
Vol. 29 ISMB/ECCB 2013, pages i352–i360
BIOINFORMATICS doi:10.1093/bioinformatics/btt213

Haplotype assembly in polyploid genomes and identical by

descent shared tracts
Derek Aguiar and Sorin Istrail*
Department of Computer Science and Center for Computational Molecular Biology, Brown University, Providence,
RI 02912, USA

ABSTRACT

Motivation: Genome-wide haplotype reconstruction from sequence

data, or haplotype assembly, is at the center of major challenges in

molecular biology and life sciences. For complex eukaryotic organ-

isms like humans, the genome is vast and the population samples are

growing so rapidly that algorithms processing high-throughput

sequencing data must scale favorably in terms of both accuracy and

computational efficiency. Furthermore, current models and methodol-

ogies for haplotype assembly (i) do not consider individuals sharing

haplotypes jointly, which reduces the size and accuracy of assembled

haplotypes, and (ii) are unable to model genomes having more than

two sets of homologous chromosomes (polyploidy). Polyploid organ-

isms are increasingly becoming the target of many research groups

interested in the genomics of disease, phylogenetics, botany and evo-

lution but there is an absence of theory and methods for polyploid

haplotype reconstruction.

Results: In this work, we present a number of results, extensions and

generalizations of compass graphs and our HapCompass framework.

We prove the theoretical complexity of two haplotype assembly opti-

mizations, thereby motivating the use of heuristics. Furthermore, we

present graph theory–based algorithms for the problem of haplotype

assembly using our previously developed HapCompass framework for

(i) novel implementations of haplotype assembly optimizations (min-

imum error correction), (ii) assembly of a pair of individuals sharing a

haplotype tract identical by descent and (iii) assembly of polyploid

genomes. We evaluate our methods on 1000 Genomes Project,

Pacific Biosciences and simulated sequence data.

Availability and Implementation: HapCompass is available for down-

load at http://www.brown.edu/Research/Istrail_Lab/.

Contact: Sorin_Istrail@brown.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The genome sequence of a human individual can be modeled as

23 pairs of sequences of four nucleotide bases, A, C, G and T,

representing the 22 pairs of autosomes and the sex chromosomes.

However, �99.5% of any two individuals’ genome sequences is

shared within a population. The �0.5% of the nucleotide bases

varying within a population range from single-nucleotide poly-

morphisms (SNPs) to more complex structural changes, for ex-

ample, deletions or insertions of genomic material. A sequence of

genomic variants, typically SNPs, with the non-varying DNA

removed is referred to as a haplotype.

Standard genome sequencing workflows produce contiguous
DNA segments of an unknown chromosomal origin. De novo

assemblies for genomes with two sets of chromosomes (diploid)
or more (polyploid) produce consensus sequences in which the

relative haplotype phase between variants is undetermined. The
set of sequencing reads can be mapped to the phase-ambiguous

reference genome and the diploid chromosome origin can be
determined but, without knowledge of the haplotype sequences,

reads cannot be mapped to the particular haploid chromosome
sequence. As a result, reference-based genome assembly algo-

rithms also produce unphased assemblies. However, sequence
reads are derived from a single haploid fragment and thus pro-

vide valuable phase information when they contain two or more
variants. The haplotype assembly problem aims to compute the

haplotype sequences for each chromosome given a set of aligned
sequence reads to the genome and variant information. The

haplotype phase of variants is inferred from assembling overlap-
ping sequence reads [Browning and Browning (2011);

Halldórsson et al. (2003); Schwartz (2010)].
The input to the haplotype assembly problem is a matrix

M whose rows correspond to aligned read fragments and col-
umns correspond to SNPs (Fig. 1). The quality of M’s construc-

tion depends on the parameters of the sequencing workflow and
the accuracy of the read alignment algorithms. Misaligned read

fragments can introduce erroneous base calls or sampling biases
so the careful alignment of sequence reads is necessary for high-

quality haplotype assemblies. Without read alignment or sequen-
cing errors, the haplotype assembly problem can be solved in

time linear in the size of M by partitioning the fragments in
two sets whereby no fragments internal to a set share an SNP

and differ in the allele called. To address erroneous base calls or
misplaced alignments, three primary haplotype assembly opti-

mizations have been developed: minimum error correction
(MEC), minimum SNP removal (MSR) and minimum fragment

removal (MFR). The goal is to convert M into a state such that
the fragments (rows of M) can be distributed into two sets cor-

responding to the two haplotypes. All fragments in a set must
agree on the allele at each SNP site and this is accomplished

using the minimum number of SNP allele flips (0 to 1 or vice
versa - MEC), SNP (columns of M) removals (MSR) or frag-

ment (rows of M) removals (MFR).
Lancia et al. (2001) and Rizzi et al. (2002) provide a theoretical

foundation for the MFR and MSR optimizations and describe
the fundamental SNP and fragment conflict graph structures.

The first widely available haplotype assembly software package
was presented in Panconesi and Sozio (2004) in which the au-

thors describe the Fast Hare algorithm, which optimizes the ‘Min
Element Removal’ problem. Bansal et al. (2008) describe a

Markov chain model with Metropolis updating rules to sample*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

http://www.brown.edu/Research/Istrail_Lab/
mailto:Sorin_Istrail@brown.edu
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt213/-/DC1


a set of likely haplotypes under the MEC optimization. In a

follow-up, the authors present a much faster algorithm on a

related graph model that relates maximum cuts to SNP allele

flips (in the MEC model) [Bansal and Bafna (2008)]. Still other

authors have suggested reductions to the well-known maximum

satisfiability problem [He et al. (2010); Mousavi et al. (2011)] The

Levy et al. (2007) algorithm is a well-known heuristic that was

used to haplotype assemble the HuRef genome; it assigns frag-

ments to haplotypes in a greedy fashion and iteratively refines

the solution by comparing the set of fragments to the assembled

haplotypes using majority rule phasings. In a recent survey,

Geraci (2010) describes the Levy et al. (2007) algorithm as, ar-

guably, the best performing algorithm tested.
The first extension of the haplotype assembly problem that

addressed the simultaneous assembly of multiple diploid

chromosomes was presented in Li et al. (2006); however, the

benefits of multi-haplotype assembly are not clear for a set of

unrelated individuals. Halldorsson et al. (2011) continued devel-

opment of this theory by describing methods for assembling in-

dividuals who share a haplotype identical by descent (IBD) using

relationships among the reads.
Aguiar and Istrail (2012) introduced a new graph data struc-

ture, algorithmic framework and the minimum weighted edge

removal (MWER) optimization, which together have several ad-

vantages over existing methods. Recall that the rows of M cor-

respond to sequence read fragments with the non-polymorphic

bases removed such that only SNPs remain. The HapCompass

model defined in Aguiar and Istrail (2012) is composed of the

compass graph GC core data structure, which summarizes the

rows of M using edges weights and the MWER optimization

that aims to remove a minimum weighted set of edges from GC

such that a unique phasing may be constructed. The algorithm

operates on the spanning-tree cycle basis of GC to iteratively

remove errors that are manifested through a particular type of

simple cycle [Deo et al. (1982); Mac Lane (1937)].
In this work, we prove a number of theoretical results for the

previously described MWER optimization on compass graphs.

The main result proves MWER is NP-hard and motivates the

use of our heuristic algorithms. Further, we demonstrate how

extensions to the generalized diploid HapCompass model can

enable (i) usage of different optimizations, for example, MEC

and MWER, to be used in the local optimization step, (ii) sim-

ultaneous assembly of two individuals sharing a haplotype tract

IBD and (iii) haplotype assembly of a single polyploid organism.

Finally, we evaluate our methods on 1000 Genomes Project,

Pacific Biosciences and simulated data.

2 METHODS

Let a fragment f be a sequence read with the non-polymorphic bases

removed such that only SNPs remain. Fragments may be either a

single contiguous region of DNA or contain any number of gaps between

contiguous regions (for example, one gap between two contiguous regions

in paired-end sequencing). Each SNP must be heterozygous and each row

must cover at least two SNPs to be able to extract useful haplotype phase

information from sequence reads. An SNP allele is encoded as 0 or 1

corresponding to the major or minor allele. The kth base of the ith frag-

ment is referred to as fi, k. If fi does not include the base k in the sequence

read (within the gap of a paired-read, for instance), then fi,k ¼‘–’. Let M

be the m� n SNP-fragment matrix with m rows corresponding to the m

fragments and n columns corresponding to n SNPs. Two fragments fi and

fj are in fragment conflict if

9k j fi, k 6¼ fj, k ^ fi, k 6¼ ‘�’ ^ fj, k 6¼ ‘�’ ð1Þ

Informally, fragment conflict represents two fragments that include the

same SNP but differ in the allele. The fragment conflict graph GF has a

vertex for each fragment inM and an edge between two fragments if they

are in fragment conflict. M is feasible if a bipartition exists in GF or,

equivalently, the fragments of M can be partitioned in two sets such

that no two fragments within each set are in fragment conflict.

2.1 The MWER optimization and HapCompass models

The HapCompass model defined in Aguiar and Istrail (2012) is composed

of the compass graph GC data structure and optimizations on the span-

ning-tree cycle basis of this graph. GC is a graph with a vertex for each

SNP and an edge between two SNPs if at least one read contains both

SNPs (Fig. 2). The weight on the edge, defined by the function fMWER, is

the difference between the number of fragments that suggest a 00
11 phasing

and the number of fragments that suggest 01
10.

A path in GC corresponds to a phasing of the SNP vertices by con-

catenating the phasings on the edges. For example, the ðs1, s2Þ, ðs2, s4Þ

path in Figure 2 corresponds to the concatenation of the 01
10 phasing

with the 01
10 phasing, yielding the 010

101 phasing. A number of subtle com-

binatorial properties of the diploid read information define the contiguity

of the assembly; in haplotype assembly of polyploid genomes where more

than two haplotypes exist, these combinatorial properties will be made

explicit and generalized as a basis for the development of polyploid

haplotype assembly algorithms.

A spanning tree in GC corresponds to a valid phasing of the SNPs of

GC. Simple cycles in GC have the property of being non-conflicting,

whereby every path in the cycle including the same set of vertices corres-

ponds to the same phasing, or conflicting, whereby there is no unique

phasing. Aguiar and Istrail (2012) show that a simple cycle is conflicting if

and only if there is a 0-weight edge or an odd number of negative weight

edges and non-conflicting otherwise. For the MWER optimization, the

HapCompass algorithm constructs a spanning-tree cycle basis of GC and

removes edges of small weight (in absolute value) from conflicting cycles

until GC is void of conflicts.

The generalized HapCompass model described in this work supports

multiple optimizations on compass graphs, joint haplotype assembly of

individuals sharing a haplotype tract IBD and haplotype assembly of

polyploid organisms. To support these algorithmic extensions, we exam-

ine key concepts of the HapCompass model and describe their

generalizations.

The core of the HapCompass framework constructs the compass graph

GC, a spanning-tree cycle basis of GC, and then corrects conflicting cycles.

One such method for correcting conflicting cycles was presented in Aguiar

and Istrail (2012) where edge weights are used to compute a set of edges

whose removal would eliminate conflicting cycles (the MWER optimiza-

tion). In principle, other methods may be used to remove edges, or entirely

new optimizations may be employed, for example, MEC. Specifically, we

Fig. 1. Construction of the input to the haplotype assembly problem

i353

Haplotype assembly in polyploid genomes



implement an algorithm for the MEC optimization on compass graphs.

However, before an implementation of an MEC algorithm on compass

graphs can be realized, the HapCompass framework must be generalized

to allow for corrections to fragments.

Concept 1: edge weights. The HapCompass framework proposed in

Aguiar and Istrail (2012) defines edge weights as the difference between

the number of reads indicating the 00
11 and 01

10 phasings. The generalized

model includes a vector for edge e, ve, consisting of four integers corres-

ponding to the four possible haplotypes between two SNPs: 00, 01, 10, 11.

A function, f(e), maps the vector to a meaningful value interpreted by the

HapCompass algorithm. For example, in the MWER HapCompass al-

gorithm, fMWERðeÞ ¼ ve½0� þ ve½3� � ve½1� � ve½2� where ve½i� is the count

of the phasings 00, 01, 10, 11 for i ¼ 0, 1, 2, 3, respectively.

2.2 An MEC HapCompass optimization

TheMEC optimization on GC aims to flip the minimum number of alleles

such that all of the cycles are non-conflicting. The MEC algorithm pro-

ceeds by building a spanning tree cycle basis of the compass graph. The

following steps are repeated until each edge is non-conflicting. (i) For

each edge e in the set of conflicting cycles: let v1 and v2 be the two vertices

adjacent to e. (ii) If fMWERðeÞ50, we check the fragments that include

both v1 and v2, and temporarily flip the fragment alleles of v1 (v2 in

following iteration) to indicate 00
11 phasings. The other alleles in the frag-

ments cause edges adjacent to v1 (v2) to change weight as well. We record

the number of conflicting cycles resolved and created by checking each

cycle in the cycle basis including an edge that was modified by the flipping

of a fragment allele. (iii) The case of fMWERðeÞ40 is handled analogously

with the exception of flipping the alleles to indicate 10
01 phasings. (iv) Let

the number of conflicting cycles resolved by processing e be ce, r and the

number of conflicting cycles created be ce, c. Ifmax8eðce, r � ce, cÞ � 0, then

there does not exist a favorable switching of fragment alleles and an edge

is removed following the MWER algorithm. Otherwise, the fragment

changes giving max8eðce, r � ce, cÞ � 0 are introduced in GC. (v) When

all cycles are non-conflicting, we output the phasing defined by any

spanning tree.

The primary data structure change inGC introduces a mapping of edges

to fragments. The primary addition to the HapCompass framework is a

definition of optimization function to remove conflicting cycles from GC.

2.3 IBD tracts and haplotype assembly

Thus far, the HapCompass framework has only been defined for a single

diploid individual. The generalization of haplotype assembly to multiple

genomes must be selective for which individuals to assemble jointly. For

example, if two individuals do not share a haplotype by descent, one

individual’s set of reads does not provide any information for the

other. However, when two individuals do share a haplotype by descent,

the shared haplotype provides phasing information across homozygous

sites as long as one individual remains heterozygous (Fig. 3). Regions of

homozygosity in an individual, which would otherwise disconnect SNPs

and partition haplotype solutions, can be phased together as long as the

jointly assembled genotype has heterozygous SNPs within the interval.

Concept 2: multiple genotypes. The problem of joint assembly of two

individuals who share a haplotype IBD (hereafter referred to as a pair) is

different from jointly assembling two individuals who do not share a

haplotype. In the compass graph, two unrelated genotypes have the

effect that both individuals can be heterozygous but have completely

different phasings. However, if they share a haplotype, a transition

from a doubly heterozygous SNP to another doubly heterozygous SNP

forces exactly two phasings, namely 00
11 or

01
10 (for example, SNP transitions

(1,2) and (4,5) in Fig. 3). For the doubly heterozygous to singly hetero-

zygous transitions, we may have exactly three of the four possible 2-SNP

haplotypes. In Figure 3, the child’s genotype is 22122 and to phase this

block using the child’s data alone, we require a read to cover at least one

of the first two SNPs and at least one of the last two SNPs, which may be

impossible depending on the distance between the SNPs and sequence

read insert length. However, if we assemble the parent with the child, we

can use the shared haplotype to decode the parent’s phase across SNPs 2,

3 and 4 to be 000
111. Because they share a haplotype, the 111 haplotype must

be the shared haplotype and it can be inferred that the child’s phased

haplotypes are 01110
10101.

Joint haplotype assembly in HapCompass is thus encoded as follows.

Each edge now has two sets of vectors corresponding to the 2-SNP haplo-

type transitions of the parent and child. For a doubly heterozygote to

doubly heterozygote transition, the weight function can be computed as

before using the coverage from both individuals (because there are exactly

two disjoint phasings). For a singly heterozygote to doubly heterozygote

transition (or vice-versa), the weight function can solely use the hetero-

zygous–heterozygous transmission data from a single individual.

2.4 Haplotype assembly of polyploid genomes

The research literature concerning polyploid haplotype assembly is essen-

tially non-existent. The analysis of k-ploid genomes (k sets of chromo-

somes) has been hindered by the complexity of sequencing and

assembling k chromosomes concurrently. With high-throughput sequen-

cing technologies, genotype inference in polyploid organisms is manage-

able; sequence reads are mapped to a reference genome, and the relative

quantities of alleles at an SNP can be inferred from sequence coverages.

However, the basic assumption that there exists exactly two phasing be-

tween two SNPs no longer holds. We note that the polyploidy assembly

problem is similar to a number of problems in other areas of haplotype

reconstruction (when the number of haplotypes is known or unknown)

such as modeling metagenomics (organism identification), HIV (viral

quasispecies identification in the ‘metagenome’ of patients), cancer

(tumor and plasma) and epigenetics (regulatory region methylation re-

construction similar to ‘probabilistic haplotype’ inference).

Concept 3: uniqueness and disjoint phasings. One difficulty of polyploid

haplotype assembly emerges from the non-disjointness of phasing solu-

tions between SNPs. With the assumption that SNPs are biallelic, at least

one haplotype will be shared by two or more phasings between two SNPs.

In the diploid case, a read suggesting the 00 phasing could be interpreted

as evidence for 11 on the other haplotype (uniqueness of phasing) and

also evidence contradicting the 01
10 phasing (disjointness of haplotypes in

phasing solutions). In the tetraploid case, for example, if the genotype for

each of 2 SNPs is f0, 0, 1, 1g then there exists three possible haplotype

phasings: (00,00,11,11), (01,01,10,10), (00,01,10,11).

Fig. 2. Construction of the compass graph from SNP-fragment matrix

M. The SNP-fragment matrix M (left) contains four fragments and four

SNPs. Each SNP’s pairwise phasing relationship defined by the fragments

is represented on the edges of the compass graph (right). The majority

rule phasing for one of the haplotypes is shown in red on the compass

graph edges

i354

D.Aguiar and S.Istrail



In general, the number of haplotype phasings on an edge is a function

of the ploidy of the organism and the alleles at each SNP. As in the

diploid case, each SNP must have at least one of each allele or else the

SNP is homozygous and sequence observations of an allele do not pro-

vide any phasing information. As a result, every 2-SNP haplotype in-

cludes either 00
11 or 01

10:

However, unlike in the diploid case, the extension from one edge in GC

to the next may not be deterministic. For example, in diploid assembly, if

a reads suggest a 00
11 phasing for SNPs 1 and 2, and a 00

11 phasing for SNPs

2 and 3, the extension would give us a phasing of 000
111. A conflicting cycle

in GC could then be generated if reads connecting SNPs 1 and 3 disagreed

with this phasing. For the polyploid case, if the genotypes for each of

SNP 1 and 2 are (0,0,1), then both the (00,00,11) phasing and (00,01,10)

phasing are valid. Assume that we can compute the phasings between

SNPs 1 and 2 and SNPs 2 and 3 to be (00,00,11); we can extend as we did

in the diploid case to create the phasing (000,000,111). Then, if a read

suggests a 01 phasing between SNPs 1 and 3, we again generate a con-

flicting cycle. However, if the SNPs were phased using (00,01,10) for

SNPs 1,2 and 2,3, then either phasing (000,010,101) or (001,010,100) is

possible. Both are completely valid phasings consistent with the genotype

and read data but fragments connecting SNPs 1 and 3 may constrain the

phasing solution to be unique.

Concept 4: polyploid edge decidability. The polyploid HapCompass

model retains the axiom that each edge is decidable; that is, each edge

has a unique and computable phasing as defined by the reads. The com-

pass graph and spanning tree cycle basis is built from the input genotypes

and reads as before. The distribution of haplotype configurations be-

tween two SNPs are defined by the genotypes, and a singular configur-

ation is computed using the available read data. The first approach

attempts to assign reads into haplotype bins that represent the haplotype

distribution for a valid phasing between two SNPs. Given a 2-SNP geno-

type, a binning is an assignment of reads to haplotypes. For example, if

two SNPs both had two 0 alleles and two 1 alleles, there would exist three

haplotype phasings: (00,00,11,11), (01,10,11,00), (01,10,01,10), each with

4 bins. The phasing (00,00,11,11), for instance, would contain two 00 bins

and two 11 bins.

Greedy binning algorithm. Input: a maximum distance d between any

two bins, a set of haplotype phasings P and a set of reads R. Output: the

haplotype phasing most supported by the reads.

(1) For each haplotype phasing p 2 P

(2) For each haplotype bin b 2 p, do steps (3–5).

(3) Loop through steps (4–5) until all read fragments have been

assigned.

(4) Select a read r 2 R such that the edit distance between r and an

available haplotype bin h 2 b is minimal.

(5) Place r in the selected bin h and remove this read from the read set.

(6) Report the haplotype phasing with the binning of minimum total

edit distance as the optimal phasing.

We enforce that the difference of haplotypes in each bin must be at

most d haplotypes to avoid always preferring diverse haplotype phasings

[e.g. (10,10,01,01) versus (00,11,10,01)]. This condition defines which

haplotype bin is available during each iteration.

Probabilistic binning algorithm. Alternatively, probabilities of each

phasing given the set of reads can be computed and uncertainty can be

accounted for when extending phase to adjacent edges. In particular, we

wish to compute the likelihood of a phasing given the set of input sequence

reads. Let pi be the ith phasing for two adjacent SNPs, P the set of all

possible phasings for the two SNPs, rj be the j
th read and se the probability

of a sequencing error. Then, the likelihood of a particular phasing pp is

Lðppjse, r1, r2, . . . , rnÞ ¼
Pðr1, r2, . . . , rnjse, ppÞ

PjPj

i¼1

Pðr1, r2, . . . , rnjse, piÞ

¼
Pðr1jse, ppÞ � Pðr2jse, ppÞ � � � Pðrnjse, ppÞ

PjPj

i¼1

Pðr1, r2, . . . , rnjse, piÞ

which may be computed using the assumption that sequence reads are

independent. The probability of a read ri given sequencing error se and

phasing p can be computed by marginalizing over all possible haplotypes

h sampled for phasing p:
X

h2p

Pðhjse, pÞ � Pðrijse, h, pÞ ð2Þ

Thus, the edge is decisive for the haplotype phasing with the maximum

likelihood for all reads that span the two SNPs. The original diploid

scoring scheme can be recreated with a manipulation of the unnormalized

phasing likelihoods:
Pn

i¼1 Pðrijse ¼ 0, h ¼11
00Þ �

Pn
i¼1 Pðrijse ¼ 0, h ¼10

01Þ.

Concept 5: conflicting cycles and phase extensions. Both the greedy and

probabilistic binning algorithms decide the haplotype phase of edges. In

the diploid case, the extension of phasings from edges to paths was un-

ambiguous because for each of the two phasings, exactly one haplotype

begins with 0 (or 1) and exactly one haplotype ends with 0 (or 1).

Therefore, the computation of phasings for paths and conflicting cycles

was easily determined given the decided edges. In polyploid genomes,

each SNP variant in GC is still assumed to have only two possible alleles

but each edge has three or more haplotypes. When extending phase from

one edge to an adjacent edge, the haplotypes on different edges that share

an allele can be used for extending phase. If this allele is present in k

haplotypes, then there are k! possible extensions.

Phase extension algorithm. We introduce the chain graph Gh, which is

defined on a path or cycle in GC for a k-ploid genome. Let

ðe1, e2, . . . , elÞ ¼ p denote a path of edges in GC of length l. Each edge

ei is phased (by the greedy or probabilistic method) and each haplotype in

the phasing introduces a vertex in Gh at level i. Thus, Gh contains k

vertices for each ei 2 p and a total of l � k vertices in total. Two haplotype

vertices are connected by an edge if and only if they share an SNP pos-

ition and allele. Because haplotypes at adjacent levels uniquely share an

SNP position in Gh, edges only exist between adjacent levels and a path

through the chain graph corresponds to a joining (or extension) of haplo-

types. Therefore, there is always a valid phasing for a Gh defined on a

path of GC.

Cycles introduce complexity in Gh. Gh defined on a cycle retains the

characteristics of the path chain graph, but also includes source and sink

nodes: s1, . . . , sk and t1, . . . , tk, respectively. Let ðe1, e2, . . . , el, e1Þ ¼ p

denote any path of edges in GC of length l with the addition of the

ðel, e1Þ edge. Source nodes are connected arbitrarily to haplotypes on

level 1 but haplotypes on level l are only connected to sink nodes if the

shared variant position agrees with the haplotype the source was con-

nected to; for example, in Figure 5 Top, t2 is connected to both 00

Fig. 3. A graph of the haplotype transitions defined by the majority rule

phasings of a compass graph. SNPs 1, 2, 3, 4 and 5 (left to right) are

shown with both alleles (vertices), and edge transitions are encoded by a

specific type of line depending on whether the haplotype is shared IBD or

unique to the child or parent. The genotype of the parent and child are

22 222 and 22 122, respectively (where the two corresponds to the hetero-

zygote and 0 and 1 correspond to homozygous for the major and minor

alleles, respectively)

i355

Haplotype assembly in polyploid genomes



haplotypes at level l because s2 is connected to a haplotype starting with

0. The sources and sinks represent the ðel, e1Þ edge and a path from si to ti
represents one valid haplotype. This intuition enables the formulation of

the k vertex disjoint paths problem on chain graphs. If there exists k

vertex disjoint, si to ti paths for i ¼ 1, . . . , k, we have k valid phasings

for the cycle; otherwise, the cycle is conflicting and there is no valid

phasing.

To further build intuition, consider a conflicting cycle of GC and Gh in

the diploid case. A cycle was conflicting if the number of negative

weighted edges in GC was odd. Relating this to the chain graph Gh, an

si node would be connected to a 0 (or 1) and each negative edge would flip

the next bit. So, a conflicting cycle has an odd number of negative edges,

which translates into an odd number of bit flips resulting in no si to ti
path for i ¼ 1, 2. Figure 4 gives an example of non-conflicting and con-

flicting cycles in polyploid compass graphs and Figure 5 their chain

graphs.

Gh enables the (i) determination of conflicting cycles and (ii) compu-

tation of the phased haplotypes for a path or cycle using disjoint paths.

The k-disjoint paths problem is a well-studied optimization in the field of

discrete mathematics [Robertson and Seymour (1995)]. A polynomial-

time solution is known to exist for the node disjoint paths problem

when k is known as part of the input [Robertson and Seymour (1995);

Kawarabayashi et al. (2012)], but these algorithms require manipulation

of enormous constants rendering them difficult to implement in practical

settings.

Fortunately, the structure of Gh enables a much more efficient solution

to the problem.All paths from si to ti can be computed by amodified depth

first search algorithm. A depth first search is started from each source si
and the path from source to the current node is stored. Each node contains

a list of integers initially empty. When the algorithm either encounters the

sink node ti, or a node already labeled with i, all nodes on the current path

have i added to their list. After each source–sink pair is processed, each

node contains a label i if there is an si to ti path that includes the node. The

runtime of this algorithm isO(kve) where k is the ploidy, and v and e are the

number of vertices and edges in Gh, respectively.

After all nodes are labeled, we iterate through each level of Gh and

create an auxiliary flow graph Gl
h where l is the level. G

l
h defines a bipart-

ite graph where one set of vertices corresponds to the source haplotype

paths, which are connected to a set of vertices corresponding to the

haplotypes of the phasing level l. A flow in Gl
h of total value k where

each edge has capacity 1 corresponds to a maximummatching and thus a

valid assignment of haplotype paths to haplotypes of the phasing at level

l. This flow can be found in time linear in the size of the edge set of Gl
h. If

every level of the chain graph has a valid bijection, then the cycle is non-

conflicting and the path given by the matchings define a valid phasing.

Figure 6 give an example of the auxiliary flow graphs for level 1 of the

chain graphs defined in Figure 5.

3 RESULTS

3.1 Theoretical

We first present results on the complexity of the MWER opti-

mization, and related minimum weighted vertex (SNP) removal

(MWVR) problems on the compass graph GC. These results mo-

tivate the usage of our heuristics for the diploid and polyploid

algorithms. Let L � VC be a subset of vertices in GC, and let G0C
be the resulting graph created from removing L from VC. The

MWVR optimization aims to compute an L such that the fol-

lowing conditions are satisfied:

(i)
P
fsig2L
jwðsiÞj is minimal where wðsiÞ is the weight of the i

th

SNP (cost of removed vertices is minimal);
(ii) All edges in G0C are decisive (each edge has a majority rule

phasing);
(iii) Choosing a phasing for each edge in G0C by majority rule

gives a unique phasing for G0C.

Fig. 6. The auxiliary flow graphs (top) G1
h, g and (bottom) G1

h, c. For a k-

ploid organism (in this case k¼ 3), a flow of k with 1 capacity on each

edge corresponds to a valid assignment of haplotype paths to haplotypes

of the phasing a level 1

Fig. 5. The chain graphs (top) Gh, g and (bottom) Gh, c corresponding to

GC, g and GC, c, respectively

Fig. 4. Compass graphs GC, g, a non-conflicting polyploid cycle (left), and

GC, c, a conflicting polyploid cycle (right). The vector on the edge corres-

ponds to the haplotype counts for an edge in the format [00,01,10,11]. In

both compass graphs, the haplotypes are 000, 000 and 111, while the

reads in GC, g are 000, 000 and 111, and the reads in GC, c are 00–, 01–,

10–, –00, –00, –11, 0–0, 0–0 and 1–1

i356

D.Aguiar and S.Istrail



We omit the straightforward proofs that the MWVR and

MWER problems are in NP. It remains to be shown that known

NP-hard problems can be reduced to MWVR and MWER.
We restate the conflict graph generality lemma from Lippert

et al. (2002).

LEMMA 1. Let G ¼ ðV,EÞ be an arbitrary graph. Then there

exists an SNP-fragment matrix M such that GFðMÞ ¼ G.

PROOF: Introduce a fragment fi for each vertex vi 2 V. For

every two adjacent vertices fvi, vjg 2 E, introduce a new SNP

column sk in M where fi, k ¼ 0 and fj, k ¼ 1.

Let M be the SNP-fragment matrix constructed from Lemma

1, GF the corresponding fragment conflict graph ofM andGC the

compass graph of M.

LEMMA 2. Every simple cycle of odd length in GF produces

exactly one conflicting simple cycle in GC.

For the proof of Lemma 2 please see Supplementary Appendix

Proof of Lemma 2.

LEMMA 3. Every conflicting simple cycle in GC includes exactly

one odd length simple cycle in GF.

PROOF. We now interpret conflicting cycles in GC as a set of

vertices of GC, which define a set of edges in GF.

Because of the previous lemma, every conflicting cycle in GC can

be resolved by removing an edge of GF, which corresponds to

removing a vertex in GC.

COROLLARY 1. There exists no conflicting cycles in GC if and

only if there are no cycles of odd length in GF.

LEMMA 4. Given an M produced from Lemma 1, the compass

graph GCðMÞ is the line graph of GFðMÞ with weights of GC as

defined by the phasing relationships of the fragments of M.

Proof. The SNPs (columns) of M contain exactly two alleles

from two fragments that conflict. Therefore, in GF, each SNP

uniquely defines an edge, and in GC, each SNP uniquely defines a

vertex. All that remains is to show that every two adjacent edges

in GF produce an edge in GC. Consider an SNP s whose conflicts

involve fragments fi and fj. The edge defined by s in GF is adja-

cent to edges defined by the other conflicts of fi and fj. The vertex

s in GC is defined exactly as the pairwise phasing relationships as

defined by the SNP s and other SNP alleles in fragments fi and fj,

which in turn define the adjacencies in GF.

Because GC is the line graph of GF, if k simple cycles in GC

share an edge then k simple cycles in GF share a vertex.

THEOREM 1. MWVR is NP-hard.

PROOF: See the MWVR Proof section in Supplementary

Appendix.

THEOREM 2. MWER is NP-hard.

PROOF: The reduction is from the problem of removing the

minimum number of edges of a graph to make it bipartite. Let G

be an arbitrary graph and M the SNP-fragment matrix as

defined in Lemma 1. We modify GFðMÞ by adding two add-

itional degree 2 vertices to each edge, effectively converting

each edge to a length 3 path. Cycles of odd (even) length
retain their odd (even) length, thus odd length cycles still create

conflicting cycles in GC. All vertices of degree k produce cliques
of size k in GC, which do not correspond to any cycles in GFðMÞ.
Therefore, we label all edges of clique vertices produced from a

single vertex with weight1. All paths of GF will be encoded with
two edges of GC; both of which cannot be removed in an optimal

solution to MWER. Given a solution to the MWER optimiza-
tion, we can determine the minimum number of edges in GF to

make it bipartite.

3.2 Experimental

We evaluate the HapCompass MEC, HapCompass IBD and
polyploid HapCompass algorithms using 1000 Genomes

Project [The 1000 Genomes Project Consortium (2010)], Pacific
Biosciences and simulated data.
Metrics. To evaluate the accuracy of our diploid haplotype

assembly methods, we use the following measures, which capture
different aspects of haplotype assembly quality. In Aguiar and

Istrail (2012), we introduce the fragment mapping phase relation-
ship (FMPR) distance, which counts the number of pairwise

phase relationships (as defined by the input read fragments)
that do not exist in the solution. The related boolean fragment

mapping (BFM) distance counts the number of read fragments
that do not map back to the solution. The third evaluation criteria

we use is the MEC measure, which counts the number of allele
flips in the fragments required to produce the phased haplotype

assembly solution. In all previously described measures, lower
values are desired. These metrics are similar to read mapping

metrics in genome and transcriptome assembly, where good-qual-
ity assemblies will allow for many reads to map back to them.

3.3 Pacific biosciences data

Single molecule sequencing has great potential to become a pre-
ferred method for haplotype assembly, but current algorithmic

techniques are untested on data with high error rates. We down-
loaded the chromosome 20 data from individuals HG00321,

HG00577, HG01101, NA18861, NA19313, NA19740,
NA20296 and NA20800 [PacBio Data (2013)]. Haplotype assem-

bly solutions were produced by HapCompass, Levy et al. (2007)
and HapCUT to obtain the results in Table 1 (run times can be
found in the Pacific Biosciences run times section in

Supplementary Appendix). HapCompass outperforms the com-
petition in terms of MEC using both optimizations. Interestingly,

the Levy et al. (2007) algorithm is the most accurate in terms of
FMPR and BFM. This is likely due to the Levy et al. (2007)

algorithm processing entire read fragments each iteration while
HapCompass focuses on correcting multiple fragments at adja-

cent SNPs. Because the Pacific Biosciences read lengths are long
(several kb), more emphasis is placed on matching reads with

large overlaps on the same haplotype. This result further suggests
that it is important to consider the input data and the desired

results when preparing data for a haplotype assembly experiment.

3.4 1000 genomes project data

To further evaluate the HapCompass MEC implementation, we

haplotype assembled the genome of 1000 Genomes Project

i357

Haplotype assembly in polyploid genomes

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt213/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt213/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt213/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt213/-/DC1


NA12878 CEU child using our implementation of the Levy et al.

(2007) method, HapCUT (v0.5) and the HapCompass MWER

and MEC algorithms. Table 2 shows that the HapCompass

MWER algorithm clearly performs best overall. The full table

for all chromosomes is given in Supplementary Appendix (sec-

tion 1000 Genomes Project Results). Surprisingly, even though

the MWER algorithm does not directly optimize the MEC meas-

ure, it produces the best haplotypes in respect to this measure for

all but two chromosomes.

3.5 IBD haplotype assembly

Jointly assembling the haplotypes of related individuals has con-

siderable benefits. The first benefit comes from the extra cover-

age on the shared haplotype, which helps with differentiating

true phasings from sequencing errors. However, the most notable

advantage is being able to extend phasing past homozygous

blocks. We compared the size of the phased haplotype blocks

when assembling chromosome 22 of the NA12878 child in the

1000 Genomes Project data alone versus jointly with the mother.

Figure 7 compares the maximum achievable haplotype block

sizes of any single individual haplotype assembly algorithm to

IBD haplotype assembly; it demonstrates that larger haplotype

blocks are achievable by assembling two individuals with a

shared haplotype together rather than separately.

3.6 Polyploid algorithm

Finally, to evaluate the polyploid algorithm, we simulated three

haplotypes at random and simulated reads from these haplo-

types. The simulated reads were guaranteed to contain two

SNPs (assuring they are useful for haplotype assembly) and

given normally distributed insert sizes. The polyploid algorithm

was run using both the greedy and probabilistic binning algo-

rithms for deciding edge phasings. Figure 8 demonstrates two

interesting results: (i) for a small number of reads, the quality

of haplotype phasing is independent of the choice of binning

method and (ii) that the probabilistic algorithm produces a

more accurate phased solution than the greedy binning method

for a large range of simulated read counts.

4 DISCUSSION

Diploid haplotype inference is still a difficult task, in part due to

the exponentially many solutions given the input genotype or

sequence reads. HapCompass is a proven framework for haplo-

type assembly but there are a number of extensions that may

improve results. For instance, we did not mention the usage of

base call or read mapping quality scores in our computations.

HapCompass can filter based on user-defined thresholds but a

more elegant solution would be to convert the base call quality

score for a particular allele call into a probability the base was

called correctly. This probability can then define the contribution

of weight to the edges of GC rather than the current weight

contribution of 1 for each SNP allele called. Also we demon-

strated in the Pacific Biosciences experiments that the choice of

assembly method should be informed by the sequencing technol-

ogy and desired result. The Levy et al. (2007) method mapped

Fig. 7. Comparison between haplotype assembling the child individually

versus with a parent. The haplotype size is number of SNPs in the com-

ponent of GC, which represents the maximum number of SNPs that may

be phased together

Table 2. Haplotype assembly results for the 454 data from 1000 Genomes Project NA12878 individual for chromosomes 1–22 and algorithms

HapCompass MWER, HapCompass MEC, Levy et al. (2007) and HapCUT

HapCompass MWER HapCompass MEC Levy HapCUT

FMPR BFM MEC FMPR BFM MEC FMPR BFM MEC FMPR BFM MEC

64128 36 578 37597 68623 39221 40 269 64 789 39 832 40946 65 724 37 606 38 372

Note: The full table is given in the section 1000 Genomes Project Results in Supplementary Appendix.

Table 1. The total FMPR, BFM and MEC scores aggregated across

individuals HG00321, HG00577, HG01101, NA18861, NA19313,

NA19740, NA20296 and NA20800 in the Pacific Biosciences data

HapCompass MWER HapCompass MEC Levy HapCUT

FMPR 163799 169 385 153433 169 890

BFM 39827 40 470 38318 41 006

MEC 48631 49 591 66299 50 164

i358

D.Aguiar and S.Istrail

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt213/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt213/-/DC1


more fragments error free than HapCompass but contained

many more single base changes in fragments required to repro-

duce the inferred haplotypes. Considering the Pacific Biosciences

data has high error rates and generating an error-free read is

unlikely, a solution with the minimum number of corrected

errors is likely preferred over a solution that successfully maps

more fragments without errors.
The size of the haplotype blocks produced and, ultimately, the

quality of the assembled haplotypes is a function of several fac-

tors. The primary difficulty for obtaining large haplotype blocks

is the small nature and lack of diversity of insert lengths. We

demonstrated a novel modeling and computational method that

begins to address this difficulty by exploiting shared IBD haplo-

type structure. In general, assembling the haplotypes of related

individuals has considerable benefits, which help overcome un-

desirable properties of the sequencing data. The first benefit

comes from the extra coverage on the shared haplotype,

which helps in differentiating actual phasings from sequencing

errors. However, the most notable advantage is being able to

include more SNPs into the haplotype assembly, which helps

extend the assembly (past regions of low read coverage for ex-

ample). But, the major advances in block sizes will likely be the

result of novel experimental procedures and technologies; for

instance, not only do the single molecule sequencers promise

larger read lengths, they also enable the inclusion of multiple

and large insert lengths.

Organisms having more than two sets of homologous chromo-

somes are becoming the target of many research groups inter-

ested in studying the genomics of disease, phylogenetics and

evolution [Chen and Ni (2006); Leitch and Leitch (2008)].

Polyploidy occurs in human disease usually due to the duplica-

tion of a particular chromosome, for example, in Edwards, Patau

and Down syndrome. While far fewer mammalian organisms are

polyploid, specific mammalian cells may undergo polyploidiza-

tion, for example, in human liver hepatocytes [Gentric et al.

(2012)]. In addition, polyploid organisms are ubiquitous in the

Plant and Fungi clades, present in crops that we ingest, convert
into bioenergy and feed to livestock. Understanding the gen-
omics of both the desirable—e.g. increased crop yield—and un-

desirable—e.g. susceptibility to disease—properties of plants
may lead to critical advances in many research areas but requires
untangling the polyploid genome and its variation. As more

polyploid data becomes available, our approach may be used
to infer haplotypes and begin to understand what effects haplo-
type variation may influence.

Funding: This work was supported by the National Science
Foundation [1048831 to S.I.].

Conflict of Interest: none declared.

REFERENCES

Aguiar,D. and Istrail,S. (2012) Hapcompass: a fast cycle basis algorithm for accur-

ate haplotype assembly of sequence data. J. Comput. Biol., 19, 577–590.

Bansal,V. and Bafna,V. (2008) HapCUT: an efficient and accurate algorithm for the

haplotype assembly problem. Bioinformatics, 24, i153–i159.

Bansal,V. et al. (2008) An MCMC algorithm for haplotype assembly from whole-

genome sequence data. Genome Res., 18, 1336–1346.

Browning,S.R. and Browning,B.L. (2011) Haplotype phasing: existing methods and

new developments. Nat. Rev. Genet., 12, 703–714.

Chen,Z.J. and Ni,Z. (2006) Mechanisms of genomic rearrangements and gene ex-

pression changes in plant polyploids. BioEssays, 28, 240–252.

Deo,N. et al. (1982) Algorithms for generating fundamental cycles in a graph. ACM

Trans. Math. Softw., 8, 26–42.

Gentric,G. et al. (2012) Polyploidy and liver proliferation. Clin. Res. Hepatol.

Gastroenterology, 36 (1), 29–34.

Geraci,F. (2010) A comparison of several algorithms for the single individual SNP

haplotyping reconstruction problem. Bioinformatics, 26, 2217–2225.

Halldórsson,B.V. et al. (2003) Combinatorial problems arising in snp and haplotype

analysis. In: Proceedings of the 4th international conference on Discrete mathem-

atics and theoretical computer science, DMTCS’03. Springer-Verlag, Berlin,

Heidelberg, pp. 26–47.

Halldorsson,B.V. et al. (2011) Haplotype phasing by multi-assembly of shared

haplotypes: Phase-dependent interactions between rare variants. In:

Proceedings of the Pacific Symposium on Biocomputing. Kohala Coast,

Hawaii, USA, pp. 88–99.

He,D. et al. (2010) Optimal algorithms for haplotype assembly from whole-genome

sequence data. Bioinformatics, 26, i183–i190.

Kawarabayashi,K. et al. (2012) The disjoint paths problem in quadratic time.

J. Comb. Theory B, 102, 424–435.

Lancia,G. et al. (2001) SNPs problems, complexity, and algorithms. In: ESA ’01:

Proceedings of the 9th Annual European Symposium on Algorithms. Springer-

Verlag, London, UK, pp. 182–193.

Leitch,A.R. and Leitch,I.J. (2008) Genomic plasticity and the diversity of polyploid

plants. Science, 320, 481–483.

Levy,S. et al. (2007) The diploid genome sequence of an individual human. PLoS

Biol., 5, e254.

Li,ZP. et al. (2006) A dynamic programming algorithm for the k-haplotyping prob-

lem. Acta Math. Appl. Sin. (English Series), 22, 405–412.

Lippert,R. et al. (2002) Algorithmic strategies for the single nucleotide polymorph-

ism haplotype assembly problem. Brief Bioinform., 3, 23–31.

Mac Lane,S. (1937) A combinatorial condition for planar graphs. Fundam. Math.,

28, 22–32.

Mousavi,S.R. et al. (2011) Effective haplotype assembly via maximum Boolean

satisfiability. Biochem. Biophys. Res. Commun., 404, 593–598.

PacBio Data. (2013) Broad institute hapmap pacific biosciences data. https://github.

com/PacificBiosciences/DevNet/wiki/Datasets. (15 January 2013, date last

accessed).

Panconesi,A. and Sozio,M. (2004) Fast hare: a fast heuristic for single individual

snp haplotype reconstruction. In: Jonassen,I. and Kim,J. (eds) Algorithms in

Bioinformatics, volume 3240 of Lecture Notes in Computer Science. Springer,

Berlin/Heidelberg, pp. 266–277.

Rizzi,R. et al. (2002) Practical algorithms and fixed-parameter tractability for the

single individual snp haplotyping problem. In: Proceedings of the Second

Fig. 8. Comparison of the percentage of correctly phased polyploid SNP

pairs for the greedy and probabilistic binning algorithms for varying

number of input reads

i359

Haplotype assembly in polyploid genomes

https://github.com/PacificBiosciences/DevNet/wiki/Datasets
https://github.com/PacificBiosciences/DevNet/wiki/Datasets


International Workshop on Algorithms in Bioinformatics, WABI ’02. Springer-

Verlag, London, UK, pp. 29–43.

Robertson,N. and Seymour,P. (1995) Graph minors.xiii. the disjoint paths problem.

J. Comb. Theory B, 63, 65–110.

Schwartz,R. (2010) Theory and algorithms for the haplotype assembly problem.

Commun. Inf. Syst., 10, 23–38.

The 1000 Genomes Project Consortium. (2010) A map of human genome variation

from population-scale sequencing. Nature, 467, 1061–1073.

i360

D.Aguiar and S.Istrail


