., 2021; Yousefi-Darani et al., 2020). 

For all the three optimization problems namely process designing, 
optimization of operational policy, and model calibration the search 
space is significantly large and most of the time it is exponential or 
infinite as a result classical search algorithms become intractable. As a 
result metaheuristics is used. 

3. Complexities in food process optimization 

In food process industries batch process is the predominant one, 
which is a dynamic process and possible to described with partial dif-
ferential and/or ordinary algebraic mathematical function (Banga et al., 
2003). Though the models are simple (for empirical kinetics) (Sarkar 
et al., 2021) or maybe complex (for processing stages coupled with heat 
and mass transfer phenomena in a dynamic system, and for processing 
stages with complex chemical reactions) (Abakarov and Nuñez, 2013; 
Vilas et al., 2004). The challenges that exist in food process optimization 
may be listed as follows: (1) Processing related constraint-the existence 

of non-linearity in the dynamic models along with the mode of the 
process (continuous, semi-batch or batch) (Georgiadis et al., 2019), (2) 
Transportation and distribution-related constraint-the large numbers of 
process variables with complex interconnections (Wari and Zhu, 2019), 
(3) Food safety and quality-related constraint-nonlinear, complicated 
and dependent on various external factors (Enitan and Adeyemo, 2011; 
Roy et al., 2020). 

4. Classification of bio-inspired optimization 

The BOT techniques are artificial intelligent techniques and are still 
in the developing stage, thus there is no such unambiguous classification 
exist. In total 257 BOTs are available till now (Molina et al., 2020), 
which can be categorized into four main classes: 1. Evolution based (27), 
2. Social human behavior based (43), 3. Plant based (17), and 4. Swarm 
intelligence based (170); human and math based algorithms are two 
other classes of metaheuristic techniques worth mentioning (Shastri 
et al., 2021) (Table 2). In this review, the latest BOTs (developed in the 
latter half of the last decade) are listed only. For Swarm 

Table 1 (continued ) 

Name of software Open source 
(OS) 
/licensed 
software (LS) 

Country of origin/Developer Operating system URL 

FICO Xpress LS FICO 
(NYSE: FICO) 

Linux 
macOS 
Windows 

https://www.fico.com/en/products/fico-xpress-optimizat 
ion 

FortMP LS OptiRisk Systems Linux 
macOS 
Windows 

http://www.optirisk-systems.com/ 
products_fortmp.asp 

GAMS LS GAMS Development Corp. Linux 
Mac OSX 
Windows 

https://www.gams.com/ 

HEEDS MDO LS Siemens Digital Industries Software Inc Linux 
macOS 
Windows 

http://www.redcedartech.com/ 

IMSL Numerical 
Libraries 

LS Perforce Software Windows https://www.imsl.com/ 

IOSO LS Sigma Technology macOS 
Windows 

https://www.iosotech.com/ 

Kimeme LS Cyberdynesoft Windows http://www.cyberdynesoft.it/ 
LINDO LS LINDO Systems, Inc. Linux 

Windows 
http://www.lindo.com/ 

modeFRONTIER LS ESTECO SpA Windows http://www.esteco.com/ 
Maple LS Waterloo Maple Inc. Linux 

Windows 
https://www.maplesoft.com/ 
products/Maple/ 

MATLAB LS The MathWorks Linux 
macOS 
Windows 

https://www.mathworks.com/ 
products/matlab.html 

Mathematica LS Wolfram Linux 
Windows 

https://www.wolfram.com/ 
mathematica/ 

ModelCenter LS Phoenix Integration Linux 
macOS 
Windows 

http://www.phoenix-int.com/software/phx_modelcent 
er_10.php 

NAG LS Numerical Algorithms Group Ltd Linux https://www.nag.com/ 
content/nag-library 

NMath LS CenterSpace Software Windows http://www.centerspace.net/ 
Optimus platform LS Noesis Solutions Linux 

Windows 
http://www.noesissolutions.com/ 

optiSLang LS ANSYS, Inc Linux 
macOS 
Windows 

http://www.dynardo.de/en/software/optislang.html 

OptiY LS OptiY GmbH Windows http://www.optiy.eu/ 
pSeven LS DATADVANCE Windows http://www.datadvance.net/ 
SAS LS SAS Institute Inc. Linux 

macOS 
Windows 

https://www.sas.com/en_us/home.html 

SmartDO LS FEA-Opt Technology Co. Ltd. Windows http://www.smartdo.co/ 
SNOPT LS Centre for Computational Mathematics. 

University of California, San Diego 
Linux 
Windows 

http://ccom.ucsd.edu/~optimizers 

TOMLAB LS TOMLAB Windows (32/64-bit) 
Linux/OS X 64-bit 

http://tomopt.com/tomlab/  
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intelligence-based methods only 2019–2021 has been covered. 

5. Challenges in food process optimization 

The differential, ordinary and/or partial differential equations and 
the models are error-prone and resource consuming. This may be one of 
the main barriers to the restricted use of the food industry. Plant scale 
simulation is one of the main challenges with this kind of modelling 
(Banga et al., 2003). The absence of an efficient and robust optimization 
solver in complex food processing problems is another challenge 
encountered by food industries (Table 2) (Banga et al., 2003; Wari and 
Zhu, 2016). The knowledge about the complexity of the process and lack 
of technical human resources are the third major challenge in food in-
dustries process optimization. The requirement of custom-fit software, 
unavailability of libraries in synchronisation with the dynamic models 
are the fourth key challenge faced by food industries. 

These limitations of the traditional optimization processes may be 
conquered by the BOT methods. These intelligent computing methods 
comprise of some features, of which the most important one is the 
behaviour of the working mechanisms that resemble either a troop of 
living organisms or an individual. Compared to the traditional artificial 
intelligent method (e.g. fuzzy logic, and expert system) these methods 
are more efficient (Binitha and Sathya, 2012; Jianjun Ni et al., 2016). 
These special methods are different from the traditional methods in 
terms of self-organisation, nondeterminism, flexibility, robustness, 
emergence and simplicity (J Ni and Yang, 2011; Jianjun Ni et al., 2016). 
These BOTs are more likely to be used now because of their simplicity, 
higher performance in solving complex optimization problems, 

scalability, and flexibility. Though very few numbers of BOTs have been 
implemented in the food process industries. The applications of BOT 
methods in food processing are described in Table 3. 

6. Critical features of BOT that make it suitable for food process 
industries 

The computation and strategic nitty-gritty are simple for most of the 
algorithms, though the techniques are effective thus becoming an 
emerging field in artificial intelligence mediated food production. The 
working principles resemble ecological and/or biological systems, 
which provide the access to deal with real-world problems. The self- 
organizing or self-learning nature of these techniques can enhance the 
versatility, flexibility and efficient evolution of the BOTs. Non-
determinism, robustness, precision, and parallelism are the other ad-
vantageous feature of these algorithms. These algorithms have resilient 
potency against the alteration in input parameters, responses and 
operational environments. 

Modelling biological applications as computing or real-world pro-
cesses is challenging. Researchers in the domains of biology, neurosci-
ence, and computer science are still unable to characterise in sufficient 
depth both the process and architecture that constitute biological things, 
as well as the level of abstraction required to model them (Akerkar and 
Sajja, 2009). Finding an appropriate fitness function that leads to 
improved solutions is equally challenging. The other challenges are to 
find a suitable technique and conception of new BOT (Akerkar and Sajja, 
2009). The performances of the BOTs depend on the setting parameters, 
and tweaking these parameters is critical and depends on the nature of 

Table 2 
Classification of Bio-inspired optimization techniques (Developed onwards from the year of 2016).  

Class Optimization algorithm Year Abbreviated 
form 

Reference 

Evolution based Artificial Infections Disease 2016 AIDO Huang (2016) 
Earthworm Optimization 2018 EOA (G. . Wang et al., 2018) 
Improved Genetic Immune 2017 IGIA Benbouzid-Si Tayeb et al. (2017) 
Virulence Optimization 2016 VOA Jaderyan & Khotanlou (2016) 

Plants based Artificial Flora Optimization 2018 AFO Cheng et al. (2018) 
Natural Forest Regeneration 2016 NFR Moez et al. (2016) 
Root Tree Optimization 2016 RTOA Labbi et al. (2016) 
Tree Growth 2018 TGA Cheraghalipour et al. (2018) 
Tree Physiology Optimization 2018 TPO Halim & Ismail (2018) 

Social Human 
Behavior 
based 

Adolescent Identity Search 2020 AISA Bogar & Beyhan (2020) 
Cognitive Behavior Optimization 2016 COA (M. Li et al., 2016) 

Swarm intelligence 
based 

Andean Condor 2019 ACA Almonacid & Soto (2019) 
Bald Eagle Search 2020 BES Alsattar et al. (2020) 
Bison Behavior 2019 BBA Kazikova et al. (2019) 
Biology Migration 2019 BMA Zhang et al. (2019) 
Binary Whale Optimization 2019 BWOA (Reddy et al., 2019) 
Cultural Coyote Optimization 2019 CCOA Pierezan et al. (2019) 
Dragonfly Swarm 2021 DSA Bhardwaj & Kim (2021) 
Emperor Penguins Colony 2019 EPC Harifi et al. (2019) 
Harry’s Hawk Optimization 2019 HHO Heidari et al. (2019) 
Naked Moled Rat 2019 NMR Salgotra & Singh (2019) 
Nomadic People Optimizer 2020 NPO Salih & Alsewari (2020) 
Regular Butterfly Optimization 2019 RBOA Arora & Singh (2019) 
Squirrel Search 2019 SSA Jain et al. (2019) 
Golden eagle optimizer 2021 GEO Mohammadi-Balani et al. (2021) 
COOT bird optimization 2021 COOT Naruei & Keynia (2021) 
Dingo Optimization 2021 DOA (Peraza-Vázquez et al., 2021) 

Human-Based 
Algorithms 

Harmony Search 2001 (modified HS have been developed during 
2016–2020) 

HS (Dubey et al., 2021; Geem et al., 
2001) 

Ali Baba and the forty thieves algorithm 2021 AFT Braik et al. (2021) 
Firework Algorithm 2010 (Different variants are evolved during 

2010–2019) 
FWA (J. Li and Tan, 2019; Tan and Zhu, 

2010) 
Soccer Inspired (In total 8 types of SI are 
available) 

2009–2021 SI Osaba & Yang (2021) 

Math’s Based 
Algorithms 

Sine Cosine Algorithm 2016 SCA Mirjalili (2016) 
Chaos Game Optimization 2021 CGO Talatahari & Azizi (2021) 
Stochastic Fractal Search 2015–2021 SFS (ElKomy, 2021; Salimi, 2015) 
Hyper-Spherical Search algorithm 2014 HSS Karami et al. (2014)  
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Table 3 
Different bio-inspired (metaheuristic) techniques in food process optimization.  

Optimization 
algorithm 

Food product Processing method Aim of the 
optimization 

Parameters 
considered 

Metrics to 
determine aptness 
of the optimization 
technique 

Optimized 
condition 

Reference 

ANN-PSO Rasgulla (Sweetened 
cheese ball) 

Hot air drying Maximize the total 
colour value 

Drying 
temperature, 
cooking time, 
pineapple amount 

R2 (0.934) Drying 
temperature =
80 ◦C, pineapple 
amount = 35%, 
Cooking time = 5 
min 

Sarkar et al. 
(2020) 

Microwave drying Maximize the total 
colour value 

Power level, 
cooking time, 
pineapple amount 

R2 (0.97814) Power level = , 
cooking time = , 
pineapple 
amount =

Freeze drying Maximize the total 
colour value 

cooking time, 
pineapple amount 

R2 (0.9789) cooking time, 
pineapple amount 

microwave 
convective drying 

Maximize the total 
colour value 

Drying 
temperature, 
cooking time, 
pineapple amount 

R2 (0.99021) Drying 
temperature, 
cooking time, 
pineapple amount 

GA-SVM 
PSO-SVM 
GS-SVM 

pork meat GC-MS analysis of 
bacteria-infested 
meat followed by e- 
nose detection 

Quantification of 
bacterial load 

Produced volatile 
compounds 

R2 (0.986), RMSE 
(0.1370 

– Bonah et al. 
(2020) 

R2 (0.989), RMSE 
(0.145) 
R2 (0.966), RMSE 
(0.148) 

PSO SVM Escherichia coli, 
Listeria 
monocytogenes, 
Salmonella 
typhimurium, 
Salmonella enteritidis 

E-nose sensor-based 
data acquisition 

Quantification of 
bacterial load 

Produced volatile 
compounds 

Prediction 
accuracy = 98.5% 

– Bonah et al. 
(2019) 

GA SVM Prediction 
accuracy =
96.87% 

GS SVM Prediction 
accuracy =
94.79% 

Hybrid GA Anthocyanin from 
purple sweet potato 

– Maximization the 
anthocyanin 
production 

liquid-to-solid 
ratio (mL/g), 
ethanol 
concentration (w/ 
w, %), 
ammonium 
sulphate 
concentration (w/ 
w, %), and pH 
value 

0.95 40:1 liquid-to- 
solid ratio, 23% 
ethanol 
concentration, 
22% ammonium 
sulphate 
concentration, 
and a pH of 
3.2407 

Tumuluru & 
McCulloch 
(2016) 

ANN-GA Puffed rice microwave puffing 
of preconditioned 
rice 

To predict the 
values of expansion 
ratio and puffing 
percentage of 
puffed rice 

microwave power, 
puffing time, 
butter level, and 
sodium 
bicarbonate level 

R2 (0.99) 850 W of 
microwave 
power, 35 s of 
puffing 
time,5.26% of 
butter, and 1.46% 
of sodium 
bicarbonate 

(K. K. Dash and 
Das, 2021) 

PSO drying of sliced 
pineapple 

Heating of pineapple 
slices 

To find out the 
better performance 
and better range of 
the temperature and 
moisture content 

ventilation rate 
and heater 

Integral square 
error, Overshoot 
(%), Settling time 
(sec) 

– Manonmani 
et al. (2017) GA 

Artificial 
bee colony 
(ABC) 
algorithm 

production of 
succinate and lactate 
in Escherichia coli 

– To predict an near- 
to-optimal set of 
solutions in order to 
optimize the 
production rate of 
succinate and 
lactate 

Numbers of gene 
knockout 

– Numbers of gene 
knockout = 3 

Tang et al. 
(2015) 

ANN-GA Beef, pig liver, lamb, 
cod, shark, apple, 
Tylose, Mashed 
potatoes 

Freezing and 
thawing 

Prediction of foods 
freezing and 
thawing times 

shape factor, 
characteristic 
dimension, 
Biot number, 
thermal diffusivity, 
initial, ambient 
and final 
temperatures 

Average absolute 
relative error 
(8.52%), average 
relative error 
(0.44%) 

– Goñi et al. 
(2008) 

GA fish oil 
microencapsulation 

to study the 
influence of 
emulsion 

to optimize the 
emulsion 
preparation 

Aqueous phase 
content, 
oil proportion in 

R2 (0.9973) Aqueous phase 
content =
27.12%, oil 

Aghbashlo et al. 
(2012) 

(continued on next page) 
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Table 3 (continued ) 

Optimization 
algorithm 

Food product Processing method Aim of the 
optimization 

Parameters 
considered 

Metrics to 
determine aptness 
of the optimization 
technique 

Optimized 
condition 

Reference 

characteristics on 
energy efficiency and 
quality of 
fish oil 
microencapsulated 
within skim milk 
powder (SMP) by 
spray drying. 

procedure for the 
production of 
fish oil 
microcapsule in 
terms of maximum 
encapsulation 
efficiency 

total solids, and 
emulsification 
time. 

proportion in 
total solids =
10.82%, and 
emulsification 
time = 13.23 min. 

Multi-objective 
particle 
swarm 
optimization 
(MOPSO) 

ostrich meat deep-fat frying in 
microwave 

Optimization of 
shrinkage, moisture 
content, and fat 
content 

microwave power, 
temperature and 
frying time 

mean absolute 
error 
(0.009–1.704); 
mean-squared 
error 
(0.032–0.198); 
normalized mean- 
squared error 
(0.017–1.2) 

– Amiryousefi 
et al. (2014) 

GA olive oil ultrasound-assisted 
bleaching 

optimization of 
ultrasound-assisted 
bleaching of 
olive oil to 
maximize the 
Lovibond red colour 
and minimize 
peroxide value 

ultrasonic 
power, bleaching 
clay dosage, 
process 
temperature and 
time 

R2 (0.9228), MSE 
(0.0248) 

ultrasonic 
power = 30%, 
bleaching clay 
dosage = 1.21%; 
bleaching time =
13 min; 
temperature =
65 ◦C 

Asgari et al. 
(2017) 

PSO and 
GA 

tapioca Fluidized Bed Drying Error minimization 
in three-phase 
differential model 

temperatures of 
the 
solid; gas at the 
dryer exit   

Vitor & Gomes 
(2011) 

GA cooking of a fish and 
rice flour blend 

Extrusion Maximumisation of 
expansion ratio, 
water solubility 
index and minimum 
hardness, bulk 
density 

barrel temperature 
(C), screw speed 
(rpm), fish content 
(%) and feed 
moisture content 
(%) 

Percentage error 
(6.4–22.7%) 

fish content  
= 41–45%; feed 

moisture contents 
= 40% 

Shankar & 
Bandyopadhyay 
(2004) 

GA-ANN Pretreated Fried 
Mushroom 

Frying Modeling 
of Moisture and Oil 
Content of 
Pretreated Fried 
Mushroom 

osmotic condition 
(dimensionless), 
gum coating 
conditions 
(dimensionless), 
frying temperature 
(◦C), and 
time (minute) 

R2 for moisture 
content = 0.93 
R2 for oil content 
= 0.96 

– Mohebbi et al. 
(2011) 

GA Potatoes/French 
fries 

Microwave treated 
frying operation 

Optimization of 
moisture content, 
oil content, texture 
and color 
parameters 

microwave power 
microwave time, 
frying 
temperature, 
frying time 

R2 

(0.9946–0.9686) 
400–500 W for 
3–4 min and 
frying at 180 ◦C 
for 6–6.5 min 

Hashemi 
Shahraki et al. 
(2014) 

GA fish and 
rice flour 

extrusion process effects of the 
process variables 
for minimization of 
moisture and fat 
and maximization 
of the protein 
content of the 
extrudates 

barrel 
temperature, screw 
speed, 
fish content of the 
feed, feed 
moisture content 

R2 (0.94–0.99) – Tumuluru et al. 
(2013) 

GA Broken rice extrusion process Maximumisation of 
expansion ratio, 
water solubility 
index and minimum 
hardness, bulk 
density 

Screw speed, die 
temperature, feed 
moisture content 

– Screw speed =
500 rpm, die 
temperature =
110 ◦C, feed 
moisture content 
= 12% 

(Sm- et al., n.d.) 

GA Rice based snack extrusion process Optimization of 
water 
solubility index, 
water absorption 
index 

feed moisture, 
screw speed, barrel 
temperature 

R2 (0.788–0.894) feed moisture =
44.59%, screw 
speed = 323 rpm, 
barrel 
temperature =
65.82 ◦C 

Das & Srivastav 
(2013) 

ANN-GA vegetable oil hydrogenation 
process 

total trans isomer 
minimization; 
maximization of cis- 
oleic acid formation 

Temperature, H2 

pressure, catalyst 
condition, mixing 
time 

R2 (0.9627), MSE 
(0.016) 

Temperature =
159.4 ◦C, H2 

pressure = 351.6 
kPa, catalyst (Ni) 
condition =

Izadifar & 
Jahromi (2007) 

(continued on next page) 
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the problem. There is no simple way to properly tweak an algorithm 
(Darwish, 2018). The performance and the quality of a bio-inspired 
solution depend on the number of search agents and the stop condi-
tion of the algorithm, commonly determined by the number of itera-
tions. These constraints may be overcome with the updated supporting 
architecture and algorithm. 

7. BOTs in the food processing 

Numbers of BOTs are there and number is growing day by day. With 
the industrial revolution 4.0, the rise in artificial intelligence in in-
dustries take place. Thus, the process optimization gets immense 
importance. In the latter half of the last decade (2015–2020) 23.33% of 
total BOTs (257) have been developed. Though in food industries, a few 
numbers of BOTs are in practice. The general structure of any bio- 
inspired algorithm is presented in Fig. 2. The BOTs in-practice are 
shown below (Table 4). 

7.1. Fish Swarm Algorithm (FSA) 

As the name suggests this algorithm utilizes the nature of fish. 
Among various algorithm techniques, it has been considered as an 
efficient and smart method due to its high convergence speed, effective 
searching ability. Like as an individual fish finds its resources using 
various ways this method also mimics this phenomenon. Another 
important characteristic of this method is each fish establishes 
communication with others in order to find the global optimization 
(Darwish, 2018). 

To understand the details of this algorithm a problem is considered 

here in which it is assumed that it has D-dimension and also a swarm 
with N- artificial fish is taken. Considering A be the variable that rep-
resents the positions of the artificial fish. Hence A = (a1, a2, ….,an). Now 
the food source is assumed as fitness function (B) of the algorithm, 
therefore it can be written as B = f(Ai). Another four parameters are 
there in the algorithm. The distance between Ai and Aj is written as pij =

||Aj-Ai||. The next one is visual which is associated with the distance of 
each artificial fish. The movement size of the artificial fish is represented 
by step, and the last one is the crowd factor (α) of artificial fish. 
Swarming, following, foraging, and random behaviours are the char-
acteristic behaviour of this algorithm (Fig. S1) (Darwish, 2018; Neshat 
et al., 2014). 

7.1.1. Phase-1: preying behaviour 
Suppose the current position of an artificial fish is represented by Ai, 

and Aj being the distance of that particular fish, there will be two cases. 
In the first case, suppose f(Aj) < f(Ai) then the travel path of the artificial 
fish will be Ai to Aj or we can say in direction of (Aj-Ai). The other case 
would be like another the artificial fish will follow a random state Aj. 
The preying step can be represented as: 

Ai
→

=

⎧
⎪⎨

⎪⎩

Ai + step x
Aj − Ai

pij
a rand if

(
Bj
)
< (Bi)

random behaviour otherwise 

Ai
→ is the new position of fish. In the interval of [0,1] and is a random 

value. 

7.1.2. Phase-2: the swarm behaviour 
An artificial fish, suppose Ai, will search for its central position (Ac-p) 

Table 3 (continued ) 

Optimization 
algorithm 

Food product Processing method Aim of the 
optimization 

Parameters 
considered 

Metrics to 
determine aptness 
of the optimization 
technique 

Optimized 
condition 

Reference 

0.091%, mixing 
time = 11.67 s 

GA Cocoa butter enzymatic 
interesterification 

Cocoa butter analog 
development 

pressure, 
temperature, 
tristearin/camel 
hump fat ratio, 
water content, and 
incubation time 

R2 (0.932–0.991) Pressure = 10 
MPa; 
temperature =
40 ◦C; tristearin/ 
camel hump fat 
ratio ratio =
0.6:1; water 
content = 13% 
(w/w); incubation 
time = 4.5 h 

Shekarchizadeh 
et al. (2014) 

Grey Wolf 
optimization 

Tea leaves Microwave heating, 
drying, grinding 

Optimization of NIR 
spectra wavelength 
for polyphenols, 
window gap 

Wavelength Accuracy (92.5%), 
R2 (0.91), root 
mean square error 
(0.32) 

– Chanda et al. 
(2018) 

Parallel Multi- 
Swarm 
Particle 
Swarm 
Optimization 
(PMSPSO) 

Grass Carp 
Carp Silver 
Common carp 
Carp Big-head 

Fish supply chain Coordination 
mechanism 
designing between 
the supply chain 
management 
stakeholders to 
minimize the 
wholesale price 

Amount of Fish 
supply, inventory 
policy 

R2 (0.868) for 
Grass Carp 
R2 (0.983) for Carp 
Silver 
R2 (0.799) for 
Common carp 
R2 (0.978) for Carp 
Big-head 

– Tabrizi et al. 
(2018) 

Simulated 
Annealing; GA 

European food dishes Salting of food 
materials in the 
production unit 

Minimizing the 
amount of setup 
processes; 
Minimization of 
production volume 
peaks for cost- 
saving 

Initial 
temperature, 
frozen 
temperature, 
iteration 

– Iteration: 
100–200 
Initial 
temperature: 
0.0005 
Frozen 
temperature: 
0.000005 

Kamhuber et al. 
(2020) 

Artificial Fish 
Swarm 

Soybean oil Electronic Tongue 
measurement 

Classification 
between the 
different blends of 
oil 

Volta metric 
sensor-generated 
parameters 

– – Men et al. (2013)  
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and the close one to it is cf . The movement of the fish will be in the 
direction of Ac-p, if Bc− p

/
cf

> αBi .The mathematical form of this phase 

is as follows: 

Fig. 2. The general structure of any bio-inspired algorithm.  

Table 4 
Codes for Bio-inspired optimization techniques freely available in MATLAB.  

Bio-inspired 
optimization 
techniques 

URL References 

Fish Swarm 
algorithm 

https://www.mathworks.com 
/matlabcentral/fileexchange 
/32022-swarmfish-the-artif 
icial-fish-swarm-algorithm 

Chen (2022) 

Whale 
optimization 
algorithm 

https://www.mathworks.com 
/matlabcentral/fileexchange 
/55667-the-whale-optimization 
-algorithm?s_tid=srchtitle 

Mirjalili (2022c) 

Elephant Search 
Algorithm 

https://www.mathworks. 
com/matlabcentral/fileexch 
ange/53486-elephant-herdi 
ng-optimization-eho 

(G.-G. Wang, 2022) 

Grey Wolf 
Optimization 

https://www.mathworks. 
com/matlabcentral/fileexch 
ange/44974-grey-wolf-optimi 
zer-gwo 

Mirjalili (2022a) 

Ant colony 
optimization 

https://www.mathworks. 
com/matlabcentral/fileexch 
ange/52859-ant-colony-optimiz 
ation-aco 

Yarpiz (2022a) 

Particle swarm 
optimization 

https://www.mathworks.com 
/matlabcentral/fileexchange 
/67804-particle-swarm-optim 
ization-pso-matlab-code-explan 
ation 

Raza (2022) 

Genetic algorithms https://in.mathworks.com/ma 
tlabcentral/fileexchang 
e/67435-the-genetic-algorith 
m-ga-selection-crossover-muta 
tion-elitism 

Mirjalili (2022b) 

Artificial Bee 
Colony 
Algorithm 

https://in.mathworks.com/mat 
labcentral/fileexchange/52966- 
artificial-bee-colony-abc-in-mat 
lab 

Yarpiz (2022b) 

Bacteria Foraging 
Optimization 

https://in.mathworks.com/mat 
labcentral/fileexchange/45774 
-bacteria-foraging-optimizatio 
n-bfo 

(B. Dash, 2022) 

Slime Mould 
Algorithm 

https://in.mathworks. 
com/matlabcentral/fileexchang 
e/76619-slime-mould-algorith 
m-sma-a-method-for-optimizat 
ion 

(S. Li et al., 2020) 

Virus optimization https://in.mathworks.com/matl 
abcentral/fileexchange/ 
85710-coronavirus 
-herd-immunity-optimizer-chio 

(Al-Betar et al., 2021;  
Alyasseri, 2022) 

Black-widow 
optimization 

https://www.mathworks.co 
m/matlabcentral/fileexchange 
/94080-black-widow-optimizat 
ion-algorithm 

Peña-Delgado et al. 
(2020) 

Golden Eagle 
Optimizer 

https://www.mathworks. 
com/matlabcentral/fileexch 
ange/84430-golden-eagle-opt 
imizer-toolbox?s_tid=srchtitle 

Mohammadi-Balani et al. 
(2021) 

Dingo 
Optimization 

https://www.mathworks.com 
/matlabcentral/fileexchange 
/98124-dingo-optimization- 
algorithm-doa?s_tid=srchtitle 

(Peraza-Vázquez et al., 
2021) 

COOT 
optimization 
algorithm 

https://www.mathworks.com/ 
matlabcentral/fileexchange/ 
89102-coot-optimization-alg 
orithm?s_tid=srchtitle 

(Naruei, 2022; Naruei 
and Keynia, 2021) 

Chaos Game 
Optimization 

https://www.mathworks.com/ 
matlabcentral/fileexchange/ 
83938-chaos-game-optimizati 
on-cgo?s_tid=srchtitle 

(Talatahari and Azizi, 
2020, 2021)  
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Ai
→

=

⎧
⎪⎨

⎪⎩

Ai + step x
Ac− p − Ai

dic− p
if
(
Bc− p

⃒
⃒cf < αaBi

)

preying behaviour otherwise  

where α ∈ [0,1] represents the concentration of food sources. 

7.1.3. Phase-3: following behaviour 
Suppose Ai be the artificial fish and its current position local best 

neighbourhood be Abn. Then the movement of the artificial fish will be 
towards Abn-Ai. It can be mathematically represented as: 

Ai
→

=

⎧
⎪⎨

⎪⎩

Ai + step x
Abn − Ai

di,bn
if
(
Bbn

⃒
⃒cf < ∝aBi

)

preying behaviour otherwise  

7.1.4. Phase-4: random behaviour 
In the entire visual range, an artificial fish can randomly find a po-

sition and thereafter will step forward to it. 

7.1.5. Phase-5: best behaviour 
After all these four phases are done, the best behaviour will decide 

the present state of the artificial fish. 

7.2. Whale Optimization Algorithm 

Among all mammals, whales are found to be the biggest. Based on 
their characteristics this algorithm has been developed. Differences in 
specific characteristics have been observed for different types of whales 
namely humpback, finback, killer, and blue. The common phenomenon 
of all varieties of whales is due to breathing purposes most of the time 
they do not fall asleep. To understand this algorithm the following steps 
are required to discuss (Fig. S2) (Mirjalili and Lewis, 2016): 

7.2.1. Encircle the prey 
The optimal candidate solution is assumed to be the objective prey. 

Prey encircling by the whey can be expressed as- 

D=

⃒
⃒
⃒P A∗̅→

(t) − A(t)
⃒
⃒
⃒

A(t+ 1)= A∗̅→
(t) − E→. D→

Whale’s present position iteration is represented by t. E→, P both are 
the coefficient vectors. The position vector of the present near-to- 
optimal solution is presented by A∗̅→

. A→ is represented as the position 
vector. || value gives the absolute value. Using the following equation E→

and D→ vectors can be evaluated. 

E→= 2 e→.m→− e→

P→= 2.m→

During the iterations the value of e→ can be selected between 2 and 0. 
m→ is said to be the random vector in the range of [0,1]. The bubble net 
method is adapted by humpback whales to attack the prey. 

7.2.2. Bubble-net attacking phase 
Two methods are there which elaborate the mathematical form of 

the bubble-net stage of humpback whales.  

a. Method 1- shrinkage of encircle: 

If the value of e→ is decreased then the value of E→ will be considered 
as a random value in [-e, e] interval in a way during the iterations the 
value of e may be decreased from 2 to 0. Also random values of E→ is 

considered in the interval of [− 1,1].  

b. Method 2- The spiral updating position method: 

To determine the position of whale and prey a spiral equation can be 
generated as follows: 

A→(t + 1)= D′
̅→

.efi cos(2πn) + A→
∗

The distance between the ith whale and the prey is represented by 

D′
→

=

⃒
⃒
⃒A
→∗

(t) − A→(t)
⃒
⃒
⃒. N is considered as a random number in [− 1,1] 

interval. f being the constant. 
In this phase, the prey is encircled by the humpback whales and there 

is a 0.5% probability that either it will select a spiral model so that the 
position of the whales can be updated or it will choose the shrinking 
circling method. The behaviour can be expressed as: 

A→(t + 1)=
{

A→
∗

(t) − E→. D→ if r < 0.5

D′
̅→

. efi cos(2πn) + A→
∗

(t) if r ≥ 0.5  

where r is a random value in the interval [0,1]. 

7.2.3. Search for prey phase 
The values of E→ is considered as random values between − 1 and 1. 

Here it is considered that E→> 1 so that the algorithm is enabled to do a 
global search. The following equation will describe this- 

D→=

⃒
⃒
⃒P→.Ar − A→

A→(t + 1) = A→ r→− E→.D→

where Ar is called the random position vector. Depending on the 
randomly selected solutions this algorithm proceeds for searching. 

7.3. Elephant Search Algorithm (ESA) 

This algorithm has been formed based on the behavioural charac-
teristics of elephants. It uses the ideas of the dual search method. One 
group of the elephant may be partitioned into other clans. Each clan has 
one leader who is the oldest of the group. The characteristics of these 
clans are adapted to form this algorithm. One of the basic characteristics 
of the elephant group is female ones forms a family group whereas male 
ones keep themselves isolated from others. This algorithm possesses 
three main characteristics namely refining of solution in different iter-
ation to find out the near-to-optimal solution, local searches are done 
mostly by the main female elephants thus the probability of finding the 
best solution increases, male elephants find out the local optima (Deb 
et al., 2015; Panda, 2020). ESA is formulated based on the characteris-
tics of elephants and discussed below (Fig. S3) - 

The group or clan of elephants is represented by Aclan. Now 
considering elephant m in the clan. This can be written as- 

Pnew,clan,m =Pclan,m + c.
(
Pbest,clan − Pclan,m

)
.d 

In the above equation, Pnew,clan,m is the new position of the elephant m 
in the group, whereas Pclan,m is the old position for the same elephant. 
The extent of influence of clan on Pclan,m is determined by a factor, 
c ∈ [0, 1]. Pbest,clan depicts the clan, c ∈ [0, 1]. If Pclan,m = Pbest,clan then the 
below-mentioned expression can be used to describe the fittest elephant- 

Pnew,clan,m = ∝.Pcentre,clan 

The influence of Pcentre,clan on Pnew,clan,m is determined by ∝ ∈ [0, 1]. The 
below mentioned mathematical form represent the c-th dimension of 
Pnew,clan,m. 
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Pcentre,clan,c =
1

kclan

∑kclan

m=1
Pclan,m,c 

1 ≤ c ≤ C indicates c-th dimension and C being the total dimension. 
kclan is the total number of elephants in the clan. Pclan,m,c is the c-th of the 
elephant Pclan,m. 

Male adult elephants live in isolation. It is like solving a complex 
problem separating the operator. It is assumed that the least fit elephant 
will act as the separating operator. It can be expressed as: 

Pl,clan=Pmin + (Pmax − Pmin + 1).Rand  

where Pmax being the upper bound position of elephant, and Pmin being 
the lower bound position of the elephant. The least fit elephant is rep-
resented by Pl,clan. Rand ∈ [0, 1] represents the stochastic distribution. 

7.4. Grey Wolf Optimization (GWO) algorithm 

7.4.1. Inspiration analysis 
This algorithm is developed recently as and it is s meta-heuristic 

type. Taking inspiration from the grey wolf characteristics like hunt-
ing as well as social leadership this algorithm is has been formed. In a 
group of grey wolves, there is a leader (α) in the group who makes 
several decisions like hunting and place of sleeping. There is another 
wolf (β) who supports the leader to make decisions. There is another 
wolf (ω) who communicates with other wolves to pass on the decisions 
made. All the other wolves in the group are represented by (δ) (Mirjalili 
et al., 2014). There are several phases of this algorithm (Fig. S4) which 
are:  

a. Tracking, chasing and approaching the prey  
b. Pursuing, encircling and harassing the prey  
c. Attacking the prey 

α is the fittest solution of the algorithm. Similarly, β, δ being the 
second, third-best solution respectively. The other candidate solutions 
are ω. 

7.4.2. The mathematical model of GWO 
In search of the near-to-optimal solution, the social characteristics of 

the grey wolf have been adapted. 

7.4.3. Encircling prey 
The following equations describe the mathematical modelling of the 

encircling character. 

D=
⃒
⃒P.Apr(t) − A(t)

⃒
⃒

A(t+ 1)=Apr(t) − M.D  

where t is the current iteration. M and P are the coefficient vectors. Apr is 
the position vector of the prey. The position vector of the grey wolf is 
represented by A.

7.4.4. Exploration phase: searching for the prey 
Identification of the position of i, j, l wolf is the key factor of this 

algorithm. To model the divergence, let us suppose, the random values 
of M greater than 1 or less than − 1. Another component of this algorithm 
is P, the value of the P vector is random and in the interval [0,2]. P 
vector helps in getting the local optima in final iterations. 

7.4.5. Attacking prey 
To design this model mathematically, there should be a linear in-

crease of value m, M has the random value in [-m,m] if | (|M|< 1) 1, then 
in this algorithm the wolves will be able to attack the prey. 

7.4.6. Hunting 
The mathematical model of the hunting character of the grey wolf 

can be described as keeping the first three best solutions and therefore 
updating their position in respect to the position of best search agent. 
The mathematical expression is written below- 

Dα = |P1.Aα − A|, Dβ =
⃒
⃒P2.Aβ − A

⃒
⃒, Dδ = |P3.Aδ − A|

A1 =Aα − A1.Dα, A2 = Aβ − A2.Dβ, A3 = Aδ − A3.Dδ  

A(t+ 1)=
A1 + A2 + A3

3 

So, to design this algorithm, at first the population of grey wolves 
needs to be created. Alpha, beta, and delta wolves can find the prey 
position with iterations. After that candidate solutions make their po-
sition in respect to prey. If |P| ≥ 1, then the candidate solution diverges 
from the prey. If (|M|< 1), then the solution converges to the prey. The 
last step of this algorithm is to find the near-to-optimal solution. 

7.5. Ant colony optimization 

The capability of ants to obtain the shortest route of the nest to the 
source is the basis of this algorithm. Pheromone is a chemical compound 
secreted from ant to trace the path. Each arc (k,l) of the graph D = (Q, X) 
having associated variable γk,l is the pheromone trail. The pheromone 
intensity reflects arc utility to get a better solution. At any random node, 
ant takes a stochastic decision to select the next node (Fig. S5) (Zhao 
et al., 2021). All arcs are subjected to a constant amount of pheromone 
(γkl = 1,  £  (k,l) = X) initially. The probability of the m-th ant at node k 
choosing node j using pheromone trail γk,l- 

dij(m)=

⎧
⎪⎪⎨

⎪⎪⎩

γβ
ij∑

p∈Qm
l

γβ
ij

if l = Qm
k

0 if l ∕= Qm
k  

Qm
k is the neighbour of the m ant when its position is at k-th node. All 

nodes are connected to the neighbour of m-th node except the prede-
cessor node. This in turn informs the unidirectional path of the ants. For 
the destination node it is different, where Qm

k is null the predecessor of 
node m is included. With each iteration, the pheromone level is updated 
by- 

γkl(m+ 1)= θγkl(m) + μγkl(m)

0≤ θ <1 and 1-θ is the pheromone evaporation rate, μγkl is the per-
formance of each ant. 

In an experiment with flowering tea, it has been observed by re-
searchers that to determine the appropriate wavelength near-infrared 
spectroscopy measurement of anthocyanin for the said sample (Xiao-
wei et al., 2014), ACO is the best choice algorithm. Scholars have studied 
that to get the maximum yield ACO can be utilized, this algorithm will 
help to select the optimal gene knockout option (Tang et al., 2015). 
Alteration of microorganism genes will generate chemicals, this the 
methodology of gene knockout. Lactate and succinate are the chemicals 
generated in this study. To get the maximum yield, it is important to 
study the number of the gene which have been altered. This algorithm 
will help in finding the best gene knockout level. Researchers have used 
this algorithm in the optimization of the production planning of the 
bakery industry. The aim is to design a no wait hybrid flow shop model 
(Swangnop et al., 2019). With the help of this model, the idle time of the 
machines can be reduced. According to this model, the completion time 
is calculated as the initiation time and processing time for each product 
in each processing stage. 
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7.6. Differential evolution 

Similar to the genetic algorithm differential evolution also uses the 
operators-crossover, mutation, selection. The significant difference be-
tween these two algorithms is DE is based on mutation operation 
whereas genetic algorithm is based on crossover (Deng et al., 2021). The 
DE process (Fig. S6) comprises of the following steps: (1) initialize 
population, (2) evaluation, (3) repeat, (4) mutation, (5) recombination, 
(6) evaluation, (7) selection, (8) until requirements are met. In muta-
tion, each M parameter vector is subjected to mutation. The following 
equation represents the solution vector ai

→. 

ai
→= ar1 + D(ar3 − ar2)

The scaling factor D has values in the range [0,1]. The randomly 
chosen solution vectors are ar1, ar2, ar3. The following condition is to be 
satisfied- 

ar1, ar2, ar3 | r1∕= r2∕= r3 ∕= i 

i being the current index solution. 
In crossover, a trial vector is produced following the below- 

mentioned equation by mixing the parent vector with the mutated 
vector. 

bi
k =

⎧
⎨

⎩

ai
k

→

ai
k

Mk ≤ Ck  

Ck being the crossover constant. Mk is a random real number in the 
range [0,1]. k is the k-th component of the corresponding array. 

The solutions can be selected as parents. After mutation and cross-
over, the child produced is evaluated. Comparing parent and child 
vectors it is decided which one is better. 

In lipase and laccase production, researchers have used this optimi-
zation technique for the optimization of the production parameters 
(Bhattacharya et al., 2011; Roy et al., 2020). 48 has developed a model 
for the independent variables. Similarly for the independent variables 
are in experiments using RSM (Bhattacharya et al., 2011). Using DE the 
models are optimized hence the near-to-optimal production variables 
are received. Optimization of a feeding trajectory problem was done by 
scholars using multiple population-based algorithms (Sonego et al., 
2017). In a fed-batch reactor, this was used to find out the 
near-to-optimal feed rate profile. In this problem, process variables are 
defined by using multiple dynamic mathematical functions. In order to 
maximize the final product yield PSO, DE, an evolutionary algorithm 
was used to find out the feed rate. To compare the results of the algo-
rithms a pre-defined performance index function was used. To optimize 
the temperature profile of beer production by fed-batch fermentation 
method researchers has used DE (Oonsivilai and Oonsivilai, 2010). They 
have estimated the effect of temperature profiles in the fermentation 
process with help of a kinetic model on the basis of experimental data 
obtained. 

7.7. Genetic algorithm 

If in an optimization problem, there are some fixed inputs and for 
that task needs to have a function value of h. each population m is a set 
of inputs, with a function value of hi. GA is designed in such a way that it 
will get an input sets, the value of which is closer to desirable value h. 
The error in the value of h and hi is required to be minimized (Chai et al., 
2021; Shrestha and Mahmood, 2019). For the i-th individual, the fitness 
value is- 

fiti =
1

1 + |h − hi|

Based on the fitness score the individuals are selected, and this 
process is called reproduction. It may also be represented as ‘roulette 

wheel selection’ for each individual piece of the wheel is selected ac-
cording to the fitness value. The high fitness value function is in a po-
sition to be selected first if from a point the rotation of the wheel is 
observed. 

The selected individuals are combined together with the help of 
genetic operators like mutation and crossover. The crossover probability 
having a range of 0.6–0.8. 

With each generation that is algorithmically equivalent to iterations, 
the algorithm will give better solutions (Fig. S7). 

The controlling factors of the termination of programs are either any 
termination criterion or the maximum number of generations. If the 
average fitness to maximum fitness ratio in a generation exceeds the 
threshold, then it may be considered as a realistic termination criterion. 
The solution for the optimization problem achieved from encoded var-
iables of the final generation. 

In an experiment of pre-treatment of French fries with microwave 
drying the RSM, a model has been developed with the experimental data 
therefore GA was used to optimize it. Researchers have utilized this al-
gorithm in RSM modelling of extrusion of fish and rice flour for the 
optimization of process variables (Al-Obaidi et al., 2017; Dokeroglu 
et al., 2019; Tumuluru et al., 2013). Researchers have utilized this 
method to resolve the time management issue of a single machine 
resource utilization constraint as multi-objective optimization (Tumu-
luru and McCulloch, 2016). Freshness, make span, distribution discount 
costs are the objectives. The problem may be stated as the encoding of 
schedule into gene and for each population, multiple solution schedule 
has been observed. Scholars have used this algorithm in addition to the 
local search approach in pharmaceutical production where optimization 
of a scheduling problem in batch production is done (Costa, 2015). 
Optimization of the make span objective was done and the constraints 
were changed over time, processing intervals and other setup times. The 
algorithm helps to find out the appropriate schedules and iteration based 
local searches to get the schedule solutions. The researcher has shown 
that in hyperspectral imaging of food the application of the algorithm 
lowers the computational burden and improve the accuracy (Dai et al., 
2015). Hyperspectral imaging is a combination of two methods namely 
spectroscopy and computer vision or imaging. This algorithm has an 
application in the dairy industry where the GA help in optimizing the 
multiobjective routing problem. The objectives are CO2 emission and 
the total cost of transportation. The aim of using the algorithm is to find 
the best route which can meet customer demand. Modified GA was used 
by scholars to solve the multi-objective two layers sustainable distri-
bution model (Validi et al., 2015). Inventory management problem of 
fresh food product in a supermarket and is solved by the application of 
the algorithm. They also used this algorithm for the prediction of food 
demand after a disaster. Optimization of the quality parameters in 
flatbread processing was done by (Castañeda-Valbuena et al., 2021). 
They also used this algorithm to optimize the total phenolics and 
anthocyanin yield in an extraction process of phenolics by ultrasound. 

7.8. Particle swarm optimization 

Social behaviour and characteristics of birds, insects fish influence 
the PSO. For survival purposes, these animals need to optimize their 
adaption. In any situation, they can optimize to any random environ-
ment (Cao et al., 2019; Sarkar et al., 2021). This is the basis of PSO 
(Fig. S8). 

Each no of agents are assigned to a particle number I and their po-
sition may be located in the coordinates in n-dimension. The imaginary 
velocity of these particles is considered as their position to the optimal 
position. For a number of iterations, it is considered that particle ve-
locity is u and position p. After each iteration velocity and position are 
updated as follows: 

pi(a+ 1)= pi(a) + ui(a+ 1)
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ui(a+ 1)= eiui(a)+ cg1r1(ui− best − ui(a))+ cg2r2
(

where, ei is the inertia possessed by each particle 

ui− best is the best location the particle 
ug best is the best location amongst the particles of a whole swarm 
cg1 is the cognitive weight that represents the individual thinking of 
the particle 
cg2 is the social weight for the swarm ug best , it represents the 
collaboration among particles. 
r1, r2 are the random values in the range [0,1] 

In protein extraction of enzymatically pre-treated oat bran, PSO has 
been utilized to determine the near-to-optimal solution with respect to 
enzyme factors. To determine the factors from the experimental data a 
mathematical model was prepared using RSM and the optimization is 
done through PSO (Liu et al., 2008). To optimize the parameters of a 
mathematical model used in the determination of the weight of wheat 
dough during proofing (Zettel et al., 2016). Researchers have used this 
algorithm along with GA in an experiment of fluidized bed drying to 
determine the heat and mass transfer coefficient (Vitor and Gomes, 
2011). To minimize the error in the experimental data and the data 
obtained from the three-phase drying differential model. To determine 
the near-to-optimal solution quality factor in deep fat frying process 
control of ostrich meat (Amiryousefi et al., 2014). To optimize the 
planning as well as distribution of perishable products PSO was used by 
(He et al., 2018). For the planning, part LINGO software was used. PSO 
was used for the distribution part. Researchers also used the LINGO +
PSO model to optimize the production and transport cost of the agri-food 
supply chain network (Esteso et al., 2018). To optimize the 
multi-objective routing problem PSO has been used. PSO, Variable 
neighbour search optimization with mathematical programming was 
used for this problem (Zhalechian et al., 2016). 

7.9. The artificial bee colony algorithm 

There are three types of bees seen in the artificial bee colony. The 
employed bees have a food source. Onlooker bees are those observe the 
dance of employed bee to find a food source. The last ones are scout bees 
who search for food sources randomly. Scout bees initially search the 
sources of food. After that employed bees and onlooker bees exhaust the 
nectar of food source in due course. After the food source is totally 
exhausted the employed bees turn to scout bees to find another food 
source. In this algorithm, the possible solution to a particular problem is 
the food source. The quality or fitness of the solution is the nectar 
amount present in the food. Each employed bee is assigned to only one 
food source. Hence the number of employed bees represents the number 
of food sources or solutions (Fig. S9) (Hussain et al., 2018). 

7.9.1. Initialization phase 
The vectors of the population food sources are represented by →

ap 
are 

started by scout bees and other control parameters. In the optimization 
problem, the solution vector is →

ap
. Each →

ap 
vector having m variables that 

required to be optimized. This can be represented as: 

api = lbi + rand(0, 1)∗(ubi − lbi)

ubi is the upper bound limit of the parameter api and lbi is the lower 
bound limit of parameter api. 

7.9.2. Employed bees phase 
In the close proximity of food source →

ap 
employed bees will search for 

another food source bp
→

. After finding the new source the fitness is 
evaluated. Determination of the new food source can be obtained from 

the following equation- 

bpi = api + ∅pi
(
api − aki

)

ak
→ is any food source selected randomly. i is a parameter index 

chosen randomly. The random number ∅pi has a range of … the fitness is 

calculated after the new source of food bp
→

is produced, in between the 

two food sources namely, bp
→

, ap
→ a greedy selection applied. 

From the below-mentioned formula the fitness value of the solution 
fitnp(ap

→
) can be evaluated. 

fitnp
(
ap
→)

=

⎧
⎪⎨

⎪⎩

1
1 + fa

(
ap
→) if fa

(
ap
→)

≥ 0

1 + absl
(
fa
(
ap
→))

if fa
(
ap
→)

< 0 

fa(ap
→
) represents the objective function value of the solution ap

→. 

7.9.3. Onlooker bees phase 
Unemployed bees are of two types: onlooker bees and scout bees. 

Based on the information provided by employed bees the onlooker bees 
try to find the food sources. In this algorithm, based on the probable 
values calculated from the fitness value of the employed bees, onlooker 
bees find a new food source. The roulette wheel selection method can be 
employed in such cases. 

The following expression is used to calculate the probability value 
probp. 

probp =
fitnp

(
ap
→)

∑SN
a=1fitnp

(
ap
→)

The fitness value of neighbourhood source bp
→

is determined when the 
onlooker bees find the food source ap

→. More onlooker bees are engaged 

to richer sources as the greedy selection is done between bp
→

, ap
→. Thus, 

there is a positive feedback behaviour. 

7.9.4. Scout bees phase 
Employed bees turn to scout bees in the specific situation. When the 

solutions of employed bees are not in a state to improve them with some 
predefined number of trials then they are called “abandonment criteria” 
or “limit”. Eventually, they are called scout bees. After the employed 
bees turn to scout bees they find new solutions randomly. The exploited 
sources are abandoned and positive feedback is balanced by arising 
negative feedback behaviour. 

7.10. Microorganism based potential algorithms may useful in food 
processing industries 

7.10.1. Artificial Algae Algorithm (AA) 
The algae growth generally follows the direction of light, they can 

adapt to the changes in the environmental conditions, and follows a 
helical movement pattern. The AA mimics these three basic character-
istics of algae and the algorithm is segmented into three parts namely 
evolutionary phase, environmental adaptation and helical migration 
(Uymaz et al., 2015). The protocol is represented in Fig. 3. It is an al-
gorithm with balanced search characteristics. Due to the mix up of 
evolutionary and adaptation processes the algorithm is capable of 
avoiding the local minima problem. The algorithm is thus helpful in food 
processing optimization problems as it uses the helical movement to find 
a new solution for a given problem with the aid of a) diversity increase 
by tournament method, b) changes in size that may provide an increase 
in sensitivity, c) greedy selection based local optima searching. 

7.10.2. Bacterial foraging optimization 
The bacteria always try to approach the highest nutrient source by 

chemotaxis (tumbling and swimming) movement and the reproductive 
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phase is initiated followed by the final dispersal or elimination phase 
(Ganguli et al., 2021). The protocol is represented in Fig. 4. 

7.10.3. Bacterial-GA foraging 
The bacterial forage system and genetic algorithm are amalgamated 

in this algorithm to find the best optimum value (Chen et al., 2007). The 
flowchart for the algorithm is as follows (Fig. 5). 

7.10.4. Slime mould algorithm (SM) 
Slime mould (Physarum polycephalum) extends their front ends in 

search of food. They also can divide themselves in search of diversified 
food sources. According to the nutrient requirement, they can adapt 
themselves to a region-limited exploration mechanism. The SM is 
segregated into three distinct phases namely approach food, wrap food 
and oscillation phase (S. Li et al., 2020). The flowchart (Fig. 6) for 
operational steps of SM is as follows. 

7.10.5. Virus optimization (VO) algorithm 
It is a population-based technique, where the process of infection 

through the virus attack is mimicked. The replication process of the 
viruses is dynamic in nature while the host cell is protected by an 
antivirus mechanism. When the maximum virus replication is achieved 
or when the cell is dead then the near-to-optimal solution is reached 
(Liang and Cuevas Juarez, 2016). The process flowchart (Fig. 7) is 
represented as follows. Table 5 represents the key features and the 
setting parameters for the BOTs discussed. 

Apart from these techniques some more microorganism based opti-
mization techniques are explored by researchers like fast bacterial 
swarming (Molina et al., 2020), magnetotactic bacteria (Dokeroglu 
et al., 2019), viral systems (Ezugwu et al., 2021) and coronavirus opti-
mization algorithm (Martínez-Álvarez et al., 2020). 

8. Statistical indexes for performance analysis 

From the perspective of a food industry expert the performance of 
the BOTs are important, as the near-to-optimal solutions will be 

Fig. 3. Flowchart for the artificial algae optimization algorithm.  

Fig. 4. Flowchart for the bacterial foraging optimization algorithm.  

Fig. 5. Flowchart for the bacterial-GA foraging optimization algorithm.  
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considered for the process design, operational policy determination or 
model prediction. Thus, they need to run experiments with the near-to- 
optimal solution obtained from the optimizer. Therefore, several sta-
tistical indexes should be used to analyse or compare different BOTs. 

Fig. 6. Flowchart for the slime mould optimization algorithm.  

Fig. 7. Flowchart for the virus optimization algorithm.  
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8.1. Basic descriptive analysis 

Quantile analysis, central tendency, Harrell-Davis quantile esti-
mator, median absolute deviation, outlier detection, Wilcoxon tests 
(Saha et al., 2017; Shabani et al., 2019), Friedman’s test (Peng et al., 
2017) (non-parametric hypothesis testing) are few techniques used 
extensively. 

8.2. Prediction error analysis 

Mean absolute error, mean standard error, root mean squared error, 
coefficient of determination, and adjusted R2 are used most frequently to 
evaluate the prediction error of the models (Dehghani et al., 2021; Maiti 
and Bidinger, 1981). 

9. Conclusions 

Optimization in food processing is generally carried out with statis-
tical approaches, but efficient BOTs are gradually increasing their share 
in solving process optimization problems. These robust, efficient and 
adaptive algorithms are capable enough to find the optimum process 
condition or output response. Researchers adopted different approaches 
to find the near-optimum solutions which is summarised along with the 
supporting statistical indices such as error percentage, MSE, MAE, R2, 
and RMSE to validate the model performance; from their observations, it 
is obvious that these techniques may simulate the process efficiently to 
find the near-to-optimal value. Stochastics searching is the basis for most 
of these algorithms, the initial set of vectors are randomly generated 
(initial population). The difference between them lies in the fact that the 
vector recombination function (mathematical model on which the bio- 
inspired is based e.g. Elephant, Whale, Wolf, Microorganisms, etc). 
And the balance that the algorithm design has between exploration and 
exploitation in the solution search space. There is no generic meta-
heuristic algorithm that will perform well for each food process opti-
mization problem. That is the main driving force behind the continuous 
development of new metaheuristic algorithms. 
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Abakarov, A., Nuñez, M., 2013. Thermal food processing optimization: algorithms and 
software. J. Food Eng. 115 (4), 428–442. https://doi.org/10.1016/j. 
jfoodeng.2012.02.013. 

Aghbashlo, M., Mobli, H., Rafiee, S., Madadlou, A., 2012. Optimization of emulsification 
procedure for mutual maximizing the encapsulation and exergy efficiencies of fish 

Table 5 
Setting parameters and the key features of the bio-inspired optimization 
techniques.  

Bio-inspired 
optimization 
techniques 

Setting parameters Key Features 

Fish Swarm 
algorithm 

Crowd factor 
Distance 
Step length 

Higher accuracy, higher fault 
tolerability, and flexible; 
Time complexity is higher, 
Inconsistency in local and global 
search 

Whale optimization 
algorithm 

Population size 
Iterations 

It has the potential to achieve a 
global optimal solution while 
avoiding local optima. An ideal 
technique for tackling many 
unconstrained and/or constrained 
optimization problems without 
requiring fundamental 
reconstruction. 
Premature convergence 

Elephant Search 
Algorithm 

Population size 
Iterations 
Generation number 

Semi-swarm type of algorithm 

Grey Wolf 
Optimization 

Population size 
Iterations 
Problem dimension 
Position 

Simple structure and simple to 
implement, lower computing 
requirements and storage. 
sluggish rate of convergence, poor 
capability of local search 

Ant colony 
optimization 

Population size 
rate of pheromone 
evaporation 
reinforcement 
amount 

Inherent parallelism, suitable for 
dynamic applications. 
Iteration affects the probability 
distribution. 

Particle swarm 
optimization 

Particle number 
Iterations 
Learning factor 
Inertial weight 

No calculation related with 
mutation and overlapping. 
The approach is incapable of 
resolving non-coordinate system. 

Genetic algorithms Population size 
Chromosome length 
Number of 
generation 
Probability of cross 
over and mutation 

Easy to understand, suitable for 
multi-objective problem. 
Time consuming and difficult to 
attain the objective function. 

Artificial Bee 
Colony Algorithm 

Number of onlooker 
bees 
Number of maximum 
cycle 

Ability to explore adequately and 
simple 
Inappropriate exploitation in the 
solution of complex problems 

Artificial Algae 
Algorithm 

Population size 
Adaptation 
parameters 
Energy loss 
Shear force 

Semi-random selection has been 
considered while selecting the light 
source in order to avoid local 
minima. It has been tested for real- 
world problem and achieved good 
results. 

Bacteria Foraging Population size 
Iterations 
chemotactic steps 
Search space 
dimension 
Reproduction 
number 

Suitable for continuous 
optimization 
Constant step size, there is a chance 
to end up at the local optimal rather 
than the global optimum. 

Bacterial-GA 
Foraging 

Elimination 
Times 
Mutation rate 
Swim length 
Elimination rate 

It has been tested for real-world 
problem and achieved good results. 

Slime Mould 
Algorithm 

Population size 
Iterations 
Position 

Promising method to achieve the 
optimal solution efficiently. 
Convergence speed is inconsistent, 
search accuracy is imprecise 

Virus optimization Population size 
Iterations 
Disease statistics 

The input parameters have already 
been defined, prohibiting 
researchers from entering random 
values. The approach can stop after 
a certain number of iterations.  

T. Sarkar et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.crfs.2022.02.006
https://doi.org/10.1016/j.crfs.2022.02.006
https://doi.org/10.1016/j.jfoodeng.2012.02.013
https://doi.org/10.1016/j.jfoodeng.2012.02.013


Current Research in Food Science 5 (2022) 432–450

448

oil microencapsulation. Powder Technol. 225, 107–117. https://doi.org/10.1016/j. 
powtec.2012.03.040. 

Akerkar, R., Sajja, P.S., 2009. Bio-inspired computing: constituents and challenges. Int. J. 
Bio-Inspired Comput. 1 (3), 135–150. https://doi.org/10.1504/IJBIC.2009.023810. 

Al-Betar, M.A., Alyasseri, Z.A.A., Awadallah, M.A., Abu Doush, I., 2021. Coronavirus 
herd immunity optimizer (CHIO). Neural Comput. Appl. 33 (10), 5011–5042. 
https://doi.org/10.1007/s00521-020-05296-6. 

Al-Obaidi, M.A., Li, J.P., Kara-Zaïtri, C., Mujtaba, I.M., 2017. Optimisation of reverse 
osmosis based wastewater treatment system for the removal of chlorophenol using 
genetic algorithms. Chem. Eng. J. 316, 91–100. https://doi.org/10.1016/J. 
CEJ.2016.12.096. 

Almonacid, B., Soto, R., 2019. Andean Condor Algorithm for cell formation problems. 
Nat. Comput. 18 (2), 351–381. https://doi.org/10.1007/s11047-018-9675-0. 

Alsattar, H.A., Zaidan, A.A., Zaidan, B.B., 2020. Novel meta-heuristic bald eagle search 
optimisation algorithm. Artif. Intell. Rev. 53 (3), 2237–2264. https://doi.org/ 
10.1007/s10462-019-09732-5. 

Alshamlan, H.M., Badr, G.H., Alohali, Y.A., 2015. Genetic Bee Colony (GBC) algorithm: a 
new gene selection method for microarray cancer classification. Comput. Biol. Chem. 
56, 49–60. https://doi.org/10.1016/j.compbiolchem.2015.03.001. 

Alyasseri, Z.A.A., 2022. Coronavirus herd immunity optimizer (CHIO). https://www. 
mathworks.com/matlabcentral/fileexchange/85710-coronavirus-herd-immun 
ity-optimizer-chio. (Accessed 8 February 2022). MATLAB Central File Exchange. 
Retrieved.  

Amiryousefi, M.R., Mohebbi, M., Khodaiyan, F., Ahsaee, M.G., 2014. Multi-objective 
optimization of deep-fat frying of ostrich meat plates using multi-objective particle 
swarm optimization (MOPSO). J. Food Process. Preserv. 38 (4), 1472–1479. https:// 
doi.org/10.1111/jfpp.12106. 

Arora, S., Singh, S., 2019. Butterfly optimization algorithm: a novel approach for global 
optimization. Soft Comput. 23 (3), 715–734. https://doi.org/10.1007/s00500-018- 
3102-4. 

Asgari, S., Sahari, M.A., Barzegar, M., 2017. Practical modeling and optimization of 
ultrasound-assisted bleaching of olive oil using hybrid artificial neural network- 
genetic algorithm technique. Comput. Electron. Agric. 140, 422–432. https://doi. 
org/10.1016/j.compag.2017.06.025. 

Banga, J.R., Balsa-Canto, E., Moles, C.G., Alonso, A.A., 2003. Improving food processing 
using modern optimization methods. In: Trends in Food Science & Technology, 14. 
Elsevier Ltd, pp. 131–144. https://doi.org/10.1016/S0924-2244(03)00048-7. Issue 
4.  

Benbouzid-Si Tayeb, F., Bessedik, M., Benbouzid, M., Cheurfi, H., Blizak, A., 2017. 
Research on permutation flow-shop scheduling problem based on improved genetic 
immune algorithm with vaccinated offspring. Procedia Comput. Sci. 112, 427–436. 
https://doi.org/10.1016/j.procs.2017.08.055. 

Bhardwaj, S., Kim, D.-S., 2021. Dragonfly-based swarm system model for node 
identification in ultra-reliable low-latency communication. Neural Comput. Appl. 33 
(6), 1837–1880. https://doi.org/10.1007/s00521-020-05056-6. 

Bhattacharya, S.S., Garlapati, V.K., Banerjee, R., 2011. Optimization of laccase 
production using response surface methodology coupled with differential evolution. 
N. Biotech. 28 (1), 31–39. https://doi.org/10.1016/j.nbt.2010.06.001. 

Binitha, S., Sathya, S., 2012. A survey of bio inspired optimization algorithms. Int. J. Soft 
Comput. Eng. 2 (2), 137–151. 

Bogar, E., Beyhan, S., 2020. Adolescent Identity Search Algorithm (AISA): a novel 
metaheuristic approach for solving optimization problems. Appl. Soft Comput. 95, 
106503 https://doi.org/10.1016/j.asoc.2020.106503. 

Bonah, E., Huang, X., Hongying, Y., Aheto, J.H., Yi, R., Yu, S., Tu, H., 2020. Detection of 
Salmonella Typhimurium contamination levels in fresh pork samples using 
electronic nose smellprints in tandem with support vector machine regression and 
metaheuristic optimization algorithms. J. Food Sci. Technol. 1–10. https://doi.org/ 
10.1007/s13197-020-04847-y. 

Bonah, E., Huang, X., Yi, R., Aheto, J.H., Osae, R., Golly, M., 2019. Electronic nose 
classification and differentiation of bacterial foodborne pathogens based on support 
vector machine optimized with particle swarm optimization algorithm. J. Food 
Process. Eng. 42 (6), e13236 https://doi.org/10.1111/jfpe.13236. 

Braik, M., Ryalat, M.H., Al-Zoubi, H., 2021. A novel meta-heuristic algorithm for solving 
numerical optimization problems: ali Baba and the forty thieves. Neural Comput. 
Appl. https://doi.org/10.1007/s00521-021-06392-x. 

Cao, Y., Zhang, H., Li, W., Zhou, M., Zhang, Y., Chaovalitwongse, W.A., 2019. 
Comprehensive learning particle swarm optimization algorithm with local search for 
multimodal functions. IEEE Trans. Evol. Comput. 23 (4), 718–731. https://doi.org/ 
10.1109/TEVC.2018.2885075. 
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Dehghani, M., Montazeri, Z., Hubálovský, Š., 2021. GMBO: group mean-based optimizer 
for solving various optimization problems. Mathematics 9 (Issue 11). https://doi. 
org/10.3390/math9111190. 

Deng, W., Shang, S., Cai, X., Zhao, H., Song, Y., Xu, J., 2021. An improved differential 
evolution algorithm and its application in optimization problem. Soft Comput. 25 
(7), 5277–5298. https://doi.org/10.1007/S00500-020-05527-X, 2021, 25(7).  

Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A., 2019. A survey on new generation 
metaheuristic algorithms. Comput. Ind. Eng. 137, 106040 https://doi.org/10.1016/ 
J.CIE.2019.106040. 

Dubey, M., Kumar, V., Kaur, M., Dao, T.-P., 2021. A systematic review on harmony 
search algorithm: theory, literature, and applications. Math. Probl Eng., 5594267 
https://doi.org/10.1155/2021/5594267, 2021.  

ElKomy, M., 2021. A survey on (stochastic fractal search) algorithm, 1–10. http://arxiv. 
org/abs/2102.01503. 

Enitan, A.M., Adeyemo, J., 2011. Food processing optimization using evolutionary 
algorithms. Afr. J. Biotechnol. 10 (72), 16120–16127. https://doi.org/10.5897/ 
AJB11.410. 

Esteso, A., Alemany, M.M.E., Ortiz, A., 2018. Conceptual framework for designing agri- 
food supply chains under uncertainty by mathematical programming models, 56, 
pp. 4418–4446. https://doi.org/10.1080/00207543.2018.1447706, 13.  

Ezugwu, A.E., Shukla, A.K., Nath, R., Akinyelu, A.A., Agushaka, J.O., Chiroma, H., 
Muhuri, P.K., 2021. Metaheuristics: a comprehensive overview and classification 
along with bibliometric analysis, 2021 Artif. Intell. Rev. 54 (6), 4237–4316. https:// 
doi.org/10.1007/S10462-020-09952-0, 54(6).  

Ganguli, S., Kaur, G., Sarkar, P., 2021. Global heuristic methods for reduced-order 
modelling of fractional-order systems in the delta domain: a unified approach. 
Ricerche Matemat. 2021, 1–29. https://doi.org/10.1007/S11587-021-00644-7. 

Geem, Z.W., Kim, J.H., Loganathan, G.V., 2001. A new heuristic optimization algorithm: 
harmony search. Simulation 76 (2), 60–68. https://doi.org/10.1177/ 
003754970107600201. 

Georgiadis, G.P., Ziogou, C., Kopanos, G., Pampín, B.M., Cabo, D., Lopez, M., 
Georgiadis, M.C., 2019. On the optimization of production scheduling in industrial 
food processing facilities. Comput. Aided Chem. Eng. 46 (June), 1297–1302. https:// 
doi.org/10.1016/B978-0-12-818634-3.50217-4. 
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