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Abstract: African swine fever virus (ASFV) is the etiological agent of African swine fever, a highly
contagious hemorrhagic disease affecting both wild boars and domestic pigs with lethality rates up to
100%. Until now, the most effective measure to prevent an outbreak of ASFV was early detection. In
this situation, whole genome sequencing (WGS) allows the gathering of detailed information about
the identity and epidemiology of the virus. However, due to the large genome size and complex
genome ends, WGS is challenging. Current WGS workflows require either elaborate enrichment
methods or are based on tiled PCR approaches, which are susceptible to genetic differences between
ASFV strains. To overcome this, we developed a novel approach for WGS of ASFV, using the Phi29
DNA polymerase-based multiple displacement amplification in combination with only seven primers.
Furthermore, we applied an alkaline-based DNA denaturation step to significantly increase the
number of viral reads, which resolves the near-full genome of ASFV. This novel isothermal WGS
approach can be used in authorized laboratories for the genomic epidemiological analysis of ASFV
outbreaks caused by different genotypes.
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1. Introduction

African swine fever (ASF) is a highly contagious and highly lethal hemorrhagic disease
of wild boars and domestic pigs caused by African swine fever virus (ASFV) [1]. ASFV
is the only member of the Asfarviridae family and has a double-stranded DNA genome
between 170 and 190 kb in size, depending on the strain [1]. In 2007, a highly virulent
ASFV genotype II was introduced in Georgia and has since spread further to Europe, Asia,
Oceania, and the Caribbean [2–6].

Typically, the classification of ASFV into different genotypes is based on the partial
nucleotide sequence of the B646L gene, with which 24 different genotypes have been de-
scribed [7,8]. However, recent analysis has shown that there is insufficient divergence to
discriminate between the 24 genotypes, and a new classification of only six distinct geno-
types, based on the amino acid sequence of the entire B646L gene, has been proposed [9].
Nevertheless, using such a small genomic region is not ideal for discriminating between
different strains, as most of the mutations that might be phylogenetically relevant occur
at other genomic locations [9–11]. Therefore, whole genome sequencing (WGS) is better
suited for ASFV classification. Currently, most of the publicly available whole genome
sequences are from ASFV genotype I and II strains responsible for outbreaks outside the
African continent, which in general have a high similarity (>99%) [12]. Unfortunately, there
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are still genomic gaps in the publicly available whole genome sequences for the other
22 ASFV genotypes from Africa, as well as a lack of knowledge about genomic diversity
among arthropod and feral host reservoirs [12].

The genomic gap is partially caused by the fact that WGS of ASFV has been challenging
due to the size of the viral genome, even with the currently available metagenomic and
tiled PCR approaches. The metagenomic approach is based on the enrichment of viral DNA
using ASFV-specific RNA baits followed by short-read sequencing, whereas in the tiled
PCR approach, pools of PCR amplicons that cover the entire genome are sequenced [13–15].
The metagenomic approach allows the generation of high-quality whole genome assemblies
but comes with high costs and relatively long processing times and requires specialized
equipment. In contrast, the tiled PCR approach is more cost-effective and results in almost
complete coverage; but, due to the large number of primers needed for the generation of
amplicons spanning over the entire genome, it is sensitive to mutations inserted at the
primer binding sites [14]. Furthermore, this approach is limited to a few genotypes because
of the limited number of whole genomes of different ASFV genotypes [13]. Combined,
these financial and technical constraints limit the feasibility of increasing the number of
sequences from genotypes across different geographical locations.

To overcome these limitations, we developed a novel WGS approach based on the
multiple displacement amplification (MDA) properties of the Phi29 DNA polymerase to
sequence ASFV samples on the Oxford Nanopore Technology sequencing platform. By
using ASFV DNA extracted from EDTA blood samples of experimentally infected pigs as a
template for Phi29-based MDA, we demonstrated that, within 4 h and with only 7 ASFV-
specific primers, we could recover 87% of the 190 kb long ASFV genome. Furthermore,
using an alkaline-based DNA pre-treatment step, we could demonstrate that the overall
number of viral reads was significantly increased. This novel, rapid, and straightforward
WGS method can potentially be used for the real-time genomic epidemiological analysis
of ASFV.

2. Materials and Methods
2.1. Virus and DNA Extraction

The ASFV viral DNA used in this study was extracted at the BSL-3Ag facility of the
Institute of Virology and Immunology (IVI) in Mittelhäusern, Switzerland. The ASFV viral
DNA was taken from EDTA blood of specific pathogen-free pigs previously infected with
ASFV Georgia 2007 (pigs 85, 87, 88) for immunopathogenesis studies [16]. The animal
experiments were performed in compliance with the Swiss animal protection law (TSchG
SR 455; TSchV SR 455.1; TVV SR 455.163), were reviewed by the committee on animal
experiments of the canton of Bern, and were approved by the cantonal veterinary authority
under the licenses BE18/2019 and BE46/2022. ASFV DNA was extracted from EDTA
blood using the NucleoSpin Blood kit (Macherey-Nagel, Düren, Germany), according
to the manufacturer’s instructions. Following nucleic acid extraction, viral DNA was
further processed at BSL-2 in accordance with the Swiss Containment Ordinance (ECOGEN
A210161-01 and A192517-01).

2.2. Viral Culture and DNA Extraction

Due to the limited availability of ASFV DNA, we used a cell-cultured Vaccinia virus as
a surrogate for the initial optimization of the assay. The Vaccinia virus was selected due to its
genome structure, size, and replication biology similar to that of ASFV. Furthermore, it was
readily available as it is a BSL-2 pathogen. To generate the virus stock with pig genomic
DNA as the background, we cultured swine testicle cells (ST, American Type Culture
Collection CRL-1746, Manassas, VA, USA) in Minimum Essential Medium containing
Glutamax (MEM + Glutamax; Gibco, Gaithersburg, MD, USA) and supplemented with 10%
heat-inactivated Fetal Bovine Serum (FBS, PAN Biotech, Aidenbach, Germany), 100 µg/mL
streptomycin, and 100 IU/mL penicillin (Gibco). One day prior to infection, we seeded
1 × 106 ST cells per well in a 6-well plate. The cells were inoculated with five serial 10-fold
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dilutions of Vaccinia virus starting with a multiplicity of infection (MOI) of 1. After 16 h of
incubation (37 ◦C, humidified incubator, 5% CO2), the cell supernatant was removed, cells
were lysed using a DNA/RNA shield (1×; Zymo Research, Irvine, CA, USA), and DNA
was extracted using the Zymo Research Quick-DNA Miniprep Plus Kit (Zymo Research)
according to the manufacturer’s instructions, and in accordance with the Swiss containment
ordinance (ECOGEN A131226).

2.3. Primer Design

To specifically amplify ASFV genomes using the MDA approach, we designed primers
in silico using the Selective Whole Genome Amplification (SWGA) command-line tool [17].
ASFV (NC_044942.1) or Vaccinia virus (NC_006998) reference genomes were used as the on-
target reference, with the pig chromosomal and mitochondrial DNA as the off-target refer-
ence (Sus scrofa Sscrofa11.1 pig mitochondrion NC_000845). This resulted in several primer
pools, classified based on their binding distance and frequency for both on-target and
off-target genomes. We selected six primers for ASFV (ASFV01-06, Table S1) and Vaccinia
virus (VV01-06, Table S1) that do not bind to the swine mitochondrial DNA (NC_000845)
and synthesized them with phosphorothioate bonds at the two 3′ terminal nucleotides in
order to prevent exonuclease degradation (Microsynth AG, Balgach, Switzerland).

2.4. Sample Pre-Treatment

To improve Phi29-based MDA, we investigated the influence of a DNA pre-treatment
step—either of heat denaturation or incubation in an alkaline lysis buffer—compared to
untreated DNA. The heat denaturation consisted of incubating DNA in a 7.5 µL reaction
containing 1× EquiPhi29 reaction buffer (Thermo Fisher Scientific, Waltham, MA, USA)
and 3.5 µM of pooled SWGA primers for a denaturation step (3 min, 95 ◦C), followed by
quenching on ice for 5 min. For the alkaline denaturation approach, we incubated the
extracted DNA with an alkaline lysis buffer (pH 14, 0.4 M KOH, 10 mM EDTA, 100 mM
DTT) in a sample-to-buffer ratio of 0.85 [18]. After 5 min of incubation at 4 ◦C, the mixture
was neutralized by adding an equal volume of 1 M Tris-HCl (pH 4, Promega, Madison, WI,
USA). Pre-treated samples were used thereafter for whole genome amplification based on
the MDA.

2.5. Multiple Displacement Amplification

A total volume of 2.8 µL native ASFV or Vaccinia virus DNA, or 9.4 µL denatured
ASFV DNA treated using either method described above, was used in a 25 µL reaction
mixture composed of 1× EquiPhi29 reaction buffer (Thermo Fisher Scientific), 0.6 U/µL
EquiPhi29 DNA polymerase (Thermo Fisher Scientific), 1 mM dNTPs (Promega), 1 mM
DTT (Thermo Fisher Scientific), and 3.5 µM of pooled SWGA primers (ASFV-ter primer
1/10 of the amount). The two-step incubation included an amplification step for different
times (i.e., 1, 2, 4, 8, or 16 h) and temperatures (i.e., 30 ◦C or 42 ◦C) followed by an enzyme
inactivation step (10 min, 65 ◦C). The MDA product was purified using the E.Z.N.A. Cycle
Pure Kit (Omega Bio-tek, Norcross, GA, USA) according to the manufacturer’s instructions.

2.6. Quantitative PCR

To quantify the amount of amplified ASFV DNA, we performed a qPCR using pre-
viously published primers and probes specific for ASFV, where the Cy5 fluorescent dye
was replaced with FAM [19]. To assess the Vaccinia virus genome amplification yield in
the Phi29-based assays, we used previously published qPCR primers targeting the E9L
gene [20]. Amplified samples were diluted either 1:100 (ASFV) or 1:10 (Vaccinia virus),
from which 2 µL was used in a 10 µL reaction mixture based on the Luna Universal Probe
qPCR Master Mix (New England BioLabs [NEB], Ipswich, MA, USA) and according to
the manufacturer’s instructions. The analysis was conducted on a QuantStudio 7 Flex
Real-Time PCR System (Thermo Fisher Scientific) with a cycle profile involving an initial
denaturation step (1 min, 95 ◦C), followed by 45 cycles of denaturation (15 s, 95 ◦C), an-
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nealing, and elongation (30 s, 60 ◦C), with a measurement of the fluorescence intensity at
each cycle.

2.7. Sequencing and Analysis

After purification, the MDA product was quantified using the Qubit dsDNA HS Assay
Kit (Thermo Fisher Scientific) with a Qubit 3 fluorometer (Thermo Fisher Scientific), and
400 ng of DNA was used for each barcode during library preparation with the Rapid
Barcoding Kit (SQK-RBK110.96 or SQK-RBK114.24, Oxford Nanopore Technologies [ONT],
Oxford, UK) according to the manufacturer’s protocol. The library was loaded on a MinION
flow cell (R9.4.1 (FLO-MIN106) or R10.4.1 (FLO-MIN114), ONT) and sequenced with a
MinION device (Mk1B, ONT) with real-time, high-accuracy basecalling (Guppy 5.0.13
or 5.1.13 or Dorado 7.2.13, ONT) and demultiplexing enabled through the MinKNOW
software (21.11.7 or 23.11.7, ONT). Other setups of the sequencing runs included the q-
score (≥Q9), the detection of mid-read barcodes, and enabling read splitting. Downstream
sequence analysis was performed using a custom-made bash script piping minimap2
(2.21-r1071) for the reference-based assembly as well as medaka (1.9.1, ONT) to polish the
consensus sequence [21]. Finally, Samtools (1.18) was used to extract the data necessary to
generate the plots with the R package ggplot2 (3.4.4) using R (4.3.1) [22].

3. Results

To overcome financial and practical constraints for ASFV WGS, we explored the
possibility of using the multiple displacement amplification (MDA) properties of the Phi29
DNA polymerase. However, since the MDA reaction is usually combined with random
hexamers, this can result in the overamplification of host-derived nucleic acids, such as the
circular mitochondrial DNA. Therefore, we used the Selective Whole Genome Sequencing
(SWGA) package to design primers that selectively amplify the viral genome and not the
host chromosomal and mitochondrial DNA. Due to the limited availability of ASFV DNA,
we performed the first evaluation and associated initial optimization steps using Vaccinia
virus as a surrogate.

Using the SWGA command-line tool, we designed primers for the Vaccinia virus
(Western Reserve) genome, whereby the pig chromosomal and mitochondrial sequences
were used as a background to generate primers that would amplify the Vaccina virus
genome selectively. This resulted in a set of six primers that, in silico, targeted the Vaccina
virus genome several times (Table S1). Because the terminal region was poorly represented
in silico, we manually designed a primer targeting the terminal regions (VV-ter, Table S1).
The combined set of seven primers was then used to determine the optimal reaction time
and temperature yielding the highest Vaccina virus DNA amount. For this, the MDA
reaction was conducted at either 30 ◦C or 42 ◦C for a total duration of 1, 2, 4, 8, or 16 h
in three replicates. Using quantitative PCR, we observed that the increase in DNA yield
over time was much slower at 30 ◦C than at 42 ◦C (Figure 1). Because it is known that long
incubation times can increase the amount of non-specific amplification products, we chose
to use an amplification time of 4 h at 42 ◦C for all further experiments, as this would result
in the highest overall yield and would reduce the risk of amplifying non-specific DNA
products (Figure 1).

After evaluating the optimal conditions for the Phi29 DNA polymerase-based MDA
reaction using the Vaccina virus, we used the SWGA command-line tool to generate a
primer set that preferentially binds the ASFV genome over the host chromosomal and
mitochondrial DNA. From all the generated primers, we selected six primers that, in
silico, bind two to three times across the ASFV genome (Table S1). Using the previously
established amplification condition, we performed the MDA on ASFV DNA isolated from
EDTA blood samples of pigs that had previously been infected experimentally with ASFV
for immunopathogenesis studies. The MDA product was subsequently sequenced on a
flow cell from Oxford Nanopore Technology (Figure 2A). This revealed that after sequence
read normalization, approximately 13 percent of all the reads mapped to the ASFV genome,
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and with a mean coverage depth of 100 reads per site, 74 percent of the ASFV genome
could be resolved with a 20× coverage (Figure 2B, Table 1).
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Figure 1. Optimization of the amplification conditions. To optimize the amplification conditions,
Vaccinia virus DNA was incubated at either 30 ◦C or 42 ◦C for 1, 2, 4, 8, and 16 h, and, after
quantification by qPCR, the Ct-value was plotted (y-axis). The 0 h represents the viral load used as
input for each reaction.

Table 1. Comparison of sequencing results based on the different pre-treatment options.

Sample Ct-Value Denaturation Terminal
Primer

Mapped
Reads

Coverage
(1×)

Coverage
(20×) Mean Depth

EDTA85 19.7 No No 13.7% 89.7% 74.1% 103.9
EDTA87 19.4 No No 13.3% 89.8% 74.0% 97.1
EDTA88 19.5 No No 36.4% 99.7% 82.1% 241.3
EDTA85 19.7 Heat Yes 20.7% 96.7% 72.4% 90.6
EDTA87 19.4 Heat Yes 21.7% 97.0% 76.1% 119.4
EDTA88 19.5 Heat Yes 13.3% 95.7% 74.4% 87.0
EDTA85 19.7 Alkaline Yes 73.1% 98.8% 87.0% 775.3
EDTA87 19.4 Alkaline Yes 76.6% 91.9% 87.8% 983.6
EDTA88 19.5 Alkaline Yes 65.5% 92.9% 86.7% 663.3

Because the 5′ terminal region was not entirely resolved using six primers, we man-
ually designed a primer targeting the 5′ and 3′ termini of ASFV binding nine times on
terminal repeat regions on both ends to improve the recovery of the genomic ends (ASFV-
ter, Table S1). In addition, to increase the potential primer accessibility, we also evaluated
whether a heat-denaturing or an alkaline-based-denaturing step before MDA could increase
the sequence coverage in this region. Following read normalization, the data showed that
the heat-denaturation step displayed no significant difference in the number of viral reads
generated compared to untreated DNA, whereas the alkaline denaturing approach showed
a significant increase compared to the other two approaches (Figure 2C, Table 1). This
indicates that alkaline denaturation improves the efficiency of the specific amplification of
ASFV DNA.
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Figure 2. Amplification and sequencing approach for ASFV. (A) Schematic overview of workflow
established in this study (Created in BioRender. Licheri, M. (2024) BioRender.com/b70m288); (B) the
sequences obtained with three ASFV samples (EDTA85, 87 and 88) amplified with or without pre-
treatment were used to generate coverage plots showing the sequencing depth (log10 scale, y-axis)
in the function of each nucleotide position (x-axis); (C) the percentages of the obtained mapped
reads were compared between the three different pre-treatment conditions (no, heat, or alkaline
pre-treatment; ns: not significant, *: p ≤ 0.05, ***: p ≤ 0.001, paired t-test).
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When we assessed the sequencing coverage for the two pre-treatment methods, we
noticed that both the mean coverage depth and the genome coverage at a 20× coverage
for the heat-denaturing pre-treatment were similar to those of no pre-treatment (Table 1,
Figure 2B); from this, ≥96 percent of the genome could be resolved at a 1× coverage. The
most considerable overall improvement was observed in the alkaline-based pre-treatment,
which yielded an approximately 8-fold increase in the mean sequencing depth that, at a
1× coverage, could resolve ≥98% of the ASFV genome (Table 1, Figure 2B).

To assess the sensitivity of the developed approach combined with the alkaline de-
naturation, we used four 10-fold serial dilutions of ASFV DNA from sample EDTA85
and repeated it in three independent replicates. This showed that the mean depth for a
20× coverage was similar up to a Ct-value of 23.1; thereafter, the amplification and sequenc-
ing output was markedly reduced (Figure 3, Table S3). This indicates that the detection
limit for the developed approach corresponded to a Ct-value of approximately 23.1.
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Figure 3. Sensitivity of the SWGA MDA combined with the alkaline denaturation. (A) Four 10-fold
serial dilutions of ASFV (on the bottom is the corresponding Ct-value, NC = negative control) were
amplified in independent replicates using the developed approach, resulting in similar 20× coverage
up to a Ct-value of 23.1; (B) the corresponding mean sequencing depth of the four 10-fold serial
dilutions shows a marked reduction after the second 10-fold serial dilution.

These results indicate that the Phi29-based MDA approach combined with an alkaline
DNA denaturing step is a suitable approach that can rapidly and selectively amplify the
ASFV genome of samples with a Ct-value up to 23, which can then be used directly as a
sequencing template.

4. Discussion

Here, we present a novel WGS approach for ASFV based on the Phi29 DNA polymerase-
based MDA principle. We show that using only seven primers combined with a DNA
denaturation step can resolve the near-complete ASFV genome from DNA extracted from
EDTA blood samples of two experimentally infected pigs. Furthermore, we show that
pre-treatment of the DNA prior to MDA increases the overall genome coverage and the
percentage of viral reads, which was higher when using the alkaline lysis buffer. This
novel WGS method for ASFV can potentially be used as a novel rapid and selective WGS
approach to determine the genomic sequence of ASFV.



Viruses 2024, 16, 1664 8 of 10

We show that an alkaline-based DNA denaturing step, prior to the Phi29-based MDA
with seven primers, allows the recovery of near-complete ASFV genomes. Although we
reach a sequencing coverage of up to 99%, compared to other WGS approaches, the mean
coverage at the 5′ terminal region of the genome remains low. This indicates that the current
set of seven primers needs to be complemented with additional primers to increase the
coverage in this region regardless of having a unique primer for the terminal genomic ends
(Table S1). A further possible solution would be to increase the overall sequencing depth;
however, on the Oxford Nanopore Technology sequencing platform, this would limit the
number of samples that can be sequenced simultaneously. An alternative solution would
be the design of new primer sets using the recently improved SWGA command line [23].
This would require some additional optimization, but combined with the fundamentals
described here, it would potentially generate a suitable alternative WGS approach to
determine the genomic sequence of ASFV.

Our study shows that, with a limited set of primers, it is possible to obtain near-
complete whole genome sequences for ASFV. In contrast, other WGS methods for ASFV
include a metagenomic approach, based on the enrichment of ASFV DNA through specific
oligonucleotide baits followed by short-read sequencing, and the tiled PCR approach,
which uses 64 primer pairs to generate overlapping amplicons covering the entire ASFV
genome [13–15]. Thus, compared to these reported WGS approaches for ASFV, our method
is less laborious and cost-intensive, and due to the multiple binding sites for each primer, it
is also likely more robust towards mutations compared to the tiled PCR approach [24–26].
However, due to limited material availability and strict import regulations, we can thus
far only show that our method works for the Georgia 2007 strain. Nevertheless, when we
evaluated, in silico, the primer binding distribution for other ASFV genotypes, for which
a whole genome sequence is available (Table S2), we observed a similar primer binding
distribution as in the Georgia 2007 strain, which indicates that the approach described in
this study can potentially be used to amplify the genome of different ASFV genotypes
selectively.

In conclusion, we developed a novel WGS approach for genotyping ASFV and other
DNA viruses. This versatile ASFV sequencing method can be implemented in authorized
laboratories equipped to handle and process extracted ASFV DNA.
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