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Abstract: Multidisciplinary approaches in science are still rare, especially in completely different
fields such as agronomy science and computer science. We aim to create a state-of-the-art floating
ebb and flow system greenhouse that can be used in future scientific experiments. The objective is
to create a self-sufficient greenhouse with sensors, cloud connectivity, and artificial intelligence for
real-time data processing and decision making. We investigated various approaches and proposed
an optimal solution that can be used in much future research on plant growth in floating ebb and
flow systems. A novel microclimate pocket-detection solution is proposed using an automatically
guided suspended platform sensor system. Furthermore, we propose a methodology for replacing
sensor data knowledge with artificial intelligence for plant health estimation. Plant health estimation
allows longer ebb periods and increases the nutrient level in the final product. With intelligent design
and the use of artificial intelligence algorithms, we will reduce the cost of plant research and increase
the usability and reliability of research data. Thus, our newly developed greenhouse would be more
suitable for plant growth research and production.

Keywords: internet of things; artificial intelligence; sensors smart agriculture; cloud computing

1. Introduction

Advances in computing technologies based on embedded systems with the recent
development in smart sensors are leading to cost-effective solutions for the Internet of
Things (IoT). The Internet of Things is an essential component of smart home systems,
smart transportation, healthcare, and smart agronomy. In any production environment,
especially in agronomy, Internet of Things devices enable efficient planning and resource
allocation, providing economic benefits and increasing competitiveness in the market [1,2].

The continuous fusion of computing and agronomy science opened a new field called
precision agriculture, leading to higher crop yield within the greenhouse facility [3]. An
innovative approach using IoT as a data source and deep learning as a decision maker can
optimize the greenhouse environment such as temperature, humidity and nutrients [4]. By
monitoring the growing process in the greenhouse, better quality of food, cosmetic products
and medicinal substances can be achieved by increasing the plant nutrient levels [5].

According to related work in greenhouse design, the sensors and their location inside
the greenhouse are essential components since some parts of the greenhouse contain micro-
climate pockets. The sensors are organized in several combinations of horizontal, vertical
and hybrid arrangements to detect and eliminate microclimate pockets [6]. Additionally,
camera positioning system should be flexible enough to allow precise and diverse image
acquisition for successful deep learning model training. Image quality, especially noise
levels, can reduce the deep learning model precision [7].

In this paper, we present the system architecture and design of a modern scientific
greenhouse research facility for the purpose of Croatian Science Foundation’s Project
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Urtica—BioFuture. Several sensor nodes are proposed in different locations: nutrient so-
lution, environmental (inside and outside the greenhouse), and sensor nodes for energy
efficiency and power supply. They are connected via a dedicated central node. As a main
contribution, we propose a novel system architecture concept for automated sensor posi-
tioning using suspended platform concept to measure accurate environmental data in any
available position to achieve the best possible automated hybrid arrangement for microcli-
mate pocket isolation. Using this measurement microclimate pockets will be detected and
isolated. The proposed positioning system enables precise image acquisition from multiple
angles, thus resulting in image data diversity. Image diversity plays an important role in
deep learning model regularization.

Sensor sensing techniques and communication technologies are also considered in
this paper. Precise sampling techniques are used resulting in Big Data due to the scientific
nature of this data acquisition. To enable a steady flow of this data, a constant power supply
and uninterrupted connection are essential. The data is stored locally and continuously
synchronized with the cloud service.

The cloud will provide plant health calculations according to sensor data analysis.
Opposite to calculation, we propose a methodology to use a deep learning method that uses
RGB camera images, chlorophyll leaf images, and thermal camera images to estimate plant
health. Such methodology can lead to equivalently precise, yet more affordable solutions
applicable in the production. Common benefits of deep learning models and Big Data
mining are proactive alerting and monitoring systems or autonomous decision making,
which are particularly useful in smart agriculture [8]. Additionally, combining visual data
such as images and using sensors to train the corresponding deep neural network model
based on visual information proves essential for building an affordable smart agriculture
system [9]. Visual information analysis reduces the monitoring complexity and overall
price while maintaining the precision achieved with the sensor cluster.

This calculation of plant health is used in the project to optimize ebb timing periods.
The decision when to make a phase change is a key issue in the project. The goal is to
achieve extended ebb periods for higher plant nutrient levels while avoiding plant wilting.
This is the main challenge to be addressed in the upcoming project experiment.

We wrote this paper as part of Croatian Science Foundation’s Project Urtica—
BioFuture [10]. The project focuses on the development of a modern greenhouse research
facility as a quality basis for future research at the Faculty of Agricultural Sciences, Uni-
versity of Zagreb, Croatia, with the support in computer sciences from Zagreb University
of Applied Sciences. This project focuses on the nutritional and functional Urtica Dioica
(common nettle) values in modern hydroponic cultivation techniques [10].

This paper is organized as follows. Related work on existing greenhouse solutions
is discussed in Section 2. Then, key highlights of the system architecture and design are
presented in Section 3. In this section, a detailed description of the sensors and data acqui-
sition follows, highlighting the greenhouse layout where a new sensor data positioning is
proposed to capture all microclimate pockets. Later, a cloud communication and storage
is described. Finally, the cost of the system is approximated. In Section 4 we presented
an experiment with a model of suspended platform. The paper is concluded in Section 5,
where the advantages of our proposed system and suspended platform are discussed, and
finally some future research directions are given.

2. Related Work

The sensor system is a crucial element of smart agriculture. In greenhouse cultivation,
especially in the laboratory environment, any value in an experiment can be significant.
Majority of the current greenhouse solutions use sensors in different stages of farming for
information gathering, effective monitoring and decision making. The main drawback of
these greenhouse solutions is the lack of sensory diversification.

Wei et al. [11] presented a review of the current development of technologies and
methods in aquaponics. In the greenhouse environment, water quality, environmental data
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and nutrient information are involved in intelligent monitoring and control. The paper
summarizes intelligent, intensive, accurate and efficient aquaponics concepts that we used
as a start point for our greenhouse development.

2.1. Sensors

In modern scientific greenhouse research experiments, a vast number of different sen-
sors must be used to reduce the possibility of inadequate research results. The significant
number of sensors is used to reduce the influence factors on different greenhouse locations
and to detect different influence factors in the plant growth. Due to the nature of any
scientific development, it is of great importance to keep the expenses within the project
limits. Therefore, experimenting with expensive and complicated sensors may be uneco-
nomical in such projects. Additionally, it can be challenging to apply such an environment
to production facilities [12]. Various sensors are essential for science-based approaches to
smart and precision agriculture. These sensors include environmental, power supply (for
energy efficiency), nutrient solution sensors, and sensors that determine the chlorophyll
content of plants [13].

Almost all environmental variables (temperature, humidity, amount of light in com-
mon and individual spectral regions, atmospheric pressure and air quality) in the green-
house system can be used as sensed data. Due to the specific requirements of the green-
house experiment, different types of environmental variables need to be monitored, and
thus different values of sensors need to be measured [13]. Many different combinations
are sampled based on experience and experimental parameters: Temperature, humidity,
CO2 concentration, illumination, illuminance (limited to a specific part of the spectrum).
Other sensors include barometric pressure, specific gas concentration (oxygen, nitrogen,
ozone) [13,14].

In addition to environmental sensors, there are other sensors that are used to increase
the environmental and energy consumption awareness of the project (green-it solutions),
resulting in an advantage in economic costs. For this purpose, power supply sensors are
used to determine the energy footprint of the greenhouse. The building strategy of the mod-
ern greenhouse is focused on equipment, sensors and processes that are energy efficient.
Bersani et al. [15] wrote an article on precision and sustainable agriculture approaches that
focuses on the current advanced technological solution to monitor, track and control green-
house systems to make production more sustainable. Pentikousis et al. [16] discusses the
communication environment of the sensors to transmit their data and propose server-side
data aggregation methods. In addition, the article presents sustainable approaches to
achieve near-zero energy consumption while eliminating water and pesticide use.

In production greenhouses, environmental and power supply sensors are used as part
of monitoring control processes to delay or accelerate decisions about opening windows,
blinds, or switching thermal processes such as cooling or heating. An example of the
monitoring and control system is presented in [17,18]. The collected data can be processed
using hybrid AI methods [19] or by applying mathematical models [20]. With the usage of
the monitoring and control system, a zero-energy footprint can be achieved. In addition,
the power supply sensors can be used as an alert medium for a power outage warning,
which may cause irreparable damage and loss of scientific research data. As presented
in [21], in case of main power failure, adaptive power management can be implemented to
extend backup power supply lifespan.

In greenhouses, power supply is used for nutrient delivery to the plants and main-
tenance of proper level of nutrient solutions in the floating system. Therefore, solution
level sensor is used to monitor the level of solution in the floating system [11]. Nutrient
solution sensors are used to determine the properties of the nutrient solution. The most
common properties measured in the nutrient solution are temperature, dissolved oxygen,
total dissolved solids (TDS), and hydrogen strength (pH) values [11].

In the hydroponic floating system, the root of the plant is partially immersed or
sprayed in the nutrient solution and in most cases lies in a growing medium. This growing
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medium draws moisture from the nutrient solution. The moisture content can be measured
with a soil hygrometer ( humidity detection sensor) [22] which is inserted into the growing
medium. The sensor consists of an EC probe and a soil resistance metric. It is used to
measure the electrical resistance of the soil, which is an indicator of soil salinity. The salt
concentration of the nutrient solution can change over time, affecting the sensor reading.
Therefore, the differential values of the sensor over time are more relevant than directly
measured results [23].

A well-balanced plant nutrient growing solution results in a healthier plant. The
plant health can be observed by monitoring the visual physiognomy of the plant, and
this system can also be used to analyze and detect plant diseases or crop damage [24].
Nutrient solution should be inspected and changed frequently to enhance the elimination
of phytopathogens [25].

Visual monitoring ranges from custom-made devices such as LeafSpec [26,27], the
use of a normal camera combined with a microcontroller, a processor board [28–30] or
a smartphone camera [31–33]. Papers propose monitoring plants with different types of
cameras: standard spectral camera, infrared camera, thermal imaging camera, or color
component camera.

A hyperspectral and spectroscopy system camera is used [34,35] to obtain better
results. There is also an example of a custom-made system used in [36]. The camera can
observe the plant as a whole or just a part of it, such as the leaves. The context is also
distinguished by image precision. The image can be taken in a precise position with
little background noise, or from a distance with somewhat unpredictable background and
viewing conditions.

Opposite to camera systems, RGB color sensors are used in [37,38]. A RGB color
sensor or infrared sensor provides a direct numerical value for a specific detail on the
captured image.

2.2. Data Acquisition

Different greenhouse segments are subject to a specific microclimate pocket, usually
caused by the greenhouse orientation, external shading, materials used, materials or
other causes. Therefore, sensor positioning and sampling time frames are critical to data
acquisition in a modern greenhouse. Specific microclimate pockets affect plant growth
and will affect the data if not included in the calculation of the experiment. Therefore,
sensors must provide normalized data and microclimate data specific to the position in
the greenhouse. Normalized data is collected by using specific models that estimate or
interpolate sensor data across the greenhouse [39,40].

Kochhar et al. [6] classified fixed sensor positioning as horizontal, vertical, and hybrid.
This type of positioning is not sufficient to capture all microclimate data [41]. Wu et al. [41]
proposed a sensor placement model to maximize target coverage without occlusion. As
an alternative to fixed positioning, multiple papers propose mobile sensor placement in
greenhouses [13,42–45].

When using an autonomous sensor carrier vehicle, significant attention must be
paid to layout optimization for rapid and safe navigation [45]. In paper [46], an obstacle
detection system using Kinect sensor is proposed. These sensors are connected to a robotic
vehicle that drives around the greenhouse [43]. On a robotic vehicle, an arm can be placed
for further reach [42].

In the previous papers, sensors are moved through the greenhouse to detect and
measure microclimate pockets. In contrast to the movement of sensors, the plant delivery
system is proposed to eliminate the influence of microclimate on plant growth [44]. This
complex solution still leaves the influence of microclimate on sensor data. Other works
propose the use of drones, especially in plant fields [13].

When using a variable sensor layout, a large amount of data is collected and processed
locally or sent to the cloud. This data can be very complex to analyze due to the added
component of its locality of acquisition. Data reduction can be achieved by removing
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repetitive results using sensor data sampling techniques. Similar measurements of the
neighboring locality can be excluded if the difference is below the context-specific threshold,
which depends on the required data quality. Another approach in the sampling procedure
assumes a small hysteresis around the last measurement result. If the result remains within
the given frame, it is discarded since no change is detected [47]. There is also a proposal that
small anomalies can be discarded [6]. By using the algorithm proposed by Kochhar et al.
the sensor frequency sampling can be maximized to capture specific events and redundant
data is discarded [6].

Data acquisition, processing, and sampling require computational power in the form
of data processing and storage. Computing power board equipped with microcontroller or
processor with an operating system is essential to link sensor data and the database. The
database can be available on-site or through a connection to a remote database in the cloud.
Depending on the requirements, each system can be based on microcontrollers, a processor
board with an operating system, or a hybrid system.

Microcontrollers provide better connection interface options with sensors. Most of
them are equipped with multiple connection interfaces such as I2C, SPI or UART. The
most commonly used microcontrollers are based on Arduino. The most popular Arduino
compatible boards include Arduino UNO, Arduino Yun, Arduino Nano, Arduino Mega,
ESP8266, ESP32, Intel Galileo Gen 2, Intel Edison, Beagle Bone Black and Electric Imp
003 [48].

Microcontrollers provide direct analogue input interfaces as they are equipped with
analogue-to-digital converters. However, they lack storage, multithreading and multipro-
cessing capabilities. Rabadiya et al. [49] proposed a system implemented using ESP8266
and Arduino support. There are also multiple papers using Arduino boards for data
processing in greenhouses [13,50,51].

Another approach opposite to microcontrollers is the processor boards with the op-
erating system. The most common operating systems are specific Linux distributions
without graphical interface. In such environments there is the possibility of local database
storage with multi-thread and multiprocessing capabilities. The most popular processor
boards that include the operating system are Raspberry Pi, Orange Pi, Banana Pi, Odroid.
However, these boards have a smaller number of pins than microcontroller boards. They
have I2C, SPI, and UART interfaces, but they lack analogue input pins that are equipped
with analogue to-digital converters. These types of boards usually have larger power
requirements and dimensions. There are hybrid solutions based on a microcontroller board
with a tiny OS (e.g., RTOS, MicroPython) [23].

In multiple papers, a combination of microcontrollers and processor boards is pro-
posed to reduce power requirements and provide multiple analogue interface sensors.
Systems with lower power requirements are usually based on solar or battery powered
concepts [52].

In a combination system, a node consists of a set of microcontrollers that provide
sensor interfaces to processor boards that aggregate and send data to the cloud. Each node
collects data from multiple sensors connected via interfaces. The nodes can be connected
to power, battery or be solar powered. In a combined system, a central node based on the
processor board node is required [52].

There is a need for interconnections between the nodes to enable communication.
These connections can be classified into wireless and wired. There are multiple wireless
standards available for IoT devices. The proposed wireless connection depends on the
availability of the microcontroller or processor board interface, the required power require-
ment, the required connection bandwidth, the communication distance, and the common
obstacles in the communication [53]. The connection protocols vary from Bluetooth and
WiFi to GSM, radio (NRF) or ZigBee [6,54].

There are also mobile network protocols such as GPRS, 3G, 4G and 5G [55]. A particu-
lar protocol can be invented, but it is not a standard solution for use due to incompatibility
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with other systems. When wireless communication is used, more power node consumption
is expected.

In contrast, a wired connection may use a connecting wire to supply power. The most
known protocol is power over ethernet. However, there are other options that are not
standardized. The wired connection provides an uninterruptible power supply (UPS),
which ensures system availability in the event of a power failure. The UPS also provides
information about a power failure or low UPS battery to the nodes. This information can be
used to gracefully shut down all nodes and alert maintenance personnel in a timely manner.

Each communication is composed of a physical link layer and a logical link layer. The
physical link layer can be used as a wired or wireless link. Above the physical layer is a
logical layer in the form of a communication protocol. In most simple solutions, a specific
protocol can be programmed specifically for the solution at hand. In most cases, standard
networking protocols and addressing are used, such as Internet Protocol (IP). IoT devices
have standardized specific protocols. The most commonly used specific protocol is Message
Queuing Telemetry Transport (MQTT) [50]. Despite the specific IoT protocols, standard
web service communication protocols such as HTTP, HTTPS, and SOAP are common.

When working with publicly available services, it is necessary to pay attention to
security. In any network architecture, there is a risk of cybersecurity threats. To make
a system more secure, Astillo et al. [56] proposed a lightweight specification-based dis-
tributed detection to efficiently and effectively identify the misbehavior of heterogeneous
embedded IoT nodes in a closed-loop smart greenhouse agriculture system.

2.3. Big Data Collection and Deep Learning

The data received from the greenhouse sensor system is stored in the cloud. The cloud
allows data to be displayed in time frames and complex analysis to predict greenhouse
behavior. The collected data stored in the cloud can be processed by different algorithms
in the complex model or fed as training data for a neural network [3]. Kocian et al. [57]
predict plant growth in greenhouses using Bayesian network model. Plant growth can
be predicted using simple algorithms such as linear regression [58]. Ready decisions or
inferences can be used as triggers in other systems, such as smart home implementations
as described by Chen et al. [59].

Complex deep neural networks are becoming an indispensable tool for Big Data
analysis in a variety of scientific fields, including smart agriculture [60–62]. Harnessing the
vast amount of data collected over a long period of time enables the training of complex
deep neural models. Deep neural network models are one of the crucial approaches used in
computer vision. A deep neural model with many parameters can be used for crop classifi-
cation, yield prediction, and early detection of stress and disease. A considerable amount
of computer vision-based work in smart agriculture focuses on plant stress detection, either
as disease early detection [63] or water stress detection [64–68].

Plant classification is another important research direction, as it enables the detection
and elimination of weeds [69], leading to fully automated cropping systems. Fruit count-
ing [70–72] using deep neural networks and computer vision significantly improves yield
prediction and automated harvesting. Object detection can be used to detect obstacles in
greenhouses, leading to autonomous vehicle passage.

Deep Learning improves weather prediction [73,74], a key to successfully predict
weather hazards (storms or floods) that can cause severe damage to the greenhouse. Plant
feature recognition as part of plant phenotyping [75] has recently benefited from deep
learning models that replace manual work, improving efficiency and effectiveness in
precision architecture.

In modern greenhouse research, image analysis using computer vision drastically
reduces the need for various sensors and even enables low-cost solutions with few to
multiple image acquisition instances [34,35]. Deep learning can assist in clorophile fluores-
cence estimation, as presented in [76]. To successfully train a deep neural network model, a
reliable verification model is crucial. A carefully designed sensor layout is necessary for the
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successful training and validation of the computer vision neural model. Specific sensors
can be used to provide numerical data in correlation with the obtained images [37,38].

3. System Design and Architecture

The system design and architecture is presented in the Figure 1. The figure describes
the overall architecture of the proposed greenhouse system, and as such it is discussed in
subsections throughout this chapter. The design and architecture are described in detail in
this section as follows. First, the sensor acquisition is described, then the sensor placement
is proposed and discussed. Data acquisition methodology is presented in the third part of
this chapter, and finally data acquisition and data storage are presented and described.

Figure 1. System design and physical architecture scheme. The image describes the organization of
major greenhouse nodes with short descriptions. All nodes are interconnected through the local area
network and communicate with cloud via the wide area network.

3.1. Sensor Selection

According to related work, there are a variety of sensors for greenhouse monitoring
in agronomy. There are sensors that directly provide data describing the condition of the
plants or the nutrient solution state. Values in greenhouse cultivation such as temperature,
humidity, light in common and single spectral ranges, air pressure, air quality, soil moisture,
soil pH and oxygen saturation can be efficiently monitored with sensors. This wide range of
sensors differs in terms of their sensing techniques, electrical characteristics, communication
technologies, power requirements, and precision and range. Sensors assembled according
to related work can be classified according to their localization in measurement:

• Energy efficiency and power supply unit (PSU) validity sensor node
• External environment sensor node
• Internal environment and leaf sensor node
• Nutrient sensor node emerged in the prepared solution
• Nutrient sensor node emerged in the floating system

The energy efficiency sensor node is based on monitoring the power supply unit.
The monitored values are voltage level, current level, power factor, power output and
power consumption. We propose to use the digital power meter for measuring voltage,
current, power and power values in real time. The power values can be used to estimate
the maximum power during the day which is defined as voltage and current in the given
time. The power consumption is calculated in a desired time frame and defines the energy
required during the selected time period. These two values can define optimal parameters
for alternative energy sources. In addition, it allows us to monitor all specific processes in
the greenhouse to make them more energy efficient. For energy measurement we propose
PZEM-004T electric power meter [77] sensor connected to a smart device via serial interface.
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We propose the classification of power consumption in the greenhouse into monitoring,
heating/cooling and cultivation processes. The monitoring process allows us to monitor
plant growth using several different sensors and processes. The measurements obtained
from these sensors provide the information that leads to a decision on the parameters
of the nutrient solution and serve as input for other greenhouse processes. The energy
requirements of this system depend on the number of sensors, their location, sampling
rates, and the technologies used to collect data. The energy consumption monitoring system
is essential for the research phase, while in the production environment the greenhouse
should have a predictable energy footprint.

The heating-cooling process allows for constant temperature and humidity parameters
within the greenhouse. This process is very energy consuming and plays a significant role
in plant growth. In the laboratory environment, the maximum allowable temperature and
humidity deviations can range from a minimum to no deviation limit.

The cultivation process consists of nutrient solution preparation, water level estimation
processes, and transfer of nutrients from storage to a floating system. In this process, the
monitoring of the power supply unit is mainly focused on the error message, because the
power consumption should not fluctuate significantly. Power failures should be detected
to minimize the interruption of nutrient solution levels in floating systems.

External environmental sensor nodes outside the laboratory greenhouse measure
meteorological data. This data is used to estimate the energy efficiency of the greenhouse
by comparing the energy consumption for heating or cooling the greenhouse to the desired
temperature and humidity. This node additionally provides readings on the intensity of the
light spectrum and the general air quality. The sensor node consists of CO2 , temperature,
humidity, pressure, multichannel gas sensor, ultra-violet (UV) and visible light, and sensor
for visible light with IR cut filter. Sensor selection, measurement range and accuracy were
estimated from previous data measured manually in the greenhouse.

The internal ambient and leaf sensor node is mounted above the floating system. The
collected data is used to control the internal greenhouse processes. Internal greenhouse
processes are heating, cooling, opening windows, ventilating and blocking out external
light. They are used to set the preferred temperature, humidity, CO2 level and light intensity
in the IR, visible and UV spectral range. This sensor node consists of similar set of sensors
similar to external sensor node, additionally equipped with RGB and thermal camera, and
RGB color sensor.

The measured data are used to assess the plant environment and thus influence plant
health. Due to the microclimate behavior of the greenhouse, the position for the internal
sensor node should be accurately determined according to related work. The internal
sensor node is equipped with a leaf sensor node, which contains a thermal imaging camera
and a visible camera without IR-blocking filter. The camera images are used to detect the
chlorophyll and nutrient content in the leaf expressed in numerical values. The position of
the camera sensor is crucial to provide higher quality images without noise. The internal
sensor node must be positioned over the plant or next to the growing plant to produce
images from different angles.

The sensor node is equipped with an RGB color sensor to accurately detect the color
of the leaf when it is illuminated from above, according to the related work [37,38]. The
obtained sensor data is used as training data to build an AI model that estimates the data
from images only. In the later stage, the sensor data is used to verify the model predictions.

Nutrient sensor nodes created in the prepared solution and nutrient sensor nodes
created in a floating system provide information about the state of the nutrient solution.
Hydroponic system sensors include temperature, levels of PH, dissolved oxygen, total
dissolved solids (TDS) sensor, and moisture sensor inserted into the growing media. A
level sensor is used to monitor and alarm about the level of nutrient solution in the floating
system. A laser range sensor is used to accurately monitor the level of the nutrient solution
in a low light environment.
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3.2. Sensor Placement

Sensor placement represents how the sensors are arranged in the greenhouse. In the
literature, sensor placement is often referred to as layout or greenhouse layout. Placement
focuses on the physical location of the sensors rather than the topology of the system,
which describes the flow of information between sensors, microcomputers, and the cloud.

Sensor placement is a major factor that needs to be implemented carefully, as described
in related work. The inside of a greenhouse is a dynamic environment where temperature
differences during the plant growth cycle or air flow adjustments can affect the outcome of
the sensors. A large greenhouse may have several microclimate pockets that may vary in
location or intensity over periods of time.

According to related work, there is a well-known conventional horizontal and vertical
sensor positioning system [6]. Besides horizontal and vertical positioning, there are also
hybrid solutions such as shelves, boxes, tier-based and master-slave solutions. These
solutions try to eliminate the microclimate effect by excluding it from the experiment
(plants near the greenhouse walls are not included in the measurement results) or by
measuring the microclimate effect in each position [13,42–45].

An automated robotic vehicle equipped with environmental sensors is proposed to
provide data in different parts of the greenhouse [45]. The advantage of this solution is a
horizontal coverage of the greenhouse. The disadvantage is a measurement of a certain
vertical plane near the greenhouse floor. In case of table experiments, vehicle sensor plane
and camera angle may become useless. Even with dynamic vertical positioning, vertical
and horizontal positioning is limited due to the inaccessible hover system and plant growth
areas. This approach is also not feasible in greenhouses without level ground, as the vehicle
can be problematic to navigate.

Other approaches propose the use of a drone (rotorcraft) that can be flown au-
tonomously or manually [13]. Integrating sensors into an unmanned drone system can
introduce multiple sources of bias and uncertainty if not properly accounted for [78]. For
example, a measurement may be incorrect due to drone thrust, temperature, humidity,
and gas levels. Measurements can be mathematically adjusted in a laboratory setting
with additional experiments. The drone system poses an additional safety risk, as people
or plants in the greenhouse could potentially be damaged during flight. If continuous
sampling is required, drones (especially heavily equipped ones) consume a lot of energy,
so flight time and battery charging time can become an issue.

To mitigate shortcomings of the classic horizontal and vertical sensor placement,
different automated robotic vehicle concepts, or even sensor equipped drone techniques,
we propose a solution to implement a suspended platform with the sensor node. With
this approach, we eliminate the problem of uneven greenhouse ground or other obstacles
which can appear on greenhouse floor such as water piping or other infrastructural objects.
Moreover, with constant power supply, battery duration is not an issue, compared to
autonomous vehicle or drones. Side effect of positioning is minimal opposite to drones
which generate air turbulence and affect the measurements. The concept of suspended
platform is inspired by the mechanical design of a CNC machine table or a 3D printer. This
design is very rigid, and it may affect the sunlight of the plant by blocking it. It is more
difficult to assemble due to the lightweight construction rods of the greenhouse.

To solve these problems, a new concept of a hanging 3D positioning system is pro-
posed based on a novel approach to large-scale 3D printing [79]. This concept allows the
suspended platform to be suspended with sensor nodes and controlled by attached wires.
To enable 3D oriented positioning, wires are attached from the suspended platform to the
ceiling and diagonally to the angles of the greenhouse. The system is shown in Figure 2.

Suspended sensor node allows the sensor node to be placed in any possible position
above the floating system by manipulating the X (width), Y (length), or Z (height) coordi-
nate. The experimental system can be programmed to automatically position the sensor
node over horizontal and vertical positions to obtain results from different microclimate
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pockets. Using the results data in time intervals, specific microclimate pockets can be
identified, and their variations estimated.

Internal environmental and leaf sensor nodes in the laboratory greenhouse are placed
together on a suspended platform. The suspended platform is used to detect microclimate
pockets as their position changes, and cameras simultaneously capture images of the plants.
Using an automatic guidance system for the suspended platform, plant images are captured
in time frames and uploaded to the cloud. At the same time, the real data is measured and
linked to the images in a database. This technique can be used for data preparation for
the AI learning process and later as a verification technique. Additionally, microclimate
pockets can be discovered by analyzing this data.

Figure 2. The proposed suspended platform concept. The suspended platform uses a six-degree-of-
freedom cable-suspended robot for positioning. Cable-positioning systems can be easily applied in
different greenhouse layouts since they provide large ranges of motion.

The nodes of the external environmental sensors outside the greenhouse should be
placed in an optimal position, e.g., above the roof or in a more remote location without the
influence of internal factors of the greenhouse. In our case, one external environmental node
is sufficient because the greenhouse is directly exposed to the sun without any obstacles.
If the greenhouse has a specific orientation or obstacles that partially block part of the
greenhouse during the day, multiple sensor nodes would be a mandatory solution.

The nutrient sensor node that has emerged in the prepared solution is placed on the
floating platform inside the holding tank. Nutrient sensor nodes that have emerged in the
nutrient solution for plant growth are placed on the floating platform within the floating
system. Nutrient sensors require special treatment due to sediment formation on the probes.
pH and oxygen probes should not be continuously immersed in the nutrient solution. After
successful measurement, the probes must be removed from the nutrient solution and
immersed in clean distilled water before used in the same or a different nutrient solution.
The cleaning process of the probes can be done manually or automatically using the robotic
arm concept. We propose using high-quality probes that can be immersed in the nutrient
solution for extended periods of time without negatively affecting the measurement results.
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3.3. Data Sampling

The data sampling procedure is used in plant analysis, where a predetermined number
of data points are taken from a more comprehensive set of observations. The sampling
procedure is very specific to the type of sensor and its interface. To properly document
changes in the parameters sampled, sampling should be done at optimal time intervals.
The limitation of the sampling frequency is determined by the interface type or the specific
sensor technology.

The interface type determines the connection speed, but this is limited by the sensor
technology or the common bus throughput when multiple sensors are connected. For
example, the direct digital interface, analogue-to-digital converter, serial interface, I2C, and
SPI interface have different data flow speed limitations. For multiple devices, the speed is
divided by several devices on a common bus. The datasheet is analyzed for each sensor
and interface, and the maximum sampling speed is presented in Table 1. Additionally,
the average sensor cost is presented in table. There is an additional time limit for the
first measurement in the case of a pH or dissolved oxygen sensor. These limitations are
presented in Table 1.

Each sensor node has its own computing power for data analysis and local data
storage. Proposed computing power is a Raspberry Pi with MySQL database equipped
with additional scripts. The scripts enable interaction between the sensor interface and the
database. They are also responsible for the communication between the local storage and
the cloud [52]. The local sensor node database defines the sampling interval, the location
of the script, the location of the local database, the deviation range, and additional sensor
data, which are presented in Figure 3. The system is run from a central execution script
written in Python that runs multiple scripts for each available sensor.

Figure 3. ER model of the local sensor node database.

An exception to storing in the database are images which are stored in the local file
system. Images are not stored in the database because the database engine is not capable
of handling a large blob. Path and name are placed in the local database table instead of
result data to track images stored in the file system.

Script queries sensors and stores result in local database along with current timestamp.
Nodes are synchronized with atomic clock daily to ensure accurate timestamp. All scripts
are adjusted to discard values that deviate significantly from the estimated threshold during
test measurement periods. Repetitive values are not recorded because they take up space in
the database and would slow down query execution. Their absence from the database does
not affect the final result, as the system assumes that the value has not changed during the
queried period.
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Table 1. Used sensors according to related work.

Sensor Range Accuracy Interface First Measurement Sampling Speed Cost

BME280 temp. [80] −40 ◦C +85 ◦C ±0.5 ◦C I2C SPI 1 s 1 s e 12.55

BME280 hum. [80] 0% RH 100% RH ±3 RH I2C SPI 1 s 1 s e 12.55

BME280 pressure [80] 300 hPa 1100 hPa ±1% I2C SPI 1 s 1 s e 12.55

CO2 NDIR [81] 0 ppm 5000 ppm ±3% Analog 3 min 120 s e 49.45

UV VEML6075 [82] Sensitivity: 365 nm, 330 nm ±10 nm I2C 50 ms 50 ms e 14.55

Light VEML7700 [83] 0 lux 120,000 lux 0.0036 lux I2C 1100 ms 1100 ms e 4.50

GAS sensor: CO, NO2, C2H5OH, VOC [84] 1 ppm 5000 ppm Depend on GAS I2C 30 s 60 s e 40.90and concentration

PZEM004T Energy power meter [77] 80 V–260 V 0 A–100 A 0 W–22 kW 1.0 grade Modbus-TTL 1 s 1 s e 9.700 Wh–9999 kWh 45 Hz–65 Hz

PiNoIR camera module v2 [85] 8 MPixel Sony IMX219 NO IR filter Camera port 30 fps 30 fps e 30.30

FLIR LWIR Micro Thermal camera 80 × 60 resolution <50 mK sensitivity Module SPI 30 fps 30 fps e 204.50module 2.5 [86]

DS18B20 digital temp. [87] −10 ◦C +85 ◦C ±0.5 ◦C I2C 1 s 1 s e 9.70

TDS Sensor [88] 0 ppm 10,000 ppm ±10% F.S. Analog 1 s 1 s e 10.05

pH Sensor [89] 0 pH 14 pH ±0.1 pH Analog 1 s 1 s e 84.35

Dissolved Oxygen Sensor [90] 0 mg/L 20 mg/L ±10% F.S. Analog 1 s 1 s e 144.00

Turbidity Sensor [91] 0 NTU 3000 NTU/L ±10% F.S. Analog 1 s 1 s e 8.45

Soil Moisture [22] 1.2 V 2.5 V N/A Analog 0 0 e 5.05

RGB Color Sensor TCS3200 [92] R G and B values 0–255 ±0.2% Digital TTL 1 s (protocol) 1 s (protocol) e 6.75

Laser sensor [93] 0.012 m 2.16 m ±1 cm UART 0 0 e 21.30
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Smaller deviations can be caused by sensor fluctuation, which is common with
analogue-to-digital converters due to the specific measurement process. Fluctuation can
also be caused by sensor-specific measurement techniques or properties of the media
being sensed, such as sensor purity, water movement, air flow, or light reflection. These
fluctuations do not need to be stored in the database as they have no direct influence on
the plant growth process. The fluctuation limit must be carefully estimated from the sensor
data sheet and the empirical measurement process.

A high deviation means that an alarm must be triggered for sensor inspection. These
deviations can be caused by contamination of the sensor, movement (out of the medium
or out of range of the sun) or technical malfunctions. Reported alarms are automatically
processed in the cloud and forwarded to maintenance. Due to the potentially significant
impact on the plant growth process, a quick response is required in some cases (nutrient
solution level or temperature).

The sensor nodes need to communicate efficiently with the cloud. This process
introduces a compression algorithm with or without data loss to reduce the data flow to the
central database. For a large amount of data, a NoSQL database [94] is recommended. In
our greenhouse model, a SQL database is used as a local buffer to provide accurate alerting
due to limited storage capacity. The cloud database will be based on NoSQL due to the
large amount of data. A warehouse model of the collected data can additionally be built
for specific time periods.

3.4. Data Collection

Each sensor node has local database storage, file system storage, and processing
computing power. All nodes are connected to the wired Internet. The wired Internet is
used to ensure continuous connectivity, as a wireless connection has a higher interference
rate. A wired interconnect cable is used to provide power through a method known as
power over ethernet. This method uses four wires that are not used in a standard 100 Mbps
ethernet connection. The non-standard power supply voltage is used (12 V) to power the
computing node, sensors, and motor system of the suspended platform. The available
voltage (12 V) is rectified within the node into other required voltages according to the
data sheet of the sensors. In this way, connectivity and power are provided simultaneously
through a cable connection with a central power supply. The proposed sensors have
low power requirements and do not require a high current throughput cable (large cross
section). The use of batteries or solar cells is not practical, even in combination with a
microcontroller and sensor sleeping functions, since the motors of the suspended platform
require a significant amount of energy to wind the cables.

A sensor node is provided as a central node. Based on the position of the nodes, the
central position node is the energy efficiency and power supply node. This node is closest
to the wired wide area link and power supply and has an additional sensor to check the
availability of the main power supply. The entire system is connected to the main cable
via the uninterruptible power supply (UPS), which has a serial interface to communicate
with the energy efficiency and power supply sensor node. In the event of a main power
supply failure, the system operates without interruption for a certain time frame defined
according to the UPS capacity. The UPS uses its battery power instead of the main power
supply and sends information to the energy efficiency and power supply node in case of a
power failure. When a power failure is detected, the energy efficiency and power supply
node alerts the maintenance staff to verify the reason for the power failure. In our case
study, the proposed time frame is eight hours to enable timely maintenance response.

The UPS informs the energy efficiency and power supply node to start shutdown
requests that propagates to other sensor nodes as soon as the battery power decreases.
Since all nodes are equipped with the operating system, local database, local memory, and
scripts on the SD board, a graceful shutdown is expected. In the event of an immediate
power failure, there is a possibility that the file system will be corrupted and thus the
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operating system will not boot. Each node acknowledges the orderly shutdown request
and starts the shutdown process. After losing network connectivity with the sensor node,
the energy efficiency and power node knows that a graceful shutdown has been completed
on a sensor node. After determining that all nodes have completed the shutdown process,
the energy efficiency and power supply node will shut down. This process must begin in
time before the complete power failure of UPS to complete successfully. The shutdown
period must be extended as the batteries of UPS lose capacity over time.

Energy efficiency and power nodes inform maintenance personnel with alerts of
the following priorities: fatal, technical, and anomaly. Fatal faults such as power supply
failure are immediately sent to maintenance personnel. Technical and anomaly faults are
collected and presented to cloud users upon connecting. Technical faults are associated
with technical system architecture and maintenance. Anomaly faults are linked to outlier
sensor readings. Low priority errors may increase. For example, an incorrect sensor reading
is an anomaly fault. If multiple anomaly warnings are repeatedly detected within a short
period of time, an anomaly fault is elevated to a technical fault. If an anomaly is detected
over an extended period of time, it is upgraded to a major fault because it may indicate
equipment failure and require intervention.

All sensor data is collected and stored in the local database for each sensor node. The
energy efficiency and power supply node hold information about other sensor nodes and
local sensor data. This data needs to be transferred to the cloud for detailed analysis.

3.5. Cloud Data Storage and Analysis

Cloud-based data storage is an obvious requirement for any potentially distributed
system configured to collect data in short time intervals. This is especially true for images,
where on-site storage can quickly become insufficient, limiting scalability. Today, the price
of cloud storage makes such data storage affordable for almost any budget, guaranteeing
data availability and the necessary infrastructure support for low-latency data access.

The cloud receives the data through a publicly accessible web service point protected
by a standard authentication mechanism and a whitelist for IP addresses. Data is transmit-
ted as simple JSON and stored in the NoSQL data store due to direct compatibility with
JSON format. Images are uploaded in RAW format, which is referenced in the JSON data
and stored in the cloud blob storage. The local sensor nodes organize the data and upload
it to the cloud immediately using the sampling process. In case of possible network failure
or server problems, the data is stored locally for a longer period of time to avoid data loss.
The proper period for local storage is empirically estimated and depends on the sampling
process and hard disc capacity. The received data is analyzed in the cloud to determine the
state of the system. The high-level system architecture is presented in Figure 4.

The data obtained from the greenhouse is organized and summarized to analyze the
dependent and independent variables of the process. The deep neural network model
acts as a high order nonlinear function that determines plant health based only on simple
camera images. This may include a deep neural network model based on a thermal image
and multiple dependent basic color (RGB) images of the camera without infrared filters.
In addition, a data warehouse solution is available to support the need for recurring data
reports for specific time periods.

Plant health will decide when the end of the ebb period is reached, as plant health
deteriorates with prolonged ebb periods. The decision made in this way should extend
the ebb periods as much as possible and thus, according to previous research in agronomy,
provide a plant with better nutritional values [95]. There will be other floating systems with
fixed ebb periods that will act as an experimental control group during this experiment.
Plant health will also be calculated for them.

Plant health will be determined in two different processes. The first process involves a
deep neural network model that estimates plant health by analyzing greenhouse images.
The second process estimates plant health mathematically based on sensor readings pro-
vided by the greenhouse. The data obtained from the second process is used as a correction
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factor for training and fitting the deep learning model. Calculating plant health only from
multiple statically placed camera devices significantly reduces the implementation cost of
the greenhouse.

Figure 4. The high-level system architecture.

Even without the sensor node system, it is possible to detect a malfunction of the
system based on the calculation of plant health over a period of time. During this period,
sudden deviations in the plant health calculation will alert the researchers because there
is a possible problem with the proposed calculation model or serious problems within
the greenhouse system, such as nutrient solution level, temperature, or artificial light
error. Ultimately, the images processed with the deep neural network model should be
sufficient to replace the sensor node system for determining plant health in the production
greenhouse.

3.6. Deep Neural Network Model

Deep learning models usually contain a considerable number of trainable parameters
that take a long time to train. In the context of computer vision, inference can also be the
bottleneck. Although there is significant development in edge computing and optimizing
such models to run in the field and even on embedded devices, for optimal results, a
high-end computing device should be used to achieve real-time or near real-time inference
speed. Even with a fast CPU, deep learning models can take a significant amount of
time to evaluate, so GPU computing units that support a high degree of parallelism and
are optimized for running complex deep learning models are needed. Large-scale smart
farming systems typically do not require real-time processing. Nevertheless, the cloud
solution enables cost-effective on-premises sensor and camera equipment and provides the
ability to simultaneously support multiple distributed deployments with centralized AI
analysis nodes. Once the deep-learning-based model processing is complete, the data is
stored and made available for any further data processing. In fact, the system is designed
to retrain the model with a larger amount of data when enough new data is collected,
increasing the efficiency and precision of the model.

Supervised learning is a simple approach in the given system, mainly due to high
availability and a large amount of ground truth data—plant health value—calculated
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from a reliable sensor source. For image processing, the deep learning model consists of
a backbone based on convolutional neural networks using one of the proven backbone
architectures such as ResNet [96], Inception [97], DenseNet [98] or an efficient concept of
backbone network scaling [99]. Since the plant health value is a single number, the model
contains a regression head with MSE loss function. Due to catastrophic forgetting, small
periodic model updates are not easy to achieve. Therefore, we tended to use large periodic
updates over a longer period of time. We leave a detailed analysis of the model update
time frame to future work.

3.7. Implementation Cost Analysis

For the described smart greenhouse architecture to be competitive in the market,
cost estimate should be included. The expenses can be divided into setup expense and
operational cost. Setup or installation cost includes the sensor set cost, RGB and thermal
camera, Internet connection installation (if missing) and suspended platform mounting.
Table 1 shows the estimated cost breakdown per sensor. The sensor cost can be reduced by
using the AI module to estimate the sensor values based on RGB plant images. Operational
cost includes the Internet connection rates, data storage and compute cost, and GPU
processing cost for AI image analysis. Depending on the data retention and level of
sampling the storage and compute cost can be somewhat adjusted to specific needs. GPU
processing in pay-as-you-go pricing models would require approx. 200–300 ms GPU
processing time per image analyzed. Image analysis frequency can also be reduced if
measurements follow a predictable pattern or high precision of not of essence. The cost of
model training is not included as it is performed once during the research, and henceforth
the trained model will be used only for inference.

4. Experimental Findings

In every greenhouse the temperature and the humidity are measured. These two
sensors form the minimum measurement setup, although each specific greenhouse might
require a specific set of sensors. Each sensor from set provides specific values that depend
on the element measured. Very often, the elements measured depend on the measurement
position and corresponding spatial variations. For instance, the temperature next to a
window or door, next to a glass wall or in a corner in the shade will report different results.
The measurement differences acquired this way form microclimate pockets.

Therefore, the sensor positioning within the greenhouse is extremely important, since
our primary goal is to locate and isolate the microclimate pockets. Variations measured in
the microclimate pockets affect plant health and should be included in the calculations and
data analysis. This requires automated sensor positioning as opposed to the horizontal or
vertical fixed positioning. Related research focuses on autonomous vehicles, conveyors and
drones to find and isolate microclimate pockets. We have proposed the suspended platform
architecture that allows flexible spatial positioning, covering all three spatial dimensions
as it can be seen in Figure 5. Additionally, the flexible positioning concept is essential to
ensure diverse plant image acquisition to improve deep learning model applicability to
new and unseen environments.

The suspended platform is equipped with internal sensor node sensors. The sensor
node consists of CO2, temperature, humidity, pressure, multichannel gas sensor, ultra-
violet (UV) and visible light, sensor for visible light with IR cut filter and RGB color sensor
to detect leaf color. Additionally, to collect images, RGB and thermal camera are attached.
During installation, sensors are mounted to prevent the influence on the camera’s field
of view. Due to the suspended platform positioning concept, sensor node heat output or
sunlight blockage is not an issue since positioning in single location is short. This makes
our proposed suspended platform very flexible and precise while not being invasive for
plant or plant environment.

In previous articles, we found mainly targeted measurements of microclimatic points
based on the specific orientation of the greenhouse or some specific parts such as curtains,
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blurred windows, or a more densely placed structure. We suggest another approach to
divide the plant growing area into the grid of 50 × 50 cm squared zones. Decreasing the
square size, positioning system requires frequent calibrations and the time to visit the entire
grid increases and becomes non-viable, especially for larger greenhouses. For certain types
of sensors, the measurement itself does not occur momentarily, but a certain amount of
time must pass before the value stabilizes (e.g., temperature). Overly granulated grid can
lead to inaccurate data because the measurement times for different squares are not visited
often enough. The size of the grid square should not be too large, otherwise microclimatic
pockets might not be precisely isolated.

Figure 5. Suspended platform model. View from above and below on mounted internal sensor node.
Suspended platform model during experimental positioning—test of cameras and platform stability
during image acquire.

For a proposed square size of 50 × 50 cm, we can conclude that the allowable deviation
of the suspended platform positioning is equal to half the side of the square: 25 cm. The
suspended platform is implemented as a cable-driven parallel robot. Essentially, it is a
set of at least 6 cables that are wound and unwound by winches and connect a frame and
a platform. By synchronously adjusting the length of the various cables, the load can be
moved smoothly over a wide area of the footprint, with control and stability in all 6 degrees
of freedom.

To confirm the concept and determine the variations in positioning, we propose an
experiment to build a model of the suspended platform and to test its positioning abilities.
Three laser pointers are mounted on the platform and the printer is guided through wires
by hand to specific position. Each laser pointer covers one axis: the display on the right
wall, the display on the end wall, and the display on the ground. Each time the suspended
platform was moved, we marked the previous point and measured the deviation of the new
position from the previous point. Through several cycles of guiding, we reduced the results
to acceptable average of 2.7% ± 2% deviation in positioning after full grid positioning cycle
and before next calibration. The measurement provided allows for grid size slightly over
800 cm between opposite grid sectors. Additionally, in our laboratory surroundings we
tested the possibility of positioning in diverse location, especially near the corners of the
laboratory. Precise height positioning of the suspended platform is also satisfactory to be
able to provide a closer leaf inspection. With the model experiment we established that it is
possible to cover the laboratory ground except for corners.

As a comparison, positioning deviation for the similar process in the field of 3D print-
ing spans up to 1.5%, with isolated outlier of 9.4% [79]. We believe that after motorization
with additional calibration, through test experience the better results can be achieved.

The network cable provides power and secures the network connection to the internal
sensor node located on the platform. Although we have designed the cable to be flexible, it
is obvious during positioning that it affects the balance of the suspended platform, since the
results are slightly improved in the experiment without the ethernet cable. After a few tests
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we abandoned the use of ethernet cable and decided to use a wireless connection instead.
In the presented figure only power cable provided as connection to suspended platform.

Our experimental testing on model also showed that the flax cable is more suitable
than thin rope as a wire guide. There is a possibility to power the internal sensor node
through two wires from which the platform is suspended. This solution would be tested
later by replacing two wires with thin steel cable.

This device to be able to reset its positioning should have a zero point. The edge zero
point is extremely impractical for the zero point. For this reason, we propose to install
a 3-axis sensor and secure a point in the greenhouse where the unique position of the
suspended platform can be confirmed. The sensor could be implemented via ultrasound or
laser. In addition, such a sensor could detect obstacles during the movement of the platform
and stop the operation of the device, i.e., avoid the obstacle by positioning it via the second
axis. With this experimental finding we can conclude that suspending platform can be
used to detect microclimate pockets and to provide diverse and high-quality close-up plant
images for deep learning model training as presented in Figure 5.

5. Conclusions

With a higher market for organic food production, there are demands for greenhouse
growing in sterile environments, pesticide and fertilizer free, which is hard to find in our
surroundings. The integration of IoT devices into non-computational domains provides
the opportunity to obtain Big Data analytics of every measurable section of an internal
greenhouse process. Such analysis with deep learning models provides valuable insights
and scientific knowledge [100].

The main goal of this paper was to present a state-of-the-art scientific greenhouse
research facility that can be used during and after Project Urtica-BioFuture. In this paper,
we have analyzed related work to gain knowledge about the most commonly used sensors
and greenhouse equipping projects in precision agriculture. A detailed sensor node system
architecture to cover all internal greenhouse processes and to obtain Big Data, which is
subsequently analyzed in the cloud, is presented. The system architecture is presented to
describe the design of the components and their interconnection.

The collected data is synchronized with the cloud in real time, which enables addi-
tional calculation in the cloud. A deep neural model will be trained on sensor data to
estimate plant health from RGB camera images only. This is one of the primary Project
Urtica-BioFuture goals. The trained model can be used as a replacement for the sensor
system to make the greenhouse system more energy and cost efficient in the production
environment.

Microclimatic influences can become a problem in measurement evaluation. To detect
microclimates, different layouts for sensor organization are proposed. In this paper, we
propose an automated hybrid sensor layout based on a suspended platform to detect
microclimate pockets. The proposed layout covers the greenhouse area and allows precise
positioning throughout the greenhouse. In addition, it allows camera positioning above
the plants thus enabling better plant coverage.

The automated hybrid layout with suspended platform offers the advantage of posi-
tioning the sensor node above the plant growing area in all axes. With the introduction of
the system, we eliminate problems with fixed horizontal and vertical layouts, problems
with expensive conveyor systems, problems with floor leverage and obstacles with auto-
mated robotic vehicles, and sensor compensation by drone propulsion. In addition, the
proposed suspended platform is powered by wires, eliminating the concept of battery
replacement and recharging.

To validate the concept, we conducted a simple experiment by building a model of
the suspended platform. In this experiment, we verified positioning errors to confirm the
use of the system according to the proposed grid system over the plant growing area in
the greenhouse. During the experiment, we also identified raised problems and made
suggestions for them. We believe that this paper will enable us to collect better plant images
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for AI and detect microclimate pockets and enabling their elimination. This would make
the proposed greenhouse system more effective and provide a novel starting point for the
Urtica-BioFuture project.

For future work, we propose several possible avenues. A detailed analysis of the
microclimate pockets in the greenhouse to obtain a mathematical model describing their
influence in the surrounding areas of the greenhouse is worth considering. With analyses of
the collected data, the sensor system can be further optimized by eliminating or introducing
an additional sensor to replace the sensor group. The deep neural network model can be
further optimized to provide exact mathematical model for plant health calculations by
collecting additional training data from multiple greenhouses and different plant crops.
With this approach a sensor data network simplification with the introducing of a deep
neural network model will be achieved.
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7. Kramberger, T.; Potočnik, B. LSUN-Stanford Car Dataset: Enhancing Large-Scale Car Image Datasets Using Deep Learning for
Usage in GAN Training. Appl. Sci. 2020, 10, 4913. [CrossRef]

8. Ghosh, A.; Chakraborty, D.; Law, A. Artificial intelligence in Internet of things. CAAI Trans. Intell. Technol. 2018, 3, 208–218.
[CrossRef]

9. Story, D.; Kacira, M. Design and implementation of a computer vision-guided greenhouse crop diagnostics system. Mach. Vis.
Appl. 2015, 26, 495–506. [CrossRef]

10. URTICA—BioFuture. 2020. Available online: http://urtica.agr.hr/en/naslovnica-english/ (accessed on 25 December 2020).
11. Wei, Y.; Li, W.; An, D.; Li, D.; Jiao, Y.; Wei, Q. Equipment and Intelligent Control System in Aquaponics: A Review. IEEE Access

2019, 7, 169306–169326. [CrossRef]
12. Saiz-Rubio, V.; Rovira-Más, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy

2020, 10, 207. [CrossRef]

http://doi.org/10.1016/j.compag.2019.05.054
http://dx.doi.org/10.1007/978-3-319-60435-0_12
http://dx.doi.org/10.1109/MPRV.2018.2873849
http://dx.doi.org/10.1007/s11227-020-03288-w
http://dx.doi.org/10.1109/ACCESS.2019.2932609
http://dx.doi.org/10.1016/j.compag.2019.104877
http://dx.doi.org/10.3390/app10144913
http://dx.doi.org/10.1049/trit.2018.1008
http://dx.doi.org/10.1007/s00138-015-0670-5
http://urtica.agr.hr/en/naslovnica-english/
http://dx.doi.org/10.1109/ACCESS.2019.2953491
http://dx.doi.org/10.3390/agronomy10020207


Sensors 2021, 21, 2575 20 of 23

13. Miranda, J.; Ponce, P.; Molina, A.; Wright, P. Sensing, smart and sustainable technologies for Agri-Food 4.0. Comput. Ind. 2019,
108, 21–36. [CrossRef]

14. Wei, L.Y.; Sheng-Kai, T.; Jyun-Kai, L.; Ta-Hsien, H. Delopoing Smart Home Applications. Mob. Netw. Appl. 2020. [CrossRef]
15. Bersani, C.; Ouammi, A.; Sacile, R.; Zero, E. Model Predictive Control of Smart Greenhouses as the Path towards Near Zero

Energy Consumption. Energies 2020, 13, 3647. [CrossRef]
16. Oliver, P.; Kostas, B.; Calvo, R.A.; Papavassiliou, S. (Eds.) Mobile Networks and Management; Springer: Berlin/Heidelberg, Germany,

2010. [CrossRef]
17. Wang, L.; Wang, B. Construction of greenhouse environment temperature adaptive model based on parameter identification.

Comput. Electron. Agric. 2020, 174, 105477. [CrossRef]
18. Subahi, A.F.; Bouazza, K.E. An Intelligent IoT-Based System Design for Controlling and Monitoring Greenhouse Temperature.

IEEE Access 2020, 8, 125488–125500. [CrossRef]
19. Castañeda-Miranda, A.; Castaño, V. Smart frost measurement for anti-disaster intelligent control in greenhouses via embedding

IoT and hybrid AI methods. Measurement 2020, 164, 108043. [CrossRef]
20. Villarreal-Guerrero, F.; Pinedo-Alvarez, A.; Flores-Velázquez, J. Control of greenhouse-air energy and vapor pressure deficit with

heating, variable fogging rates and variable vent configurations: Simulated effectiveness under varied outside climates. Comput.
Electron. Agric. 2020, 174, 105515. [CrossRef]

21. Vamvakas, P.; Tsiropoulou, E.E.; Vomvas, M.; Papavassiliou, S. Adaptive power management in wireless powered commu-
nication networks: A user-centric approach. In Proceedings of the 2017 IEEE 38th Sarnoff Symposium, Newark, NJ, USA,
18–20 September 2017. [CrossRef]

22. DFRobot, Gravity: Analog Capacitive Soil Moisture Sensor-Corrosion Resistant SEN-0193. 2019. Available online: https:
//www.dfrobot.com/product-1385.html (accessed on 14 December 2020).

23. Angelopoulos, C.M.; Filios, G.; Nikoletseas, S.; Raptis, T. Keeping Data at the Edge of Smart Irrigation Networks: A Case Study in
Strawberry Greenhouses. Comput. Netw. 2019, 167, 107039. [CrossRef]

24. Dong, Z.; Men, Y.; Liu, Z.; Li, J.; Ji, J. Application of chlorophyll fluorescence imaging technique in analysis and detection of
chilling injury of tomato seedlings. Comput. Electron. Agric. 2020, 168, 105109. [CrossRef]
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