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Abstract: This paper provides a methodology for the prediction of fracture loads in additively
manufactured ABS material containing U-notches. The approach is based on the Average Strain
Energy Density (ASED) criterion, which assumes that the material being analysed develops fully
linear-elastic behaviour. Thus, in those cases where the material has a certain (non-negligible) amount
of non-linear behaviour, the ASED criterion needs to be corrected. In this sense, in this paper, the
ASED criterion is also combined with the Equivalent Material Concept (EMC) and the Fictitious
Material Concept (FMC), both being corrections in which the non-linear real material is substituted
by a linear equivalent or fictitious material, respectively. The resulting methodologies have been
applied to additively manufactured ABS U-notched single-edge-notched bending (SENB) specimens
combining five different notch radii (0, 0.25, 0.5, 1 and 2 mm) and three different raster orientations
(0/90, 45/−45 and 30/−60). The results obtained demonstrate that both the ASED-EMC and the
ASED-FMC combined criteria provide more accurate predictions than those obtained directly through
the ASED criterion, with the ASED-EMC criterion generally providing safe more accurate predictions,
with an average deviation from the experimental fracture loads between +1.0% (predicted loads
higher than experimental loads) and −7.6% (predicted loads lower than experimental loads).

Keywords: additive manufacturing; ABS; fracture; notch; average strain energy density; equivalent
material concept; fictitious material concept

1. Introduction

Additive manufacturing (AM) is a growing technology with the potential to change
the way fabrication and production processes are developed nowadays. Its capacity to
make complex parts or designs in a relatively simple way using a wide variety of materials
(e.g., polymers, metals, ceramics etc.) makes it a powerful tool. This work is focused on
fused deposition modelling (FDM), one of the most important AM alternatives within
Material Extrusion (ME) technology, and its capacity to manufacture acrylonitrile butadiene
styrene (ABS) parts. FDM consists in extruding a plasticised filament through a heated
nozzle, which is deposited on a build platform layer by layer until the final product is
made [1]. This allows a computer-aided design (CAD) model to be converted into a real
component with high levels of precision and in a relatively fast process. However, FDM
has been mostly used for the prototyping of components, and not for final components
with structural responsibilities. The main reason for this is that 3D (and FDM) printed com-
ponents generally present lower mechanical properties than those achieved by traditional
methods (e.g., injection, extrusion, casting, etc.). In this regard, the scientific community
has been making great efforts to gain an improved understanding of the impact of FDM
parameters on the mechanical properties (especially tensile properties) of the final material.
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For example, it has been widely observed how the building directions and raster orienta-
tions affect the final tensile properties (e.g., [1–4]). In terms of fracture properties, layer
and build orientations and infill levels were found to be the major factors controlling the
fracture toughness of AM parts fabricated through FDM processes (e.g., [4–9]).

As mentioned above, one of the advantages of AM is its capacity to manufacture
complex parts. These parts may contain a wide variety of stress risers, such as defects
generated during the manufacturing process (such as warping, poor surface finish or
porosity [10–18]), defects caused by operational damage, or structural details included in
the original design (e.g., notches, holes, corners, cut-outs, etc.). These types of stress risers
may be analysed as cracks when following traditional fracture mechanics criteria. However,
it has been widely demonstrated how non-sharp stress risers (here referred to as notches)
make the corresponding material behave as if it had an apparent fracture toughness which
is generally higher than the material fracture toughness obtained from laboratory specimens
containing sharp defects (i.e., cracks). Thus, treating notches as if they were cracks tends
to provide over-conservative analyses. In order to avoid this over-conservatism, different
methodologies may be applied to take into consideration the notch effect (e.g., [19–29]):
one example is the global criterion [19–21], which is based on linear-elastic notch fracture
mechanics, and establishes that a fracture occurs when the notch stress intensity factor
reaches a critical value. Other examples are the local criteria, based on the analysis of the
stress, strain or energy fields at the defect tip, of which the Theory of Critical Distances
(TDC) [22] or the Average Strain Energy Density (ASED) [23] can be highlighted. Finally,
the progressive damage models [24–26] consider the material damage during the entire
loading process and the consequent changes in the stress distribution.

The ASED criterion has been validated in numerous materials with brittle or quasi-
brittle behaviour and different loading conditions (e.g., [27–29]). In a recent publication,
Seibert et al. [30] successfully applied the ASED criterion in additive manufactured polylac-
tic acid (PLA) material by using an alternative approach to determine the control volume
used in this criterion (see Section 2). Alternatively, in the presence of non-linear behaviour,
Torabi proposed the Equivalent Material Concept (EMC) [31], with the idea of transforming
a non-linear material (in terms of tensile behaviour) into an equivalent linear-elastic mate-
rial and allowing the use of the corresponding (generally simpler) elastic assessment tools
(e.g., TDC [32], ASED [32,33], Maximum Tangential Stress [34], etc.). However, the EMC
was not accurate enough for materials that present non-linear behaviour in both the tensile
and the fracture behaviours, for which the same author developed the Fictitious Material
Concept (FMC) [35], with a similar purpose to that of the EMC. Since the moment when
these methodologies (ASED, EMC and FMC) were conceptualized, their validation has been
extended not only to metals but also to polymeric and composite materials [33,34,36–40].

With all this, this paper provides an approach to the analysis of additively manufac-
tured (FDM) ABS material containing U-notches by combining the ASED criterion with
the EMC and the FMC corrections. To the author´s knowledge this is the first attempt to
apply this kind of approach on AM polymer-matrix materials. Thus, Section 2 provides the
theoretical framework of the research, including a description of the ASED criterion, the
EMC and the FMC. Section 3 presents the materials and methods used for the prediction of
the critical loads. Section 4 gathers the experimental results and provides the predictions of
the critical loads obtained through the proposed approach, together with the corresponding
discussion. Finally, Section 5 presents the main conclusions.

2. Theoretical Background
2.1. Average Strain Density Criterion

The Average Strain Energy Density (ASED) criterion, whose final bases were devel-
oped by Lazzarin and Berto [23,41–43], establishes that brittle failure occurs when the mean
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value of the strain energy density (W) over a control volume (or an area in two-dimensional
cases) is equal to the critical energy (Wc) (1) [41]:

W = Wc (1)

Wc is a material property which, in the case of a lineal-elastic material, may be directly
derived as a function of the ultimate tensile strength (σu) and Young´s modulus (E) (2):

Wc =
σ2

u
2E

(2)

In a plane case, the control volume becomes a circular sector with a critical radius
Rc. This parameter varies with the notch-opening angle (α). However, for the U-notches
analysed in this work, 2α = 0 (see Figure 1), and Yosibash et al. [44] have developed
very useful expressions for Rc. When the fracture toughness reaches the limit imposed
by Equation (3) [22], plane strain conditions dominate. Under this situation, Rc can be
expressed as Equation (4) [44].

Kc < σy

(
B

2.5

)0.5
(3)

Rc =
(1 + v)(5− 8v)

4π

(
Kc

σu

)2
(4)

σy being the yield strength, B the specimen thickness, Kc the fracture toughness, σu the ulti-
mate tensile strength and ν the Poisson´s ratio. On the other hand, plane stress conditions
are reached when the fracture toughness exceeds the limit defined by Equation (5) [22],
with Rc following Equation (6) [44]. In those situations where Kc is found between the two
limits, an interpolation between Equations (4) and (6) is required to determine Rc.

Kc > σy(πB)0.5 (5)

Rc =
(5− 3v)

4π

(
Kc

σu

)2
(6)
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Finally, the mean value of the strain energy density (enclosed within the Rc), may be
directly obtained by the following analytical expression (7) [23]:

W = F(2α)H
(

2α,
Rc

ρ

)
σ2

max
E

(7)

F being a function that depends on the notch opening angle (2α), whose values are
reported in [23]. When the opening angle is zero (U-notches), F takes a value of 0.785.
The function H depends on the notch opening angle and the ratio of critical radius to the
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notch radius, with some values being gathered in Table 1 [23]. Finally, σmax corresponds
to the maximum principal stress at the notch tip. Thus, it is worth noticing that the ASED
criterion may be supported by numerical methods, providing a powerful engineering tool
to predict failure loads on complex parts, as long as the material being analysed exhibits
brittle (linear-elastic) behaviour.

Table 1. Some values of the H function for U-shaped notches [23].

Rc/ρ
H

ν = 0.3 ν = 0.35 ν = 0.4

0.01 0.5638 0.5432 0.5194
0.05 0.5086 0.4884 0.4652
0.1 0.4518 0.4322 0.4099
0.3 0.3069 0.2902 0.2713
0.5 0.2276 0.2135 0.1976
1 0.1314 0.1217 0.1110

2.2. The Equivalent and Fictitious Material Concepts

As briefly introduced above, the main assumptions of both the EMC and FMC are that
they equate a real ductile material to a virtual brittle one, to subsequently apply well-known
linear-elastic fracture criteria (e.g., ASED, TDC, etc.).

The EMC was proposed for materials with limited ductility in the tensile behaviour [31]
and linear-elastic behaviour at the onset of fracture. Thus, it is necessary only to replace
the (non-linear) tensile curve by a perfectly linear (virtual) curve, with the corresponding
equivalent tensile strength (σu,EMC), and keeping the same Young´s modulus of the real
material (see Figure 2).
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(linear-elastic).

On the other hand, the FMC aims to correct non-linear materials in both tensile and
fracture conditions. In order to do this, it is necessary to determine two essential parameters,
a fictitious tensile strength (σu,FMC) and a fictitious fracture toughness (Kc,FMC) [35].

In order to calculate the tensile strength of the (virtual) brittle material, it is assumed
that the two materials absorb the same amount of SED at failure. In addition, the FMC
stipulates that the ductile materials and the virtual material have a different Young’s
modulus, but the strain under the maximum stress is the same. This important assumption
means that the tensile strength of the fictitious material may be higher than the ultimate
tensile strength of the real ductile material (see FMC scheme in Figure 3a). Here it is worth
mentioning that a significant difference between the EMC and the FMC lies in the fact that
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the EMC assumes the same value of Young´s modulus for both the real ductile and the
fictitious brittle material, but the strain at failure has to be different, as is shown in Figure 2.
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The fracture toughness for the fictitious material may be easily calculated through the
real load-displacement curves of the real material pre-cracked specimens. According to
FMC, it is assumed (again) that the strain energy density (SED) required to achieve the
onset of fracture in the real ductile material is equal to that developed in the fictitious brittle
material. Moreover, the displacement values at fracture in both the real ductile material
and the fictitious brittle material are the same, as shown in Figure 3b. With all this, the
value of the fictitious maximum load (Pmax,FMC) at fracture may be easily calculated, from
which the fracture toughness of the fictitious material (Kc,FMC) may be directly obtained
from well-known linear-elastic fracture mechanics formulations [35].

In either of the two approaches (EMC or FMC), the tensile behaviour of a ductile
material can be expressed by Hollomon´s Equation (8) [31]:

σ = Kεn
p (8)

σ, K, n and εn
p being the true stress, the strength coefficient, the strain-hardening exponent

and the true plastic strain, respectively.
In a ductile material, failure initiates when the maximum load is reached. At that

moment the corresponding SED is calculated by integrating the stress-strain curve from
the origin until the maximum load, on which εn

p is denoted as εu,True. The total SED until
the maximum stress (area below the tensile curve) may then be expressed as (9) [31]:

(SED)total =
σ2

y

2E
+

K
n + 1

(
εn+1

u,True − (0.002)n+1
)

(9)

Now, the total SED value until the maximum stress for the virtual brittle material
is defined by Equation (10) [31] for the EMC, and Equation (11) [35] in the case of the
FMC (again, in both cases, it is calculated as the area below the resulting linear-elastic
tensile curves).

(SED)EMC =
σu,EMC

2

2E
(10)

(SED)FMC =
1
2
εuσu,FMC (11)
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Therefore, considering that the SED value is equal for the real and the virtual materials,
Equation (9) may be combined with Equations (10) and (11), deriving the values of σu,EMC
and σu,FMC from Equations (12) [31] and (13) [35], respectively.

σu,EMC =

√
σ2

y +
2EK
n + 1

(
(εu,True)

(n+1)/n − (0.002)n+1
)

(12)

σu,FMC =
σ2

y

εu,TrueE
+

2K
εu,True(n + 1)

(
εu

n+1 − (0.002)n+1
)

(13)

To sum up, both the EMC and the FMC substitute the real ductile material by a virtual
linear-elastic material. The EMC only modifies the tensile strength (Equation (12)) consid-
ering that the real and the virtual materials develop the same SED at failure, maintaining
the same E [31]; the FMC modifies both the tensile strength and the material toughness.
For the tensile strength, the strain at failure of the real material and the virtual material
are the same, and assuming that the SED at failure is also equal, the tensile strength is
derived from Equation (13). Concerning the fracture toughness, the FMC also considers the
same SED and displacement at failure for the real and the virtual materials, and assuming
linear-elastic behaviour of the virtual material, the fracture toughness is easily derived [35].

3. Materials and Methods

In this work, an AM ABS material was analysed. With this aim, a series of tensile and
fracture specimens were completed. All specimens were printed using a Prusa i3 printer
with the following printing parameters: layer height: 0.3 mm; line width: 0.4 mm; infill
degree: 100%; printing temperature: 230 ◦C; bed temperature: 95 ◦C and printing rate:
40 mm/s. In addition, three different raster orientations were studied: 0/90, 45/−45 and
30/−60.

The tensile behaviour was characterised by testing nine specimens, with their geometry
being shown in Figure 4a. The tests were performed at room temperature (20 ◦C) and an
approximate humidity of 57%, with a loading rate of 5 mm/min, following the guidelines
established by ASTM D638 [45]. The applied load, as well as the elongation (measured by
an axial extensometer with a 12.5 mm gauge length) were continuously recorded.
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For fracture characterisation, 33 single-edge notch bending (SENB) specimens were
tested (see Figure 4b). A total of five different notch radii were considered: 0 mm (crack-like
defect), 0.25 mm, 0.5 mm, 1 mm and 2 mm. The notches were all machined, except for the
crack-like defects, which were generated by sawing using a razor blade. Fracture tests were
carried out at room temperature (20 ◦C) and about 57% humidity applying a loading rate of
10 mm/min according to the standard ASTM D6068 [46]. Fracture toughness values were
initially calculated following linear-elastic assumptions and the standard ASTM D5045 [47].
However, given that some of the validity criteria of this standard (e.g., Pmax/PQ < 1.1, see
Section 9.1.1 in [47]) were not fulfilled in many cases, fracture toughness values were also
calculated using ASTM D6068, assuming that there was no stable crack propagation before
the final fracture. Further details about the experimental program and the materials may
be found in [5].

Once the ABS material was characterised in terms of tensile and fracture properties, the
parameters of the EMC (σu,EMC) and the FMC (σu,FMC, Kc,FMC) were calibrated following
the procedure described in Section 2.2 [31,35]. Once the corresponding linear-elastic (virtual)
material was defined, the final step was to apply the linear-elastic ASED criterion to predict
the failure load of each SENB specimen. As mentioned above, the average control volume
depends on the stress field at the defect tip. Thus, according to the ASED failure criteria
and following Equations (1), (2) and (7), the maximum stress at the notch tip may be
easily derived. Then, considering that σmax (in mode I) is reached in the notch root (r = 0),
and applying the U-notch stress distribution proposed by Creager–Paris [48], the stress
intensity factor (KI) may be straightforwardly derived from Equation (14). Finally, using
the well-known analytical solution of the KI for SENB specimens (Equation (15)) [49], the
values of the predicted failure loads (Pcritical) were obtained.

σ(r = 0) = σmax =
2KI√
πρ

(14)

KI =

(
Pcritical

BW0.5

)
·6·
( a

W

)0.5
1.99−

( a
W
)
·
(
1− a

W
)
·
(

2.15− 3.93
( a

W
)
+ 2.7

( a
W
)2
)

(
1 + 2 a

W
)
·
(
1− a

W
)1.5

 (15)

where a, B, and W denote the crack length, the specimen thickness, and the specimen width,
respectively.

4. Results and Discussion

The results of the tensile tests are gathered in Table 2, while the stress-strain curves
per raster orientation are presented in Figure 5. The 45/−45 configuration presents greater
values of the Young´s modulus and elongation at yield, with the 0/90 orientation providing
the lower values. In all three orientations, two distinct regions can be observed. Initially,
there is an elastic response up to approximately a level of strain between 2% and 3%, with
clear non-linear behaviour before the maximum stress, which following ASTM D638 [45] is
considered the material strength at yield (σsy). This value is followed by material softening,
with the strains being homogeneously distributed along the gauge length and without
any indication of necking. Finally, the material breaks at the tensile stress at break [45].
Here it should be noted that the second region (from the material strength at yield until
failure) does not contribute to the load-bearing capacity and, thus, only the first area of the
curve should be considered for load-bearing capacity analyses using the ASED criterion.
Furthermore, following ASTM D638, the maximum stress (σsy) coincides with the yield
point and, consequently, with the yield strength (σy = σsy). σsy and εyield are then used as
σu and εu (respectively) to calibrate the EMC and the FMC approaches.
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Table 2. ABS AM mechanical properties; E, Young´s modulus; σsy, tensile strength at yield; εyield,
strain at yield; SED, strain energy density; Kc, fracture resistance.

0/90 30/−60 45/−45

Material Property Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

E (MPa) 2241 169.34 2329 45.45 2388 181.67
σsy (MPa) 51.77 4.08 59.37 1.10 60.87 1.07
εyield (%) 2.90 0.30 2.92 0.22 3.14 0.02

SED (MPa) 0.91 0.15 1.01 0.06 1.13 0.04
Kc (MPa·m0.5) 2.05 0.16 1.99 0.35 2.03 0.16
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Regarding the fracture behaviour, the load-displacement curves obtained in cracked
conditions are shown in Figure 6, which are then employed to calculate the fracture resis-
tance (Kc) for the conditions here analysed. Details about the fracture micromechanisms
may be found in [5]. The results of Kc for the different orientations are also gathered in
Table 2. These values were evaluated by following the ASTM D5045 standard [47], although
in certain cases the ratio Pmax /PQ was slightly higher than 1.1 (see Section 9.11 in [47] for
details). The average ratios of Pmax/PQ for the three different raster orientations were 1.08,
1.17 and 1.18 for 0/90, 30/−60 and 45/−45, respectively. In any case, by applying ASTM
D5045 the results are always on the safe side.

The results obtained here both in tensile and fracture conditions are similar, but slightly
higher, than those found in the literature (e.g., [4,50]).

Finally, it is worth mentioning that the analysed materials are anisotropic. Therefore,
the characterization performed here allows performing the analyses on this particular
loading and crack propagation directions.

ASED-EMC and ASED-FMC Fracture Load Predictions

Table 3 gathers the calibrated parameters of the EMC and the FMC for each raster
orientation.

As mentioned above, the application of the ASED criterion depends on a variety of
material properties, such as fracture toughness, ultimate tensile strength, Young’s mod-
ulus, and Poisson’s ratio. While the first three parameters are directly derived from the
approaches being applied (EMC, FMC), the Poisson’s ratio is considered to be equal in
the real and the virtual materials. However, it was not determined experimentally in the



Materials 2022, 15, 2372 9 of 14

original test program. Therefore, according to the literature, this parameter was considered
to be 0.35 [1,50,51]. In any case, a sensitivity analysis was performed to examine how
Poisson’s ratio affects the final prediction, revealing that the results are not particularly
sensitive to the specific value used in this parameter (for example, the greatest variation in
the critical load predictions when considering a Poisson’s ratio of 0.4 is about 2%).
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Table 3. Properties of the virtual (brittle) material according to EMC and FMC for the different
raster orientations.

0/90 30/−60 45/−45

Material Property Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

σu,EMC (MPa) 62.67 4.36 68.54 1.26 71.62 2.88
σu,FMC (MPa) 63.64 5.15 68.64 2.18 73.34 1.34

Kc,FMC (MPa·m0.5) 2.55 0.15 2.75 0.48 2.80 0.47
EFMC 2176 59.80 2323 53.63 2276 100.93

Table 4 presents the critical load predictions obtained after applying the ASED-EMC
and ASED-FMC approaches, together with their corresponding deviations from the physical
value. These predictions are obtained by applying Equations (1) to (7) and considering the
material properties of the virtual (equivalent of fictitious) materials gathered in Table 3.
Additionally, Table 4 includes the fracture load predictions by directly using the ASED
criterion, without any correction (i.e., using the properties of the non-linear real materials).
It can be observed that the average deviation ranges between −14.9% and−10.5% for the
ASED model, between 1.0% and −7.6% for the ASED-EMC model, and between 6.7% and
10.2% in the case of the ASED-FMC model. Here, negative deviations (or errors) mean that
the predictions of the critical loads underestimate the real critical loads, whereas positive
deviations imply predictions that are higher than the real loads (non-conservative). The
lowest accuracy of the predictions is usually found in the specimens with 0.25 mm of notch
tip radius (negative errors above−30%) and with 2.0 mm of notch tip radius (up to +30% of
error). The latter cases may be mainly caused by the loss of accuracy of the Creager–Paris
expression to determine the stress distribution (Creager–Paris solutions require slender
notches in which the notch length is significantly larger than the notch radius). Figures 7–9
compare the predicted results (PASED, PASED-EMC or PASED-FMC) with the experimental
loads (PEXP) along with the ±20% lines, which represents a commonly accepted deviation
in fracture research [25,28,30]. In general, it seems that the ASED-EMC model provides
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more accurate conservative predictions than the ASED-FMC approach, although this model
seems to be more accurate for the lower notch radii (0.25 mm). In both cases, predictions
are conservative for lower notch radii (0.25 mm and 0.5 mm) and become non-conservative
for the larger radii (1 mm and 2 mm).

Table 4. Experimental critical loads (Pexp) of the fracture specimens along with the predictions
obtained using ASED, ASED-EMC and ASED-FMC approaches.

Raster
Orienta-

tion
N◦

Test
ρ

(mm)
PEXP
(N)

PASED
(N)

PASED-EMC
(N)

PASED-FMC
(N)

Deviation
ASED (%)

Deviation
ASED-EMC

(%)

Deviation
ASED-FMC

(%)

0/90

1 0.25 89.9 62.3 76.8 75.5 −30.8 −14.6 −16.1
2 0.25 89.5 62.3 76.8 75.5 −30.4 −14.2 −15.7
3 0.50 98.2 80.3 85.8 100.4 −18.2 −12.6 2.3
4 0.50 93.6 79.6 85.3 99.3 −15.0 −8.9 6.0
5 1.00 85.9 89.2 97.4 109.9 3.7 13.4 28.0
6 1.00 90.5 89.2 97.5 109.9 −1.5 7.7 21.5
7 2.00 101.3 106.4 121.3 130.5 5.0 19.7 28.8
8 2.00 102.9 106.3 121.2 130.4 3.2 17.7 26.6

Average
Error −10.5 1.0 10.2

30/−60

1 0.25 103.4 71.4 78.2 82.9 −30.9 −24.4 −20.2
2 0.25 97.8 71.4 77.0 82.9 −27.0 −21.3 −15.6
3 0.50 100.4 81.4 86.1 106.4 −19.0 −14.3 6.0
4 0.50 101.1 81.5 86.2 106.8 −19.4 −14.8 5.6
5 1.00 107.7 94.0 101.0 121.1 −12.7 −6.2 12.2
6 1.00 110.2 94.8 101.7 122.2 −14.0 −7.7 10.7
7 2.00 111.9 114.6 127.1 142.4 2.4 13.5 26.9
8 2.00 111.6 115.1 127.5 143.3 3.2 14.2 28.1

Average
Error −14.7 −7.6 6.7

45/−45

1 0.25 103.2 73.2 79.7 86.2 −29.05 −22.8 −16.4
2 0.25 106.5 73.2 79.8 86.2 −31.28 −25.1 −19.0
3 0.50 108.2 83.7 89.9 110.3 −22.66 −16.9 1.9
4 0.50 103.3 83.2 89.3 109.2 −19.48 −13.5 5.7
5 1.00 108.8 96.2 105.8 124.9 −11.56 −2.8 14.8
6 1.00 107.6 95.9 105.5 124.5 −10.83 −1.9 15.7
7 2.00 112.9 117.2 134.1 147.0 3.81 18.8 30.2
8 2.00 114.8 117.4 134.2 147.3 2.26 17.0 28.3

Average
Error −14.9 −5.9 7.7
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As described above, the biggest discrepancy between the EMC and FMC is the neces-
sity to calibrate the fracture resistance in the second model. Furthermore, in the AM ABS
material analysed here, there is the peculiarity that the value of the ultimate strength of
the virtual material obtained by both approaches is almost the same (see Table 3) while the
literature shows that the FMC generates lower strengths than the EMC [38]. In any case,
the real material is very close to the validity range limits of linear-elastic fracture mechanics
characterisation tools, so the need to provide corrections to the fracture properties (through
the FMC) is not completely justified. In other words, the ASED-EMC methodology appears
to be the most optimal method due to the limited non-linear behaviour developed by the
AM ABS material.

5. Conclusions

This paper contributes to the development of suitable failure prediction models to anal-
yse and estimate the critical fracture loads of cracked and notched additively manufactured
ABS components. The ABS material analysed here does not develop fully linear-elastic
behaviour, so the application of linear-elastic tools requires certain previous corrections.
In this sense, a couple of approaches proposed by Torabi, the equivalent material con-
cept (EMC) and the fictitious material concept (FMC), were combined with a well-known
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linear-elastic criterion, the average strain energy density (ASED) method. The resulting
methodologies, ASED-EMC and ASED-FMC, were applied to U-notched AM ABS speci-
mens with three different raster orientations (0/90, 45/−45, 30/−60). The main conclusions
can be summarised as follows:

• The strict application of the ASED criterion provides the most conservative results,
since it was formulated for brittle materials with linear elastic behavior.

• Both the ASED-EMC and the ASED-FMC criteria improves the accuracy of the predic-
tions provided by the ASED approach.

• The ASED-EMC criterion has been the best approach to predict the failure loads in
AM ABS material containing U-notches, generally combining accuracy and safety.

• Thus, a powerful engineering tool that may avoid time-consuming elastoplastic analy-
ses has been validated.
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Nomenclature

ABS Acrylonitrile Butadiene Styrene
PLA Polylactic Acid
AM Additive Manufacturing
ME Material Extrusion
FDM Fused Deposition Modeling
CAD Computer-Aided Design
TDC Theory of Critical Distances
ASED Average Strain Energy Density
SED Strain Energy Density
EMC Equivalent Material Concept
FMC Fictitious Material Concept
SENB Single Edge Notched Bending (specimen)
W mean value of the strain energy density
Wc critical strain energy density
Rc critical radius
σu ultimate tensile strength
σy yield strength
σsy tensile strength at yield
εyield strain at yield
E Young’s modulus
ν Poisson´s ratio
Kc material fracture toughness in stress intensity factor units
B specimen thickness
KI applied stress intensity factor
σmax maximum principal stress at the notch tip
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σu,EMC equivalent tensile strength
σu,FMC fictitious tensile strength
Kc,FMC fictitious fracture toughness in stress intensity factor units
EFMC fictitious Young´s modulus
Pmax,FMC fictitious maximum load
Pcritical predicted failure load
Pmax maximum load
PQ load provided by the intersection of the load-displacement curve and a line with

a compliance 5% greater than the straight part of the load-displacement curve.
ρ notch radius
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