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Abstract

Motivation: The universal expressibility assumption of Deep Neural Networks (DNNs) is the key motivation behind
recent worksin the systems biology community to employDNNs to solve important problems in functional genomics
and moleculargenetics. Typically, such investigations have taken a ‘black box’ approach in which the internal struc-
ture of themodel used is set purely by machine learning considerations with little consideration of representing the
internalstructure of the biological system by the mathematical structure of the DNN. DNNs have not yet been applied
to thedetailed modeling of transcriptional control in which mRNA production is controlled by the binding of specific
transcriptionfactors to DNA, in part because such models are in part formulated in terms of specific chemical equa-
tionsthat appear different in form from those used in neural networks.
Results: In this paper, we give an example of a DNN whichcan model the detailed control of transcription in a precise
and predictive manner. Its internal structure is fully interpretableand is faithful to underlying chemistry of transcrip-
tion factor binding to DNA. We derive our DNN from asystems biology model that was not previously recognized as
having a DNN structure. Although we apply our DNNto data from the early embryo of the fruit fly Drosophila, this
system serves as a test bed for analysis of much larger datasets obtained by systems biology studies on a genomic
scale. .

Availability and implementation:: The implementation and data for the models used in this paper are in a zip file in
the supplementary material.

Contact: yil@uchicago.edu or reinitz@galton.uchicago.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A central unsolved problem in biology is to understand how DNA
specifies how genes turn on and off in multicellular organisms. The
‘universal expressibility’ of deep neural nets (DNNs), combined
with standardized and effective optimization methods such as sto-
chastic gradient descent (SGD), suggests that they might be a valu-
able tool in this undertaking. At the same time, the applicability and
acceptance of DNNs in solving problems in natural science has been
limited by the uninterpretability of their internal computations. We
address both of these areas in this report by describing the reimple-
mentation of a specific and highly predictive model of transcription-
al control as a DNN. This work is a demonstration that DNN
techniques can be applied to the apparently purely chemical problem
of transcriptional control. Although applied here to a very specific
problem in early embryo of Drosophila, we discuss below the rea-
sons why the results here should generalize well to the study of tran-
scription in other organism including humans. The work presented
here also provides an example of a DNN in which the internal struc-
ture is well understood and which may be of value to the machine
learning field.

Deep learning has been widely deployed in genomics and systems
biology over the last few years (Alipanahi et al., 2015; Avsec et al.,
2019; Celesti et al., 2017; Cuperus et al., 2017; Greenside et al.,
2018; Koh et al., 2017; Libbrecht and Noble, 2015; Movva et al.,
2019; Nair et al., 2019; Pouladi et al., 2015; Rui et al., 2007; Shen
et al., 2018). Many of the developed tools have been highly success-
ful in classification problems such as the identification of binding
sites, open regions of chromatin and the location of enhancers.
Deeper understanding requires more quantitative studies. One re-
cent example that goes beyond classification concerns a fully quanti-
tative and highly predictive DNN model of the role of untranslated
RNA leader sequences in gene expression in yeast (Cuperus et al.,
2017), We believe that these studies have two sets of limitations.
First, they take a universal expressibility approach without much
understanding and interpretation of the underlying chemical and
biological mechanisms giving rise to the phenomena under study.
This limits the contributions DNNs can make to increasing human
understanding of fundamental biological processes. Here, we con-
sider a DNN in which each layer has a specific chemical or biologic-
al interpretation. Studies of regulatory DNA with DNNs have
treated only the sequence itself, but in metazoa (multicellular
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animals) different cell types have very different gene expression
states although they contain the same DNA. For example, one recent
study used a sequence based DNN classifier of open and closed
chromatin regions to find binding sites for tissue specific transcrip-
tion factors (TFs), but the actual binding state of these factors was
not part of the model (Nair et al., 2019). Here, we consider a DNN
in which state is described not only by the sequence, but also by the
set of regulatory proteins present in each cell and the state of binding
of each factor constitutes a specific layer of the model. We now de-
scribe the problem to be solved in both mathematical and biological
terms.

The ‘expression’ of a gene is the rate at which it synthesizes its
ultimate product, which may be an RNA or protein. Here, we focus
on genes transcribed by RNA polymerase II, which transcribes all
genes other than those coding for ribosomal or transfer RNA.
Although the expression of these genes can be affected at the level of
RNA splicing or translation of protein, regulation of expression
takes place chiefly at the level of transcriptional control. We thus
consider the rate at which mRNA (the ‘transcript’) is synthesized
from a complementary DNA template. This rate d½mRNA�=dt ¼
fðD; vÞ where D ¼ ðDiÞ, where each Di 2 fA;C;G;Tg is a base in
the sequence of regulatory DNA and v ¼ ðv1; . . . ; va; . . . ; vnÞ, where
each va is the nuclear concentration of a regulatory DNA binding
protein known as a ‘TF’. The machine learning task is to learn the
function f from a series of observations (Dj; vjkÞ of the expression of
sequence j in cell type k, where k 2 f1; . . . ;Mg. The essence of the
scientific problem is that each sequence Dj must express correctly in
each cell type, reflecting the fact that in a multicellular organism,
different sets of genes are expressed in different cell types, but each
cell type contains the same DNA.

Regulatory DNA is non-coding DNA which can be upstream
(5’), downstream (3’), or within (intronic) the complementary
mRNA template. TFs bind to DNA in its double stranded form. In
metazoans, regulatory DNA is frequently much larger than the cod-
ing portion of the gene. The regulatory DNA contains segments of
500 to 1000 base pairs (bp) called ‘enhancers’, each of which directs
expression in a particular domain or tissue type. In this study, we
consider a gene called eve which acts in the early embryo of the fruit
fly Drosophila melanogaster, at which time it forms a pattern of
seven stripes as shown in Figure 1. The entire gene is 16.5 kb of
DNA in length (Fujioka et al., 1996), but the mRNA transcript is
only 1.5 kb (Fig. 2). We consider the action of eve from 1 to 3 h after
the start of embryonic development. At this time, the embryo is a
hollow ellipsoid of cell nuclei that can be treated like a naturally
grown gene chip in which d½mRNA�=dt; Dj, and vjk are fully observ-
able at a quantitative level. The embryo contains two orthogonal
axes in the anterior–poster (A-P) and dorsal–ventral (D-V) direc-
tions. In the central portion of the embryo, gene expression on the
two axes is uncoupled, so cell type and gene expression can be
visualized by plotting relevant state variables in one dimension.

We have chosen a specific dataset involving the expression
driven by fused and unfused enhancers for eve stripes 2 and 3 in

normal and revered orientation (Fig. 2). Because the fused enhancers
drive a novel pattern compared to the unfused enhancers, this data-
set provides both a stringent and highly informative test of capabil-
ities of theoretical models. In particular, it is known that eve stripe 2
is repressed at its borders by TFs known as quenchers which operate
over a range of 150 bps (Gray et al., 1994; Small et al., 1992;
Stanojevic et al., 1991). Multiple quenchers must bind in order to
elicit repression. It is known that Bicoid(Bcd) and D-STAT(Dst) are
key activators of stripes 2 (Small et al., 1992) and 3 (Small et al.,
1996), respectively, and that Bcd binding to DNA involves coopera-
tivity (Burz and Hanes, 2001; Lebrecht et al., 2005). Moreover, it is
known that Hunchback(Hb) acts as a repressor on stripe 3 (Small et
al., 1996) and as an activator on stripe 2 (Small et al., 1992), and
that it is converted from a quencher to an activator by nearby sites
occupied by Bcd or Caudal (cad) (Small et al., 1993). As we explain
below, this dense set of prior knowledge is not required for general
modelling of transcription, but it provides a useful tool for selecting
a particular thermodynamic model for reimplementation as a DNN.

In this paper, we show that DNNs can be used to generate a pre-
dictive model of gene expression. We chose a model for reimplemen-
tation as a DNN as follows. The ability to predict gene expression
from DNA sequence is limited to so-called thermodynamic tran-
scription models (Barr and Reinitz, 2017; Barr et al., 2017;
Bertolino et al., 2016; Fakhouri et al., 2010; He et al., 2010;
Janssens et al., 2006; Kazemian et al., 2010; Kim et al., 2013;
Martinez et al., 2014; Reinitz et al., 2003; Samee and Sinha, 2014;
Sayal et al., 2016; Segal et al., 2008). These models are defined by
the fact that occupancy of DNA by TFs is calculated using thermo-
dynamics, and phenomenological rules are used to calculate the
transcription rate from the configuration of bound factors. Thus, all
thermodynamic model compute the occupancy of TF binding sites
from the concentration of TFs and DNA sequences, and are hence
capable of predicting expression from DNA sequences not used for
learning. Thermodynamic models can be further classified according
to which chemical and regulatory mechanisms are included. Not all
thermodynamic models consider the role of cooperativity in DNA
binding (Bertolino et al., 2016; Fakhouri et al., 2010; He et al.,
2010; Janssens et al., 2006; Kazemian et al., 2010; Martinez et al.,
2014; Samee and Sinha, 2014; Sayal et al., 2016; Segal et al., 2008),
but some do (Barr and Reinitz, 2017; Barr et al., 2017; Kim et al.,
2013; Segal et al., 2008). It is our experience (Kim and Reinitz, un-
published data) that failure to consider the cooperativity of Bcd pro-
duces pattern defects in stripes 2 and 3 using the dataset considered
here. In addition, thermodynamic models differ in terms of the proc-
essing steps performed after calculating the state of TF binding to
DNA. The simplest sum activation and repression in a manner that
does not take into account the limited range of action of quenchers
(Bertolino et al., 2016; Kazemian et al., 2010; Segal et al., 2008).
Such models cannot account for the narrow interstripes between the
stripes of eve expression. Because eve stripes are known to be
formed by repression by gap genes, the limited range of gap gene re-
pression prevents repression at one enhancer from repressing

Fig. 1. (a) Shows a Drosophila embryo about 3 h after fertilization which has been stained for Eve protein as described (Surkova et al., 2008). Anterior is to the left and dorsal

is up. The dark shades indicate the concentration of Eve protein and the stripes are numbered. The white box is the one dimensional region of interest used to generate the data

(Janssens et al., 2005). (b) The TF concentrations found across the embryo (Surkova et al., 2008). In the graph, 58 data points are shown, corresponding to 58 nuclei on the A-

P axis. Each nucleus is 1% E.L. in size. The identity of TFs is shown in the key; the horizontal axis shows position in percent egg length (E.L.) and the vertical axis shows pro-

tein concentration
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expression at a nearby enhancer: thus, Hb bound at 3 enhancer is
unable to repress expression from the stripe 2 enhancer. Many pub-
lished models take into account the short range effect of quenchers
(Fakhouri et al., 2010; He et al., 2010; Janssens et al., 2006;
Martinez et al., 2014; Reinitz et al., 2003; Sayal et al., 2016), but do
not include in addition the ability of repressors to be transformed
into activators by other bound factors (Barr et al., 2017; Kim et al.,
2013). The ability to model coactivation is essential for eve because
it is necessary for Hb to function as a coactivated activator for stripe
2. Indeed, the absence of coactivation is the probable reason why
one effort to model many enhancers failed to generate any expres-
sion from stripe 2 (Segal et al., 2008). Among models of individual
enhancers, we chose Kim et al. (2013) for reimplementation as an
DNN because it has a sufficiently rich set of mechanisms with which
to model stripes 2 and 3 and is thus a suitable test bed. It is the sim-
plest model for such testing in that it does not contain additional
mechanisms required to model a whole locus rather than an enhan-
cer (Barr and Reinitz, 2017; Samee and Sinha, 2014).

Like DNNs, thermodynamic transcription models have a feed
forward structure that can be described in layers. Unlike DNNs,
thermodynamic models arise from chemistry and at least superficial-
ly have a different mathematical structure than DNNs. The form of
the resulting equations makes use of backpropagation and hence sto-
chastic gradient descent difficult or impossible because of the need
to hand code complex partial derivatives, so these models are opti-
mized by zero order methods such as Simulated Annealing or
Genetic Algorithms. Despite this apparent mathematical distinction,
we were able to translate the chemical model of transcription into a
standard DNN form that could perform rapid learning by SGD.

Thermodynamic transcription models differ from existing DNNs
used in genomics and systems biology because they compute the dif-
ferent levels of mRNA expression in different cell types by comput-
ing it from regulatory DNA sequence and TF concentration. They
also differ from purely phenomenological models that do not use
any sequence information; such models have been applied to the dy-
namics of a small network using a variant of a recurrent Hopfield
neural net (Jaeger et al., 2004; Manu et al., 2009; Reinitz and Sharp,
1995) and to the expression of enhancers using logistic regression
(Ilsley et al., 2013). Models in this class cannot predict gene expres-
sion from DNA sequence.

The resulting model is, to our knowledge, one of the first fully in-
terpretable DNNs with an exact interpretation for each of the un-
known parameters. It is also an example of a biologically validated
DNN that is not perceptronbased. The parameters used to calculate

the position and affinity of DNA binding sites for TFs (Section
2.1.1) are obtained from independent experiments, resulting in a
very small number of parameters for an extremely deep network.

Below, in Section 2, we will describe the function of each layer
and the interpretation of parameters. In Section 3, we focus on the
training and evaluation of performance. Finally, in Section 4, we dis-
cuss the scientific implications of our results.

2. Materials and methods

The model’s input is DNA sequence and TF concentration. The TFs
have functional roles which, in the present application, are known
from independent experiments. Activators activate transcription,
quenchers suppress the action of activators over a limited range, and
certain activators can also convert nearby quenchers into activators.
In each of these regulatory mechanisms, multiple bound TFs are
required to perform a regulatory action. We perform this calculation
as follows. Binding site locations and affinities are determined from
sequence. Together with TF concentrations, this information is used
to calculate the occupancy of each binding site. We then calculate
the effects of coactivation, followed by the effects of quenching. The
total amount of remaining activation is then summed and passed
through a thresholding function. Each step in this calculation corre-
sponds to one or more of the layers shown in Figure 4. We describe
these layers below.

2.1 Computing fractional occupancy
2.1.1 Identifying the binding sites

An indicator representation of DNA sequence is used as input. The
column index is the base pair position number in the sequence. The
row index indicates which of the four bases (A, C, G, T) is observed.
For example, if we have a sequence of ACTTGTTA, the correspond-
ing matrix is

A 1 0 0 0 0 0 0 1
C 0 1 0 0 0 0 0 0
G 0 0 0 0 1 0 0 0
T 0 0 1 1 0 1 1 0

0
BB@

1
CCA

The nine TFs of interest are Bicoid (Bcd), Caudal (Cad),
Drosophila-STAT (Dst), Dichaete (Dic), Hunchback (Hb), Krupple
(Kr), Knirps (Kni), Giant (Gt) and Tailless (Tll) (Fig. 1b). The identi-
fication and affinity characterization of binding sites for TF a

Fig. 2. (a) The figure shows a diagram of the eve locus. The transcript is indicated by black box; enhancers are indicated by pink, blue or white boxes and are labeled with the

eve stripe that they drive. (b) Fusion constructs that are used in the training process. The blue box represents the MSE3/7 enhancer and the red box represents the MSE2 enhan-

cer. The pair of constructs over graphs A and B differ by only 358 pairs of spacer between MSE3 and MSE2, and those above graphs C and differ by only 155 bp. The four

graphs in (b) shows the data used for training and outcome from the model after 200 epochs using Adam. In each graph, 58 data points are shown, corresponding to 58 nuclei

on the A-P axis. Each nucleus is 1% E.L. in size. For reference, the quantitated average positions of stripes 2, 3 and 7 (Barr and Reinitz, 2017 and Fig. 1) are shown by vertical

dashed lines labeled by stripe identity. The orange lines show the observed data from the experiments (Kim et al., 2013) and the blue lines show the model output. The presence

or absence of the spacers between MSE2 and MSE3 cause a large difference in the expression pattern generated. The overall RMSE is of the training is calculated to be 6.89.

This is on the order of the experimental error in the data (Kim et al., 2013). The R2 of this fit is 0.83
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requires a (PWMa). Chemically, the PWM represents an additive
model of binding in which the Gibbs free energy DG of binding is
the sum of the free energies of binding to each nucleotide.
Statistically, the PWM score can be regarded as the likelihood of
finding a binding site at a given position, calculated using a vari-
ational approximation of the likelihood using only the marginal
likelihood of each base. The physical size of the binding site, which
is important for calculating competitive interactions between TFs,
can usually be read from DNase I footprints (e.g. Small et al., 1992)
and is larger than the set of nucleotides that are specifically recog-
nized by the TF. We take this fact into account by padding the edges
of the PWM with zeros to reflect their physical size. Most of our
Position Weight Matrices (PWMs) were obtained from high quality
SELEX (Orgawa and Biggin, 2012; Roulet et al., 2002) or bacterial
one-hybrid data (Noyes et al., 2008); complete details are given else-
where (Kim et al., 2013). Because these data were both reliable and
independent, we chose not to allow adjustments of PWM values to
fit the data, as has been done in other studies (Segal et al., 2008). In
the context of DNNs, PWMs can be understood as a convolution
kernel in which the number of columns represents the number of
nucleotides of DNA in physical contact with a bound TF. Unlike
many convolution matrices used in deep learning, PWMs make dir-
ect experimental predictions about DNA properties, a fact used in a
previous study to experimentally confirm PWMs obtained by deep
learning techniques (Cuperus et al., 2017).

The resulting score, denoted by Si;iþm;a, is an affine transform-
ation of the free energy DGi;iþm;a of TF a binding to a site extending
from base i to base iþm. In many cases, including most of the TFs
considered here, m can be read off directly from DNase I footprints
(e.g. Small et al., 1992). TFs physically bind in the major groove of
the DNA double helix but the PWM is convolved with only a single
strand. We compensate for this fact by also scoring the complemen-
tary strand, in which bases are replaced by their complements (A!
T; C! G; T! A; G! C), and orientation is reversed. Scoring each
strand results in a 1� n array of scores Sa, where n is the sequence
length. At each base position, we set the score to be the larger of the
two scores at that position.

We next calculate the equilibrium affinity Ki;iþm;a of each bind-
ing site. If DGi;iþm;a were known in units of kcal/mole, then
Ki;iþm;a ¼ expðDGi;iþm;a=RTÞ, where R is Boltzmann’s constant and
T the absolute temperature. Si;iþm;a is related to DGi;iþm;a by an af-
fine transformation ax þ b, or more precisely, S� Smax=k in which
Smax is found from experiment and k is learned by training as fol-
lows. Here, Smax;a is the maximum possible score for any particular
TF a. Smax;a is determined experimentally from the tightest possible
binding sequence. We only consider binding to sites with scores
greater than zero, so we indicator function to assure that below
threshold sites disappear, so that

Ki;iþm;a ¼ exp �ðSi;iþm;a � Smax;aÞ
ka

� �
IðSi;iþm;a > 0Þ; (1)

where ka is a learnable parameter for each TF a. The indicators, one
for each TF a, give rise to what is essentially a ReLU and is hence
denoted as ‘ReLU Exponential Activation’ in Figure 4. The Ki;iþm;a,
arranged according to positions on the DNA sequence, produce an-
other 1� ðn�mÞ vector Ka. Adjusting for the size of m, we further
concatenate Ka for all TFs to produce K, which we use for the calcu-
lation of fractional occupancy.

2.1.2 Belief propagation and partition function computation

Moving from affinity Ki;iþm to fractional occupancy requires the
consideration of all possible states in which the TFs can bind on the
DNA. The fractional occupancy fi;iþm;a denotes the average occu-
pancy of the site at equilibrium. Its calculation requires consider-
ation of interactions between sites. Two overlapping sites cannot be
occupied at the same time as illustrated in Figure 3a, and in some
cases a TF bound at one site increases the binding affinity at a near-
by site by a factor of wcoop

ij . In the present application, cooperativity
only occurs between pairs of bound Bcd <60 bp apart as shown in

Figure 3a (Burz et al., 1998; Ma et al., 1996). The resulting mathem-
atical structure is, in essence, a Markov random field with known
conditional probabilities Ki;iþm;a at each position ði; iþmÞ for each
TF a. Using this interpretation, fi;iþm;a denotes the marginal prob-
ability of finding the specific protein a at the site ði; iþmÞ at a given
instant. The calculation of fi;iþm;a is best performed by computing
the partition function Z, which can be calculated by a fast, recently
discovered algorithm (Supplementary Appendix S1 in Barr and
Reinitz, 2017). The algorithm is essentially a form of Belief propaga-
tion (Koller and Friedman, 2009) and is given in Algorithm 1, which

Fig. 3. (a) Diagram of chemical interactions of the TFs on the DNA strain that are

considered in Algorithm 1, namely competitive binding (all TFs) and cooperativity

(Bcd only). (b) Diagram of phenomenological interactions between bound TFs.

Coactivators (Bcd and Cad only) act on quenchers (Hb only in this application) and

turn them into activators. Quenchers (Hb, Kr, Kni, Gt and Tll) act on activators

(Bcd, Cad, Dst, Dic and activated Hb) to quench their activating power. (c) Table

summarizing regulatory interactions among the TFs in the DNN

Algorithm 1 The Algorithm for Fractional Occupancy

Initialize Z�N ¼ 1 and Zþ0 ¼ 1

for i 1to N do

qi;a ¼ ½TF�aKi;a

for a 2 fTranscription Factors g do

Zþnc
i;a ¼ qi;aZþi�m�1

Z�nc
N�i;a ¼ qN�i;aZ�N�iþmþ1

Zþc
i;a ¼

Pcd

j¼mþ1 wcoop
ij qi;aqi�j;aZþi�j�m�1

Z�c
i;a ¼

Pcd

j¼mþ1 wcoop
ij qN�i;aqN�iþj;aZ�N�iþjþmþ1

end for

Zþi ¼
P

a Zþnc
i;a þ Zþc

i;a

Z�N�i ¼
P

a Z�nc
i;a þZ�c

i;a

end for

return Zþnc
a ; Zþc

a ; Z�nc
a ; Z�c

a , Z�0
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is also thus designated in Figure 4.The fractional occupancy is then
given by

fi;iþm;a ¼
Zþnc

i;iþm;aZ�c
i;iþm;a þ Z�nc

i;iþmaZþc
i;iþm;a þ Z�nc

i;iþmaZþnc
i;iþm;a

Z�0
:

(2)

We discovered that Algorithm 1 can be reimplemented as an bi-
directional Recurrent Neural Network (RNN) with linear activation
units. At each recurrent unit, indexed here by i, qi;a is the new input,
Z�nc

i;a ;Z�c
i;a ;Z

þnc
i;a ;Zþc

i;a are outputs, and Zþi and Z�N�i are the informa-
tion passed to next recurrent unit. In this RNN, the only unknown
is wcoop

ij which is found by training on the data.

2.2 TF–TF interactions
Interactions between bound TFs follow phenomenological rules. A
central feature of the cis-regulatory DNA of metazoan genes is the
fact that biological function is encoded in multiple binding sites
(Small et al., 1992, 1996; Stanojevic et al., 1991). This fact is
expressed mathematically in the phenomenological equations below.
In the present application, bound TFs have specific roles derived
from specific experimental results, although this approach also
works if the roles are not known a priori (Bertolino et al., 2016).
Here, Bcd, Cad, Dst and Dic are activators; Hb, Tll, Kni, Kr and Gt
are quenchers; both Bcd and Cad are coactivators of Hb. We now
describe the actions of each class of TF in the order which we com-
pute them. The ultimate goal of this computation is to obtain the

summed action of activators after their contribution has been
increased by coactivation and diminished by quenching.

2.2.1 Coactivators

Coactivators turn a nearby quencher into an activator as schematic-
ally illustrated in Figure 3b. This action is described by the equation
(Barr and Reinitz, 2017; Kim et al., 2013)

f̂
QC

i ¼ f QC

i

Yiþk

j¼i�k

ð1� dcðjÞEQC

C f C
j Þ; (3)

where f̂
QC

i is the portion of activator fractional occupancy created
from the total fractional occupancy f QC

i . dcðjÞ is a convolutional ker-
nel describing the distance dependence of coactivation. dcðjÞ ¼ 1 if
jj� ij<156 bp. In this application, k¼206. As jj� ij increases to
206 bp, dcðjÞ decreases linearly to 0. E

QC

C 2 ½0;1� denotes the relative
strength of the coactivators. f C

j simply refers to fractional occupancy
of Bcd and Cad since they are the only coactivators in this setting.

It is easy to observe that Equation (3) is the first term of a Taylor
expansion of

f̂
QC

i � f QC

i

Yiþk

j¼i�k

1� EQC

C f C
j

� �dcðjÞ

) f̂
QC

i � exp
Xiþk

j¼i�k

dcðjÞ log 1� E
QC

C f C
j

� �0
@

1
Af

QC

i :

(4)

This can be turned into three convolutional linear activation
units, so that

yj ¼ logð1� EQC

C f C
j Þ;

zi ¼ exp
Xiþk

j¼i�k

dcðjÞyj

0
@

1
A;

f̂
QC

i ¼ f
QC

i zi:

(5)

This is schematically designated by the pink box labeled ‘co-acti-
vators’ in Figure 4.

2.2.2 Quenchers

As their name suggests, quenchers suppress activation by all activa-
tors, both native and those subject to coactivation, as schematically
indicated in Figures 3b and 4. Their action is local and occurs only
within around 100–150 base pairs (Hewitt et al., 1999). The basic
mathematical formulation of the effect of nearby quenchers on the
activator at position i is given by Kim et al. (2013):

Fig. 4. This is a graphical representation of the DNN. (Left) Chemical calculations. The computation can be seen as the DNA going through a convolution and then passing

through a ReLU and then the ðexpð�ÞÞ activation function shown in Equation (1). (Right) The graphical representation of interactions between bound TFs. Coactivators acti-

vate quenchers, quenchers quench activation and activators combined together in a fully connected layer produce mRNA

Fig. 5. The figure shows ½mRNA� from the four constructs in the training data against

the prediction of the model. The correlation coefficient R is 0.91
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f̂
A

i ¼ f A
i

Yiþk

j¼i�k

ð1� dqðjÞEQ
A f Q

j Þ; (6)

where f A
i is the fractional occupancy of activators whether coacti-

vated or not, f̂
A

i is the fractional occupancy of activators after
quenching and f Q

j is the fractional occupancy of a quencher bound
at position j. EQ

A 2 ð0; 1Þ is the strength of quencher Q on activator
A and dqðjÞ is a convolutional Kernel representing the range of
quenching on the DNA strand. k¼150 bp and dqðjÞ ¼ 1 when jj�
ij � 100 and goes linearly down to 0 from 100 to 150 bp. Using a
mathematical argument similar to that of the previous section, we
can write

f̂
A

i � exp
Xiþk

j¼i�k

dqðjÞ logð1� EQ
A f Q

j Þ

0
@

1
Af Q

i : (7)

This gives three convolutional linear activation units.

yj ¼ logð1� EQ
A f Q

j Þ;

zi ¼ exp
Xiþk

j¼i�k

dqðjÞyj

0
@

1
A;

f̂
Q

i ¼ f A
i zi:

(8)

2.2.3 Activation

Last, we sum the fractional occupancies of all activators remaining
after the previous two steps. We consider the activators to lower the
energy barrier in a diffusion limited Arrhenius rate law (Barr and
Reinitz, 2017), which has the mathematical form of a sigmoidal
thresholding function. This results a fully connected layer, shown
schematically in Figure 4, which yields the mRNA synthesis rate. In
the experimental system used, mRNA has a lifetime much shorter
than the time required to change transcription rates, so that the
mRNA concentration ½mRNA�, an experimentally observable quan-
tity, is given by

½mRNA� / d½mRNA�
dt

¼ R
exp ð

P
j2fA;QCg Ej

P
i f̂

j

i � hÞ

1þ exp ð
P

j2fA;QCg Ej

P
i f̂

j

i � hÞ

0
B@

1
CA: (9)

Here, Ej > 0 represents the activating strength of each activator
and is obtained by training on the data. h, also obtained by training,
is the amount of activation in the absence of activator and R is the
maximum synthesis rate.

3 Implementation, training and results

We train on the target

½mRNA�train ¼
½mRNA�cellffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

cells ½mRNA�cell2 Þ
;

q (10)

using an L2 norm, minimizing the loss function
L ¼ jj½mRNA�train � ½mRNA�modeljj

2
2.

We implemented and trained this model in Keras with a
TensorFlow back end (Abadi et al., 2015; Chollet et al., 2015). The
resulting architecture is shown in Figure 4. The figure shows nine
layers, essentially one for each class of box. The actual implementa-
tion in Keras, which performed the precise computation described
above, was deemed by Keras to contain 223 layers. This large num-
ber of layers is a consequence of the fact that we did not use any of
the conventional architecture (Jaderberg et al., 2015; Krizhevsky et
al., 2012) and hence needed to use the Lambda functions in Keras to
represent some of the activation functions and PWM convolutions.
Algorithm 1 was implemented as a special layer in Keras with two

rnn functions. Our implementation contains 52 unknown
parameters.

The training data and PWMs were as previously described (Kim
et al., 2013), although training data were limited to the fusion con-
structs M32, M3_2, M23 and M2_3. The model was trained using a
single Intel Core i7-8700K CPU. The training data contain 232
unique observations of ½mRNA�train. Each of these observations is
associated with the DNA sequence that drives the expression to-
gether with the concentration level of TFs that is characteristic of
the position of the observed nucleus in the embryo. The model was
trained using Adam (Kingma and Ba, 2014), for 200 epochs, with
Nesterov momentum as implemented in Keras. Training took �2 h.
This compares with several days of serial simulated annealing before
Algorithm 1 was devised (Kim et al., 2013), and is about equivalent
to the time taken by code using Algorithm 1 running in parallel with
the loss function for each construct computed on a separate core.
However, optimization by simulated annealing requires several mil-
lion evaluations of the loss function. While the implementation use
here required about 10 000.This is indicative of an algorithmic
speedup on the order of 100. The earlier work used about 10 000
lines of compiled Cþþ while this work uses <1000 lines of Python.
However, the mismatch between algorithmic and wall-clock
speedup indicates that there is considerable scope for improvement
of the TensorFlow backend for this type of problem. In addition,
this implementation is more modular than that described in Kim et
al. (2013). The use of Keras enables us to break the model up into
blocks represented by proteins and interactions, which were stacked
on top of one another with minimal modification to the code. This
will allow for greater flexibility when producing similar models for
other organisms or for extending model to different biological func-
tions, such as chromatin accessibility.

4 Results

The results of the training are shown in Figure 2. It is important to
note that this model tends not to over-fit the data since the number
of parameters is only 52 compared to the 232 nuclei we used as the
training set. Nevertheless, the RMSE, an approximate measure of
the average error between the behavior of the model and a quantita-
tive observation, is 6.89, approximately the uncertainty level of the
data itself, which is accurate to about 5–10%. This quality of fit is
less than the RMSE of 2.3 reported in Kim et al. (2013), but this
study also adjusted parameters controlling the range of co-activation
and quenching, as well as the minimum PWM score to include a
binding site, which was set to 0 here. Although the reduction in
degrees of freedom resulted in a poorer fit, it was nevertheless within
experimental error. Comparison to other studies with thermo-
dynamic models is complicated by the diverse set genes selected for
modeling. However, we note that a comparison to one prominent
published study (Segal et al., 2008) is impossible because the model
used failed to give any expression from stripe 2. Another study using
comparable data (He et al., 2010) reported values of correlation co-
efficient R between 0.55 and 0.60, while the R value in our study is
0.91 (Fig. 5).

We tested the predictive power of our DNN by confronting it
with set of enhancer sequences which the model has not previously
seen. The test sequences must be capable of driving expression in D.
melanogaster embryos, so that the same TF dataset used for training
can be employed to calculate the predicted expression along the A-P
axis. In Figure 6, we show the predicted expression of four enhancer
sequences, each of which consists of 58 nuclei and hence 58 separate
predictions. We chose these enhancers for presentation because they
are exceptionally stringent tests in the sense that they involve
enhancers with no DNA homology with those used in the training
set, either because they are from different genes or distant species.
Seventeen additional predictions are given in the Supplementary
Material.

We comment in detail on the following predictions. When con-
sidering the accuracy of these predictions, it is important to note
that the experimental data used for the comparison is in the form of
non-quantitative images, which are referred to by specific figure in
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the citation below. Because the comparison is made to non-quantita-
tive data, it is not possible to assess the quantitative accuracy of the
prediction, but only the spatial position. run_str3_7 is the enhancer
of the runt gene of D. melanogaster that drives runt stripes 3 and 7,
each of which is about 2% E.L. anterior of the corresponding eve
stripes. The positions of the stripes are accurate (Klingler et al.,
1996; Fig. 3D and K in Klingler et al., 1996). eve_S2E(cyn) and
eve_S2E(spp) are respectively the eve stripe 2 enhancers from Sepsis
cynipsea and a different but unidentified Sepsis species.
eve_s37E(pun) is the stripe 3/7 enhancer from Sepsis punctum. The
Sepsis genus is a member of the family Sepsidae, not Drosophilidae,
and are so distant from D. melanogaster that there is no sequence
homology with the D. melanogaster enhancer longer than a pair of
overlapping binding sites (Hare et al., 2008a,b). Nevertheless, all
Sepsis enhancers that have been assayed in D. melanogaster embryos
drive expression of stripe 2 1–2% E. L. posterior to their native pos-
ition and stripes 3 and 7 at the native position (Table 2 in Hare
et al., 2008b). For eve_S2E(cyn), the predicted stripe 2 is of the cor-
rect width and 2% E.L. more posterior than reported. In Sepsidae,
stripe 2 enhancer also drives expression of stripe 7. For
eve_S2E(cyn), our prediction of stripe 7 expression is completely ac-
curate. For eve_S2E(spp), the predicted stripes are in the correct lo-
cation, but stripe 2 is significantly wider than observed. For
eve_S37E(pun), our prediction for stripe 3 is about 2 nuclei poster-
ior and twice as wide as observed, and for stripe 7, our prediction is
completely correct. These predictions demonstrate the generaliza-
tion capabilities of the DNN implementation of the model. The
quality of prediction is comparable to but slightly poorer than the
original implementation (in Fig. 4 and Supplementary Fig. S5 Kim et
al., 2013).

5 Discussion

The work presented here constitutes a strong proof-of-concept for
the proposition that DNN can be extremely useful for the construc-
tion of precise models of metazoan transcriptional control.
Specialized properties of the early Drosophila embryo made it
uniquely advantageous for the study of the fundamental properties
of metazoan transcription before the onset of genomics. For that
reason, it is natural that thermodynamic models of metazoan tran-
scription were developed in Drosophila (Barr and Reinitz, 2017;
Barr et al., 2017; Fakhouri et al., 2010; He et al., 2010; Janssens et
al., 2006; Kazemian et al., 2010; Kim et al., 2013; Martinez et al.,
2014; Reinitz et al., 2003; Samee and Sinha, 2014; Sayal et al.,
2016; Segal et al., 2008). As explained in the introduction, we
selected what is arguably the most accurate and predictive enhancer
level thermodynamic model for reimplementation as a DNN. We
have shown that a simpler reimplementation of this model perform-
ance almost as well as the original (Kim et al., 2013). The reimple-
mentation is much simpler to code than the original model,
amounting to about 600 lines of Keras compared to about 10 000
lines of Cþþ. Implementation in Keras also provides a numerical
advantage by permitting the use of backpropagation and stochastic
gradient descent for optimization without the need to hand code

partial derivatives. As reported above, the use of SGD provides an
algorithmic speedup of about 100. Although some issues connected
to the wall-clock speedup of the Keras implementation remain, these
results suggest that models of this type could be scaled up to much
larger datasets. A possible limitation of such generalization is the ex-
tensive prior knowledge of details of Drosophila transcription that
were used in this study.

There are ample reasons for believing that this lack of prior
knowledge can compensated for by increased quantity and quality
of computation. In the absence of prior knowledge of the functional
roles of TFs, a model very similar to the one we reimplemented here
applied to erythropoiesis in mouse (Bertolino et al., 2016) consid-
ered all possible combination of TF functional roles and selected the
combination which minimized the loss function. The resulting
model, while computationally expensive, proved quite predictive
(Repele et al., 2019). This shows that extensive prior knowledge is
not required.

Until recently, a more serious limitation was the absence of data-
sets that contained not only information about the sequence but also
the concentration of TFs and levels of reporter expression. Such
datasets, on a genomic scale, have begun to be available for flies and
mammals, including humans (Arnold et al., 2013; Liu et al., 2017;
Patwardhan et al., 2009; Smith et al., 2013; Ulirsch et al., 2016).
These genomics datasets are much larger than that used in the mouse
study (Bertolino et al., 2016). However, the factor of 100 algorith-
mic speedups, if converted to wall-clock speedup, provides a way
forward. The introduction of reinforcement learning techniques may
provide further computational efficiency in determining the func-
tional roles of TFs.

With respect to Deep Learning, our model constitutes an ex-
ample of a fully interpretable DNN that is not merely biologically
plausible but biologically validated (Kim et al., 2013). It is our hope
that this example will provide insights into the interpretabilities of
DNNs in general, a problem that has received wide attention in the
community (Boger and Guterman, 1997; Castelvecchi, 2016;
Garson, 1991; Li et al., 2015; Maaten and Hinton, 2008; Zeiler and
Fergus, 2014).
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