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Abstract: The implementation of the radiation oncology alternative payment model (RO-APM) has
raised concerns regarding the development of MRI-guided adaptive radiotherapy (MRgART). We
sought to compare technical fee reimbursement under Fee-For-Service (FFS) to the proposed RO-APM
for a typical MRI-Linac (MRL) patient load and distribution of 200 patients. In an exploratory aim, a
modifier was added to the RO-APM (mRO-APM) to account for the resources necessary to provide
this care. Traditional Medicare FFS reimbursement rates were compared to the diagnosis-based
reimbursement in the RO-APM. Reimbursement for all selected diagnoses were lower in the RO-APM
compared to FFS, with the largest differences in the adaptive treatments for lung cancer (−89%)
and pancreatic cancer (−83%). The total annual reimbursement discrepancy amounted to −78%.
Without implementation of adaptive replanning there was no difference in reimbursement in breast,
colorectal and prostate cancer between RO-APM and mRO-APM. Accommodating online adaptive
treatments in the mRO-APM would result in a reimbursement difference from the FFS model of
−47% for lung cancer and −46% for pancreatic cancer, mitigating the overall annual reimbursement
difference to −54%. Even with adjustment, the implementation of MRgART as a new treatment
strategy is susceptible under the RO-APM.

Keywords: MRI-Linac; RO-APM; adaptive radiotherapy; MRgART; medicare; reimbursement;
radiation oncology

1. Introduction

In September 2020, the Centers for Medicare and Medicaid Services (CMS) submitted
the revision to a new bundled reimbursement model for radiation oncology services
provided to Medicare patients with a planned implementation date of 1 January 2022 [1].
Initially mandatory for 40% of providers, the Radiation Oncology Alternative Payment
Model (RO-APM) will cover 16 different cancer types and will simplify reimbursement to
bundled payments delivered twice over a 90-day period of service. The rationale behind
this change is multifactorial; however, a fundamental aim is to separate from the traditional
fee-for-service (FFS) model that generally rewards volume over value. Some aspects of
the proposed payment model are incompletely defined, such as the historical payment
experience, case mix and efficiency [2]. The latter is meant to reduce payment for higher
cost practices but does not account for situations where higher cost care may be the most
appropriate modality of treatment.

A concern arising from such a new payment model is that a lower reimbursement
may restrict oncology practices from making investments in new technology thereby
suppressing innovations in care. A promising technology that will be impacted by these
changes is the magnetic resonance guided linear accelerator (MRL), which allows for
radiation treatment delivery with real-time image guidance as well as daily treatment
adaptation for dynamic changes in patient anatomy. The difficulty in utilizing such online
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adaptive planning is that it is time-intensive and requires physician and physicist staffing
costs that traditional linear accelerators do not require. As novel treatments and techniques
tend to be more costly until efficiency is optimized, national committee (American Society
for Radiation Oncology; ASTRO) recommendations have asked for a stay on including this
new technology into the RO-APM [3]. In this manuscript, we sought to explore the impact
of the RO-APM on technical billing reimbursement and to determine a reimbursement
strategy, whereby MR-guided adaptive radiotherapy (MRgART) may be viable.

2. Materials and Methods

All models utilized an annual MRL patient load and distribution consisting of
200 patients with 5 primary cancer diagnoses: breast (31%), lung (13%), rectal (15%),
pancreas/hepatobiliary (28%) and prostate (13%). This patient mix was derived from an
internal model as well as published literature [4]. Online adaptive treatment planning was
used in both lung and pancreatic cancer and MRI guidance without adaptive planning
was used for breast, colorectal and prostate cancer. All treatment regimens except rectal
cancer (28 fractions) were hypofractionated in concordance with trends in modern practice
and to emphasize efficiency of care: breast: 5 fractions [5], lung: 8 fractions [6,7], prostate:
5 fractions [8–10], pancreas: 5 fractions [11,12].

The procedural terminology (CPT) codes (Appendix A) and frequency of billing
for the technical components of treatment were tabulated with the current capabilities
of the MRL consisting of step-and-shoot intensity modulated radiation therapy (IMRT).
The “scalable” CPT codes that account for the technical billing for treatment adaptation
consisted of 77300, 77301 and 77338 and use may be justified with dosimetric evidence
with an original treatment plan that would lead to an overdose of organs at risk or offered
inferior target coverage compared to the new daily adapted plan. As the RO-APM currently
only applies to Medicare patients, we utilized nationwide average traditional Medicare FFS
reimbursement rates for the CPT codes associated with technical fees and compared these
to the bundled reimbursement with the diagnosis in RO-APM. The mechanics, as well as
site neutral calculations for the RO-APM model, have been previously published [2,13].

Our second exploratory aim was to formulate a modified repayment strategy within
RO-APM (mRO-APM) that accounted for the necessary resources for replanning per case.
We proposed that the base rate of the modifier be the full reimbursement for the adaptive
treatments under the current FFS model as delivered by modern volumetric modulated
arc therapy (VMAT) technique with 2-arc plans. This base rate modifier was added to the
subtotal of the RO-APM after geographic adjustment but may be conservatively scaled by
the proportion of treatments requiring daily replanning (≤20%: ×0, 21–79%: ×0.25, ≥80%:
×0.5). For this analysis, all lung and pancreas patient treatments were assumed to have all
fractions adapted.

3. Results

Annual and per case reimbursement for all models are reported in Table 1. Per case
reimbursement for all selected diagnoses were lower in the RO-APM compared to FFS
with large differences in the adaptive treatments for lung cancer (−89%) and pancreatic
cancer (−83%) and more moderate differences for nonadaptive treatments (breast: −74%;
colorectal: −65%; prostate: −48%). The total annual reimbursement discrepancy in the
RO-APM compared with FFS was −78%.

Table 1. Per case reimbursement for selected cancer diagnoses under each reimbursement model and projected annual
reimbursement based on model patient population. Abbreviations: fee-for-service, FFS; Radiation Oncology Alterative
Payment Model, RO-APM; m, modified.

Model Breast Lung Colorectal Prostate Pancreas Projected Annual Total

FFS USD 36,576 USD 102,953 USD 32,284 USD 36,576 USD 73,669 USD 10,989,441
RO-APM USD 9493 USD 11,241 USD 11,284 USD 18,978 USD 12,544 USD 2,415,309

mRO-APM - USD 54,357 - - USD 39,492 USD 5,045,390
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Without implementation of adaptive replanning there was no difference in reim-
bursement in breast, colorectal and prostate cancer between RO-APM and mRO-APM.
Accommodating online adaptive treatments in mRO-APM would result in differences of
−47% for lung cancer and −46% for pancreatic cancer with an overall annual difference
of −54% from the FFS model. The planned 5-year implementation of the RO-APM in its
current state would result in a deficit of 42.8 million dollars from the FFS model, which
was reduced to a difference of 29.7 million dollars in the mRO-APM model (Figure 1).
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Figure 1. Projected annual reimbursement in millions USD across 5 years under each
reimbursement model.

4. Discussion

As we seek to improve oncological outcomes, radiation oncology has been directed
to engage in a new APM to mitigate financial toxicity for patients [14,15] as well as the
cost of the national cancer care burden which is estimated to reach USD 246 billion in
2030 [16]. In its current form, the RO-APM is treatment agnostic and techniques with
higher overhead such as proton therapy [17,18] and MRgART [19,20] will be differentially
impacted despite emerging potential benefits to patients. A similar report on adaptive treat-
ment reimbursement under the RO-APM demonstrated lower but substantial decreases
in reimbursement for pancreas (−36%), lung (−23%) and liver (−8%) malignancies and
suggested that implementation of the APM would limit growth and innovation [21].

Historically, the widespread adoption of new technology without prospective evidence
has been scrutinized. For instance, a SEER analysis noted that the rapid adoption of
IMRT for prostate cancer from 2002 to 2005 resulted in increased spending in excess of
USD 200 million dollars [22]. However, the majority of these treatments were likely in
standard fractionation over 7–8 weeks and current standard of care has now shifted with
the growing adoption of hypofractioned treatments [23]. These treatments carry greater
value and are fundamentally reliant on the improved dose distributions derived from IMRT
treatment plans. Furthermore, shorter treatment times associated with hypofractionation
also decrease patient burden by mitigating travel and time away from work and family.
We would predict that with ongoing development of the MRL, faster dose calculations and
volume auto-segmentation [24,25] may help to lower costs and improve treatment value in
manner similar to IMRT and SBRT.

A key proposed benefit of MRgART is the ability to account for inter- and intra-
fraction motion during treatment and minimize or eliminate internal target volumes
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(ITV) with respiratory gating. Daily plan optimization has demonstrated stark dosimetric
benefits to organs at risk (OARs) in thoracic or abdominal tumor locations where data
demonstrate that upwards of 90–95% of treatments may benefit in adaptation by either
reducing organ at risk dose or improving tumor coverage [26,27]. Specific diseases where
clinical data are maturing for MRgART include pancreas [11,12,28,29], ultra-central thoracic
malignancies [30,31], liver [32,33], prostate [34] and bladder cancer [35]. The use of on-
board MRI imaging may also lead to other advances in radiomics and disease response
assessment [36–38] which should improve patient selection and allow for risk-adapted
treatment strategies. While daily image guidance is currently built into the technical billing
reimbursement, these new advancements require significant translational support and
alternative reimbursement strategies should be pursued.

Another key weakness of the RO-APM is that financial risk factors such as advanced
age and disease stage are not considered and centers that care for these patients may be
further disadvantaged by the RO-APM [39]. Furthermore, radiation oncology accounted
for 1.4% of total Medicare charges in 2017 and is hundreds of millions of dollars lower
than diagnostic radiology (3.8%) and medical oncology (6.6%) [40] for whom a specific
driver of increased cost is metastatic disease [41,42]. In an analysis of commercial payments
for breast, colorectal and lung cancer patients, radiation therapy and imaging accounted
for less than 15% of the total cost of care while chemotherapy and supportive drug ther-
apies accounted for 48% [42]. In the future, oligometastatic or oligoprogressive disease
targeted radiation therapy may not only reduce need for prolonged chemotherapy for the
patient but also may mitigate the associated financial toxicity of expensive or ongoing
systemic treatments.

Finally, the era of bundled payments carries the benefit of streamlined compensation
and should inherently encourage radiation oncologists to improve the value and efficiency
in treatment. Analogous processes are ongoing in gynecological oncology in the treatment
of low-risk endometrial cancer [43] and recommendations to risk-stratify bundled payments
in orthopedic surgery have been published [44,45]. While radiation oncologists should
strive to continue to be good financial stewards in the health care system, increased effort
to improve the therapeutic index of the treatments provided should be fairly rewarded.

Limitations of this study include some currently undefined variables in the RO-APM
including the trend factor, geographic adjustment, case mix adjustment and historical
experience which in this study were left at neutral values [2]. However, in this analysis,
predefined initial discounts and witholdings were included that may put practices with
thin margins at risk of financial loss. While we used national median reimbursement data
for FFS billing, significant regional variability exists and differentially impacts practition-
ers [46]. The geographic adjustment in RO-APM may help mitigate these discrepancies but
is unlikely to fully ameliorate them. Finally, we sought to focus this analysis on the billing
of technical service as it generally is more financially significant compared to billing for
professional services [47]. Modifiers or adjustments on the professional bundled payments
of the RO-APM for more time intensive or complex treatment planning would further
help to appropriately compensate individual physician time when they are not generating
revenue through traditional means.

5. Conclusions

Investment into new technologies such as MRgART will be cost-prohibitive to most
American oncology care providers under the RO-APM. We propose that modifying the
RO-APM to reimburse for adaptive treatment planning and delivery as special treatment
procedures would allow for continued growth and innovation in oncology care.

Author Contributions: Conceptualization, R.F.P., K.G.E., S.A.R., S.W. and P.A.S.J.; methodology,
R.F.P. and K.G.E.; formal analysis, R.F.P., K.G.E., S.P. and S.W.; resources, K.G.E. and S.W.; data
curation, R.F.P. and K.G.E.; writing—original draft preparation, R.F.P.; writing—review and editing,
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Appendix A

Table A1. Selected Common Procedure Terminology codes used in technical billing for selected
cancer diagnoses in the Fee-For-Service model.

77293 77300 77301

77334 77336 77338

77370 77373 77386

77387 77412
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