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Abstract
The majority of filarial nematodes harbour Wolbachia endobacteria, including the major pathogenic
species in humans, Onchocerca volvulus, Brugia malayi and Wuchereria bancrofti. These obligate
endosymbionts have never been demonstrated unequivocally in any non-filariid nematode.
However, a recent report described the detection by PCR of Wolbachia in the metastrongylid
nematode, Angiostrongylus cantonensis (rat lungworm), a leading cause of eosinophilic meningitis in
humans. To address the intriguing possibility of Wolbachia infection in nematode species distinct
from the Family Onchocercidae, we used both PCR and immunohistochemistry to screen samples
of A. cantonensis and A. costaricensis for the presence of this endosymbiont. We were unable to
detect Wolbachia in either species using these methodologies. In addition, bioinformatic and
phylogenetic analyses of the Wolbachia gene sequences reported previously from A. cantonensis
indicate that they most likely result from contamination with DNA from arthropods and filarial
nematodes. This study demonstrates the need for caution in relying solely on PCR for identification
of new endosymbiont strains from invertebrate DNA samples.

Findings
Wolbachia endobacteria infect most species of insect and
are present in other arthropod groups as well as in most
filarial nematode species. Phylogenetic analyses currently
indicate as many as eight distinct Wolbachia lineages, des-
ignated supergroups A to H, along with some other line-
ages whose taxonomic position remains unresolved [1,2].
Arthropod Wolbachia are found in all supergroups except
C and D, with the majority of insect Wolbachia strains in
supergroups A and B. Wolbachia from filarial nematodes
are exclusively in supergroups C and D with the exception

of endosymbionts from Mansonella spp., which are in
supergroup F along with the Wolbachia from certain ter-
mites.

The association between Wolbachia and filarial nematodes
appears to be one of mutualism, probably of an obliga-
tory nature [3]. Elimination of the endosymbionts by
antibiotic treatment disrupts embryogenesis and hence
microfilarial production, disrupts growth and develop-
ment, and leads to macrofilaricidal effects. Wolbachia are
also implicated in the immunopathology of infected per-
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sons and may contribute to the inflammatory adverse
events seen after standard anti-filarial chemotherapy [3].
Thus, targeting the Wolbachia endosymbiont has emerged
as an attractive new strategy for filarial disease control [3].

Until recently, despite extensive investigation of diverse
nematode groups, there had been no identification of
Wolbachia in any non-filariid nematode [4,5]. However,
Wolbachia ftsZ, wsp (Wolbachia surface protein) and 16S
rDNA sequences were recently amplified by PCR from
DNA preparations of the metastrongylid nematode, Angi-
ostrongylus cantonensis [6]. Based on phylogenetic analysis
of the wsp sequence, the apparent endosymbiont from A.
cantonensis appeared to have a lineage distinct from the
filarial Wolbachia (supergroups C, D or F) and was tenta-
tively positioned in supergroup G, containing the Wol-
bachia from certain spiders such as Diaea circumlita. Both
A. cantonensis and A. costaricensis are occasional pathogens
of humans, the former a leading cause of eosinophilic
meningitis in Asia and Pacific Islands while the latter pro-
duces abdominal disease in the Americas [7,8]. The unex-
pected detection of Wolbachia in A. cantonensis and the
medical implications of targeting this endosymbiont for
novel antibiotic therapies for control of eosinophilic men-
ingitis prompted us to investigate the status of Wolbachia
in the genus Angiostrongylus in more detail.

A. cantonensis was obtained from Prof. Kentaro Yoshimura
and maintained as a laboratory life-cycle in the Depart-
ment of Parasitology of the Akita University Medical
School. A. costaricensis strain "Santa Rosa" has been main-
tained in the Laboratório de Parasitologia Molecular,
Instituto de Pesquisas Biomédicas da PUCRS since 1992
(in mice and the wild rodent Oligoryzomis nigripes; veron-
icelid slugs and Biomphalaria glabrata snails). Adult Brugia
malayi (TRS labs) were used as a positive control for PCR
and immunohistochemistry

PCR analysis of Wolbachia genes from both A. cantonensis
and A. costaricensis adult worms showed no evidence that
either species harbours Wolbachia endosymbionts.
Genomic DNA from individual adult female A. cantonen-
sis and A. costaricensis, which had been stored in 80% eth-
anol, was isolated (QiaAmp® DNA mini kit, Qiagen) and
analysed for Wolbachia by PCR as previously described [6]
with modifications. PCR was carried out on a iCycler ther-
mocycler (Bio-Rad) using the following conditions: 95°C
for 4 min, followed by 40 cycles of 94°C for 15 s, 48°C
for 30 s, 72°C for 2 min, then 72°C for 10 min, using
primer pairs widely used for detection of Wolbachia from
diverse hosts, and previously used on DNA from A. canto-
nensis [6]. The following primers were used for amplifica-
tion of Wolbachia gene sequences: wsp (wsp81F; 5'-TGG
TCC AAT AAG TGA TGA AGA AAC-3' and wsp691R; 5'-
AAA AAT TAA ACG CTA CTC CA-3'); ftsZ (ftsZ357F; 5'-

CAA AAA TAT GTG GAT ACG CTC ATT GT-3' and
ftsZ788R; 5'-GTA GCA CCA AAT ATT ATA TTT GCA TTT
TC-3'); and 16S rRNA (16SwolbF; 5'-GAA GAT AAT GAC
GGT ACT CAC-3' and 16SwolbR3; 5'-GTC ACT GAT CCC
ACT TTA AAT AAC-3'). PCR reactions were performed in
25 μl containing 1 μl gDNA, 0.3 μM of each primer, 0.2
mM dNTPs, 1.5–3.0 mM MgCl2 and 0.625 U of Taq
polymerase (New England Biolabs [NEB]) in 1× reaction
buffer (NEB). Positive PCR amplification was shown
using DNA isolated from individual adult female B.
malayi, which are known to contain Wolbachia, thus dem-
onstrating that the primers and conditions were optimal
for Wolbachia detection. All DNA samples produced nem-
atode specific gene products. Angiostrongylus 18S rRNA,
based on GenBank sequences from A. cantonensis and A.
costaricensis ([GenBank:AY295804] and [Gen-
Bank:EF514913], respectively) was amplified with prim-
ers Ac18S 30F; 5'-AAG TGA AAC TGC GAA CGG CT-3' and
Ac18S 830R; 5'-TCA CCT CTC GCG CAG GGA TA-3',
while B. malayi gst was amplified as previously described
[9] using GST 1377; 5'-TGC TCG CAA ACA TAG TAA TAG
T-3' and GST 1632; 5'-ATC ACG GAC GCC TTC ACA G-3',
indicating that there was DNA at sufficient concentrations
for detection by standard one-round PCR.

In order to detect Wolbachia by immunohistochemistry, A.
cantonensis and A. costaricensis worms were fixed in 80%
ethanol and embedded in paraffin blocks. Sections were
stained using affinity purified anti-Wolbachia peptidogly-
can-associated lipoprotein (WoLP) antibodies and rabbit
polyclonal anti-sera raised to Wolbachia surface protein
(WSP) and visualized using the UltraVision ONE detec-
tion system (Lab Vision, ThermoFisher Scientific) using
haematoxylin as a counterstain. In contrast to the positive
staining observed in sections of B. malayi, both Angios-
trongylus species were found to be negative with each of
the Wolbachia-specific antibodies or antisera. It should be
noted that both of these reagents are able to detect Wol-
bachia in species as diverse as filarial nematodes and the
mosquito Aedes albopictus [[9-11], M. Taylor, unpublished
data], indicating that a lack of cross-reactivity to Wolbachia
found in Angiostrongylus is unlikely.

Because we were unable to reproduce the detection of
Wolbachia in Angiostrongylus spp by PCR or immunohisto-
chemistry, we analyzed in detail the sequences deposited
in the GenBank database as part of the earlier report [6].
Comparison of the wsp nucleotide sequence [Gen-
Bank:AY508980] to the non-redundant nucleotide data-
base (nr) using BLASTN revealed good identity (97%) to
the wsp sequence [GenBank:AY486092] from the putative
supergroup G Wolbachia from the spider, D. circumlita c2,
as described previously [6]. However, the best identity
(99%) was to wsp from the Wolbachia of the mosquito,
Malaya genurostris [GenBank:AY462865]. Wolbachia mul-
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tilocus sequence typing (MLST) has shown that phyloge-
netic inference based upon wsp sequences yields spurious
lineages due to the high levels of intragenic recombina-
tion in this gene [1]. MLST of the Wolbachia of the spider,
D. circumlita c2, indicates that this endosymbiont is more
correctly a member of supergroup A [1], and so too pre-
sumably is the Wolbachia from the mosquito, M. genuros-
tris.

We performed similar nucleotide comparisons of the 16S
[GenBank:AY652762] and ftsZ [GenBank:DQ159068]
sequences attributed to Wolbachia from A. cantonensis and
constructed phylogenetic trees for each. Wolbachia
sequences used for multiple alignments and phylogenetic
tree construction are as follows, with the first GenBank
sequence for each invertebrate host organism correspond-
ing to 16S and the second to ftsZ: Brugia malayi [Gen-
Bank:AJ010275], [GenBank:AJ010269]; B. pahangi
[GenBank:AJ012646], [GenBank:AJ010270]; Litomosoides
sigmodontis [GenBank:AF069068], [GenBank:AJ010271];
Onchocerca volvulus [GenBank:CU062464], Gen-
Bank:AJ276501]; O. gutturosa [GenBank:AJ276498],
[GenBank:AJ010266]; Dirofilaria immitis [Gen-
bank:Z49261], [GenBank:AJ010272]; Drosophila mela-
nogaster [GenBank: NC_002978.6; genome coordinates:
1167943–1169389], [GenBank:U28189]; D. simulans
wRiverside [GenBank:DQ412085], [GenBank:U28178];
Trichogramma cordubensis [GenBank:L02883], [Gen-
Bank:U28200]; Culex pipiens [Genbank:U23709], [Gen-
Bank:U28209]; Folsomia candida [GenBank:AF179630],
[GenBank:AJ344216]; Kalotermes flavicollis [Gen-
Bank:Y11377], [GenBank:AJ292345], Mansonella perstans
16S [GenBank:AY278355]; Mansonella sp. ftsZ [Gen-
Bank:AJ628414]. The underlined characters for each host
species represent the abbreviations shown in the trees. The
16S sequence attributed to Wolbachia from A. cantonensis
had highest nucleotide identity (99%) to Wolbachia 16S
from D. immitis [GenBank:Z49261]. This identity was bet-
ter than that between Wolbachia 16S sequences from sister
species within the genus Dirofilaria, namely D. immitis and
D. repens (98%). An equal match was detected for Wol-
bachia apparently from an engorged dog tick, Rhipicephalus
sanguineus [GenBank:AF304445], but since this tick lacks
Wolbachia [12], we propose that this Wolbachia sequence
derived from D. immitis acquired during a blood feed on
a heartworm-infected dog. The 16S phylogenetic tree
resolved supergroups A to F and confirmed the near iden-
tity of the sequence amplified from A. cantonensis to the
Wolbachia 16S from D. immitis (Figure 1a; see additional
file 1: Wolbachia 16S multiple sequence alignment – A.
cantonensis). The available 16S sequences for Wolbachia
from A. cantonensis and from D. circumlita are partial gene
sequences and have very little overlap with each other.
Therefore, we were unable to include D. circumlita Wol-
bachia 16S in the same alignment and phylogenetic tree as

the 16S reported from Wolbachia from A. cantonensis.
However, a separate alignment and tree using 16S frag-
ments corresponding to that from Wolbachia of D. circum-
lita showed that this sequence is quite distinct from the D.
immitis Wolbachia 16S and clusters with sequences from
Wolbachia of arthropods (Figure 1b; see additional file 2:
Wolbachia 16S multiple sequence alignment – D. circuml-
ita), as expected based on recent Wolbachia MLST [1].
Therefore, while the wsp gene reported for Wolbachia from
A. cantonensis has high identity to sequences from the
endosymbionts of the arthropods, M. genurostris and D.
circumlita, the 16S sequence is nearly identical to Wol-
bachia 16S from filarial nematodes, notably D. immitis
(supergroup C). The results of our analyses of ftsZ were
very similar to those obtained for 16S. We observed 99%
identity to the ftsZ reported from the Wolbachia from D.
immitis [GenBank:AJ010272]. The level of identity
between these two sequences also exceeded that between
the Wolbachia ftsZ sequences from the sister species D.
immitis and D. repens (92%). A phylogenetic analysis of
ftsZ sequences representing Wolbachia supergroups A to F
(Figure 1c; see additional file 3: Wolbachia ftsZ multiple
sequence alignment) also resolved these six groups and
confirmed the high similarity of the sequence reported for
Wolbachia from A. cantonensis and that from D. immitis.

In conclusion, our inability to detect Wolbachia in two
different species of Angiostrongylus by PCR or immuno-
histochemistry argues against the presence of this endo-
symbiont in these metastrongylid nematodes. Lateral
gene transfers from Wolbachia to invertebrates are com-
mon [13]. Such a phenomenon could conceivably have
resulted in the presence of Wolbachia fragments in the A.
cantonensis genome, but since we were unable to detect
Wolbachia sequences using the same PCR primers as were
used in the earlier report [6], this possibility seems most
unlikely. Instead, we suspect contamination of the DNA
samples or PCR reactions with Wolbachia DNA from the
mosquito, M. genurostris in the case of wsp and the filar-
ial nematode, D. immitis, in the case of both ftsZ and 16S.
This seems very plausible since the nucleotide identity is
99% in all cases. In support of this conclusion, we note
that the wsp sequence of the M. genurostris endosymbi-
ont was deposited in the GenBank database by the same
authors of the recent report on Wolbachia in A. cantonen-
sis, and that they carry out research on D. immitis. We
cannot rule out the possibility that A. cantonensis from
Taiwan contain Wolbachia while the worms we analyzed
from Japan do not. However, the high identities of the
reported sequences to those from arthropod Wolbachia
(supergroup A) on the one hand, but to the Wolbachia
from the nematode, D. immitis (supergroup C), on the
other, evoke either a double Wolbachia infection, a phe-
nomenon never observed in nematode-Wolbachia symbi-
oses, or a highly divergent Wolbachia lineage unlike any
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reported thus far. The most straightforward conclusion
from our analysis is that Angiostrongylus sp. do not con-
tain Wolbachia.
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Minimum evolution trees based on alignments of A) 
the Wolbachia16S (770 nucleotides) reported from A. 
cantonensis[GenBank:AY652762], B) the Wolbachia 
16S (639 nucleotides) of D. circumlita c2 [Gen-
Bank:AY486072], and C) the Wolbachia ftsZ (431 
nucleotides) reported from A. cantonensis [Gen-
Bank:DQ159068 ]. Sequences were aligned using ClustalX 
version 2.0.7 [14] using default parameters for slow/accurate 
alignment [Gap Opening:10, Gap Extend: 0.1, IUB DNA 
weight matrix]. After alignment, sequences were manually 
trimmed to the endpoints of the 16S sequences of the Wol-
bachia from A. cantonensis (see additional file 1: Wolbachia 16S 
multiple sequence alignment – A. cantonensis) and D. circumlita 
(see additional file 2: Wolbachia 16S multiple sequence align-
ment – D. circumlita), and to the endpoints of the ftsZ 
sequence of the Wolbachia from A. cantonensis (see additional 
file 3: Wolbachia ftsZ multiple sequence alignment). Phyloge-
netic trees were calculated using the Minimum Evolution 
method in MEGA4 [15]. The percentage of replicate trees in 
which the associated taxa clustered together in the boot-
strap test (1000 replicates) is shown next to the branches. 
Evolutionary distances were computed using the Maximum 
Composite Likelihood. The Minimum Evolution tree was 
searched using the Close-Neighbor-Interchange (CNI) algo-
rithm at a search level of 1. The Neighbor-joining algorithm 
was used to generate the initial tree. All positions containing 
gaps and missing data were eliminated from the dataset 
(Complete deletion option).
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from A. cantonensis and corresponding 16S fragments from Wolbachia 
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Wolbachia 16S multiple sequence alignment – D. circumlita. A multi-
ple sequence alignment of the 16S sequence of Wolbachia from D. cir-
cumlita and corresponding 16S fragments from Wolbachia from diverse 
arthropod and nematode hosts.
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and corresponding ftsZ fragments from Wolbachia from diverse arthro-
pod and nematode hosts.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
3305-1-31-S3.pdf]
Page 5 of 5
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1756-3305-1-31-S1.pdf
http://www.biomedcentral.com/content/supplementary/1756-3305-1-31-S2.pdf
http://www.biomedcentral.com/content/supplementary/1756-3305-1-31-S3.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17551786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17551786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17551786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16339946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16230105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16230105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17657540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17657540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17562224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1844964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1844964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1844964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10460929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10460929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12816546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16818783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16818783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16818783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9327557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9327557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17761848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17761848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17846036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17488738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17488738
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Findings
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

