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Abstract

Advances in single-cell RNA sequencing (scRNA-seq) have led to successes in discovering

novel cell types and understanding cellular heterogeneity among complex cell populations

through cluster analysis. However, cluster analysis is not able to reveal continuous spec-

trum of states and underlying gene expression programs (GEPs) shared across cell types.

We introduce scAAnet, an autoencoder for single-cell non-linear archetypal analysis, to

identify GEPs and infer the relative activity of each GEP across cells. We use a count distri-

bution-based loss term to account for the sparsity and overdispersion of the raw count data

and add an archetypal constraint to the loss function of scAAnet. We first show that scAAnet

outperforms existing methods for archetypal analysis across different metrics through simu-

lations. We then demonstrate the ability of scAAnet to extract biologically meaningful GEPs

using publicly available scRNA-seq datasets including a pancreatic islet dataset, a lung idio-

pathic pulmonary fibrosis dataset and a prefrontal cortex dataset.

Author summary

Single-cell RNA sequencing (scRNA-seq) techniques enable the profiling of gene expres-

sion at the single-cell level, and thus make it possible to uncover the cellular heterogeneity

in a complex cell population which is composed of multiple cell types. Due to the com-

plexity of biological system, different cell types may share underlying gene expression pro-

grams (GEPs) at different levels. However, such shared patterns are difficult to study by

traditional cluster analysis. Based on the assumption that the expression profile of each

cell results from a non-linear combination of multiple GEPs, we develop scAAnet, a deep

learning model for non-linear archetypal decomposition of scRNA-seq data. We demon-

strate that scAAnet is able to both achieve better decomposition performance in simulated

data and identify biologically meaningful GEPs that are either cell-type-specific or dis-

ease-enriched in three real scRNA-seq datasets. To help interpret results from scAAnet,

we also provide downstream analysis tools for the identification of program-specific

marker genes. We expect scAAnet can be applied to explore GEPs shared across cells

when scRNA-seq is used to study a complex disease or biological system.
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Introduction

Single-cell RNA sequencing (scRNA-seq) has enabled the profiling of RNA expression in tens

of thousands of individual cells and is now regarded as the gold standard for defining cell states

in a mixed cell population [1]. The identification of cell states is usually realized by cluster analy-

sis, where cells from a given scRNA-seq dataset are grouped into clusters based on the cell-cell

similarity in expression profiles. Many downstream analyses including differential gene expres-

sion, gene co-expression network, and pathway enrichment can be performed based on these

identified cell clusters. Cluster analysis only assigns each cell to a specific cluster and implicitly

assumes that cells from the same cluster are homogeneous and their expression profiles are ran-

domly distributed around a mean expression level. However, recent studies [2,3] have suggested

that some cell populations are better described as a continuous spectrum of states rather than

discreate cell clusters, but cluster analysis cannot capture continuous changes of cell states

among cell populations and possible sharing of GEPs between different cell clusters.

Archetypal analysis [4], a type of unsupervised learning method (mathematical details

about archetypal analysis can be found in S1 Text), can be utilized to study the expression pro-

file as a mixture of GEPs and to properly identify those GEPs. Unlike cluster analysis which

groups observations into distinct clusters, archetypal analysis finds some extremal points

(archetypes) in the multidimensional data. By performing archetypal analysis, a given dataset

is assumed to be a superposition of various populations or mechanisms and each observation

is represented as a convex combination of archetypes. In the context of scRNA-seq, this is

equivalent to decomposing each cell’s expression profile into a convex combination of GEPs.

Decomposition through archetypal analysis can help us understand the organization of cells,

uncover heterogeneity, and study the functional identities within cell populations. All the

downstream analyses can be performed based on GEPs similar to those performed on distinct

cell clusters. For example, we can identify top genes with high expression levels in each GEP or

differentially expressed genes (DEGs) among GEPs. Furthermore, if we have pre-labeled clini-

cally meaningful cell types or disease groups, we can study how the relative activity of GEPs

differs among those biological states and identify interesting GEPs relevant to a specific cell

type or disease.

The traditional archetypal analysis is linear and can be solved by an alternating constrained

least squares algorithm [4]. Since archetypes are ‘pure’ types in the observed data, their values

should be non-negative in the context of scRNA-seq data because the expression levels are

non-negative. Linear archetypal analysis decomposes an observed expression profile matrix

into the multiplication of two low-rank and non-negative matrices. One matrix is a GEP

matrix, representing the bases of a low-dimensional space. The other matrix is a usage matrix,

storing the linear coefficients of the bases and representing how much each GEP is used across

cells. The main limitation of this procedure results from the assumption that signals can be lin-

early reconstructed. However, genes work coordinately with each other in a complex way and

an observed expression profile is more likely generated non-linearly from the combination of

GEPs. Therefore, linear archetypal analysis may not uncover the underlying GEPs and reveal

the heterogeneity of the usage of those GEPs within cell populations.

Non-linear archetypal analysis methods have been proposed based on kernelization, such

as kernel principal convex hull analysis [5]. However, there is no guarantee that kernel-based
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transformation makes data well-approximated by a simplex. A relatively new framework for

non-linear archetypal analysis borrows ideas from the field of deep learning. Theoretically,

neural networks can closely approximate any linear or non-linear functions [6,7] which makes

deep learning-based approaches advantageous over kernelization-based methods. Specifically,

we consider using an autoencoder [8], an artificial neural network for unsupervised learning,

to perform non-linear archetypal analysis on scRNA-seq data. On the one hand, autoencoders

have been utilized to perform non-linear archetypal analysis on images in computer science,

such as AAnet [9] and DeepAA [10]. On the other hand, autoencoder-based models including

scVI [11] and DCA [12] have been applied to process scRNA-seq data and have gained success

in tasks including batch effect removal, denoising, dimensionality reduction, and differential

expression analysis. However, the existing methods either are not designed specifically for ana-

lyzing scRNA-seq data or do not constrain the distance between archetypes and observed data

in the latent space, which is one of the assumptions of archetypal analysis.

To take into consideration both the non-linearity and the count structure in scRNA-seq

data, we design a new autoencoder-based method to perform non-linear archetypal analysis

called scAAnet. Moreover, we provide a regression-based method to perform DEG test among

identified GEPs using results from scAAnet. We will introduce the structure of scAAnet and

evaluate its performance against competing methods using simulated datasets. We will also

illustrate the ability of scAAnet to identify and interpret GEPs in real scRNA-seq data by

applying it to a pancreatic islet dataset [13], a lung idiopathic pulmonary fibrosis (IPF) dataset

[14], and a prefrontal cortex dataset composed of patients with varying degree of Alzheimer’s

disease (AD) pathology [15].

Results

Overview of scAAnet

Autoencoders can be used for non-linear decomposition of a dataset. Here, we introduce how

scAAnet is designed based on an autoencoder to perform non-linear archetypal analysis of

count scRNA-seq data (Fig 1). The structure of scAAnet is mainly composed of two parts, an

encoder part and a decoder part. The role of the encoder part is to perform a non-linear

decomposition of the data by mapping data from a high-dimensional space to a much lower-

dimensional space (latent space). The role of the decoder part is to non-linearly reconstruct

the data in the original feature space.

The output of the encoder side, matrix A, is a latent representation of the data and each row

represents a cell usage vector. Therefore, matrix A should be non-negative with row sum being

1. This constraint can be easily achieved by applying Softmax transformation on the output of

the encoder. The other challenge is to make inferred archetypes tight to the data in the latent

space. We solve this by setting the positions of archetypes (Zfix) in the latent space and penalize

the distance between the preset archetypes and inferred archetypes in the latent space. A simi-

lar idea was used in DeepAA [10]. Basically, archetypes are set so that the centroid of the sim-

plex formed by these archetypes is the origin in the latent space and the distances between any

two adjacent archetypes are the same. Moreover, we make the encoder not only output the

coefficient matrix A but also another coefficient matrix BT and we add an archetypal loss to

make sure the archetypes are as close to the convex hull of data as possible in the latent space

(Methods and S1 Text section 1).

Usually, mean squared error (MSE) is used as the reconstruction loss for data decomposi-

tion methods like archetypal analysis and the underlying assumption is that data values are

normally distributed. However, this is not the case for scRNA-seq data which are count data

with a large proportion of zeros. To account for the count structure and overdispersion of
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scRNA-seq, we use a zero-inflated negative binomial (ZINB) distribution to model the

observed expression data so that the corresponding reconstruction error is given based on the

negative log-likelihood (Methods). What is shown in Fig 1 is the case for ZINB distributions

which have three parameter sets: scaled mean μ, dropout probability π, and dispersion θ. Apart

from ZINB, we also provide users with three other distribution choices including Poisson,

zero-inflated Poisson (ZIP), and negative binomial (NB). The parameters for these four distri-

butions are shown in Table 1.

The total loss of scAAnet is composed of both the archetypal loss and the reconstruction

loss and one can change the relative weight of the two losses. Through simulation studies we

found that the performance of scAAnet was robust to the change of the weight around 1, so we

set the relative weight of the archetypal loss as 1 by default (see S1 Text section 2 for more

discussion).

Fig 1. Structure of scAAnet for non-linear archetypal analysis with a ZINB reconstruction loss. NLL: Negative log-likelihood.

https://doi.org/10.1371/journal.pcbi.1010025.g001

Table 1. Parameters for different distributions.

Distribution Parameters

Poisson μ
ZIP μ,π
NB μ,θ
ZINB μ,θ,π

https://doi.org/10.1371/journal.pcbi.1010025.t001
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There are two matrices we are interested in when applying scAAnet to scRNA-seq data.

The first matrix is a usage matrix which contains the coefficients of the archetypal decomposi-

tion of all cells. This matrix is the Amatrix generated by the encoder. The second one is a GEP

(archetype) matrix with each row corresponding to a GEP in the feature space. Values in a

GEP vector represent the relative gene expression levels in that GEP. This matrix can be

obtained by feeding decoder 1 with IKZfix where IK is a K-dimensional identity matrix.

Simulation study

We simulated synthetic scRNA-seq data under the framework of Splatter [16] using four

archetypes, and ran scAAnet and four competing methods including non-negative matrix fac-

torization (NMF) [17], scVI [11], LDVAE [18] and AAnet [9] to infer both GEPs and cell

usage vectors. Here, NMF was used to perform linear archetypal analysis. LDVAE is a linearly

decoded version of scVI. Details for competing methods are provided in the Methods. We

implemented scAAnet with all the four choices of distribution-based reconstruction loss

terms. We used one hidden layer with 128 neurons for each encoder and decoder. The batch

size was 64 and 200 epochs were run with early stopping if the training did not improve for

100 epochs. We used K = 4 to train scAAnet on simulated data. Note that in real data, it would

be impossible for us to know the true number of archetypes and we propose to select K based

on the stability of both inferred usage and GEP matrices (Methods). As shown in S1 Fig, we

were able to select K = 4 for simulated data after considering model stability in general. We

also explored the robustness of scAAnet to misspecified K in S1 Text section 3. We used MSE

to quantify the accuracy of cell usage inference and reconstruction errors, where reconstruc-

tion errors were calculated between the inferred scaled mean and the true scaled mean expres-

sion levels. The accuracy of GEP inference was measured by the Pearson correlation between

inferred GEP vectors and the truth. Benchmarking results from datasets that were simulated

under NB and ZINB distributions are shown in Figs 2 and S1, where λ is a parameter used in

the simulation process to introduce dropout (Methods). The accuracy of inferred cell usages

was higher for scAAnet with count distribution-based error terms, especially when ZINB dis-

tributions were used. The worst performance was observed for scAAnet with MSE loss which

suggests that MSE is not a good choice for measuring the reconstruction error of count

scRNA-seq data. Figures in the second column further show that scAAnet achieves the best

performance on the inference of GEPs regardless of distribution used to calculate the error

term in the loss function. In S26A Fig, we also observed close resemblance between inferred

GEP and true GEP by plotting heatmaps of normalized gene scores using the top 20 DEGs in

each GEP. Moreover, we observed better performance of scAAnet relative to the other meth-

ods consistently across different signal-to-noise ratio levels. Furthermore, almost all methods

had a very low reconstruction MSE with the exception of LDVAE, which had the largest recon-

struction errors (last column in Fig 2 and S1 Fig). When the dropout proportion became

higher in the datasets that followed ZINB distributions, similar trend was consistently

observed (S2 Fig).

To show that the existing models for non-linear archetypal analysis, including scVI,

LDVAE and AAnet, do not guarantee that the inferred archetypes are tight to the observed

data points, we visualized archetypal space of each method including scAAnet by a fast-inter-

polation-based multidimensional scaling (MDS) (Figs 3 and S3). Briefly, MDS is performed on

archetypes in the original space and then the coordinates of each data point are derived from

linear interpolation among coordinates of the archetypes in a low-dimensional MDS space

using the coefficients of archetypes learned by each method. Among the four models, the

inferred archetypes from scAAnet were the tightest to the data points in the archetypal space,
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where the four archetypes were tightly located at the corners of the data points. However, for

the other three models, there was much space between archetypes and data points, especially

for AAnet. This indicates that these models do not satisfy the assumption of archetypal analysis

that archetypes are extrema in the data space and should resemble the observed data points.

Moreover, we can see that for scVI, although the four inferred archetypes were not very far

from the data, the inferred usage of GEP 2 and GEP 4 (as shown by the color of true cell usage)

did not correspond to any of the four underlying GEPs.

These figures help explain why scVI, LDVAE, and AAnet had relatively good reconstruc-

tion but poor decomposition performance. A common goal of these three models is to find a

convex hull of a dataset in a transformed low-dimensional space, but there could be multiple

convex hulls as long as the data points are included inside the convex hull. Although scVI,

LDVAE, and AAnet were designed to find such a convex hull, none of them guarantees that

the found convex hull is the closest one to the data. In other words, a good convex hull should

be formed by archetypes located near corners of a dataset. Our proposed scAAnet model real-

izes this by using the archetypal constraint to penalize the distance between archetypes and

data points in the latent space.

After getting the decomposition results from scAAnet, an interesting question to ask is to

identify GEP-specific marker genes which are upregulated in a GEP compared to others. Since

Fig 2. Performance of scAAnet and other methods on simulated scRNA-seq datasets. (a) Results from datasets that were simulated under

NB distributions. Figures from left to right are MSE between inferred cell usages and true usages of the 4 GEPs, Pearson correlation between

inferred GEPs and true GEPs, and MSE between reconstructed scaled means and true means. (b) Similar results from datasets that were

simulated under the ZINB distribution (λ = 0.3). Error bars around the means were drawn with 95% confidence interval. D.E.: differential

expression.

https://doi.org/10.1371/journal.pcbi.1010025.g002
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archetypal analysis is unlike cluster analysis where cells are assigned to unique cell clusters, we

cannot do two-sample-based tests (e.g., two-sample t test and Wilcoxon rank-sum test) as we

do for identifying DEGs among cell clusters. Although we can naively assign each cell to the

GEP on which it has the largest usage, it may cause loss of information as the expression profile

of each cell can be a mixture of multiple GEPs. Thus, we designed a DEG test accompanying

archetypal analysis results from scAAnet based on marginal negative binomial regressions

(Methods). Briefly, we use cell usage for each GEP as a continuous variable in the regression

model and make the count expression data for each gene as an outcome variable. To show the

superiority of using the continuous usage variable to infer GEP-specific DEGs over using the

discrete group assignment, we compared the performance of our negative binomial regression

model with different predictors using simulated scRNA-seq data.

The median of the area under the curve (AUC) values was consistently higher when we

used usage instead of discrete group assignment over different signal-to-noise ratio levels and

different distributions (Fig 4). As expected, both methods achieved higher AUC values as the

Fig 3. MDS interpolation visualization of archetypal space. (a) MDS visualization of archetypal space recovered from LDVAE. (b)

MDS visualization of archetypal space recovered from scVI. (c) MDS visualization of archetypal space recovered from AAnet. (d) MDS

visualization of archetypal space recovered from scAAnet using ZINB loss. Red dots are the locations of the inferred archetypes. Figures

in each column are colored by the true cell usage of the corresponding archetype (GEP). Similar results of scAAnet using other

distribution-based loss terms can be found in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1010025.g003
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signal-to-noise ratio increased because it is easier to identify DEGs when the true mean differ-

ential expression fold change was larger. Since adjusted statistical significance level of 0.05 is

commonly used as a cutoff to select significant DEGs, we specifically calculated true positive

rates (TPRs) and false positive rates (FPRs) for both methods using this cutoff (S4 Fig). Using

continuous usage variable resulted in both higher true positive rates and higher false positive

rates. This suggests that our model achieved higher sensitivity but relatively lower specificity

and our model is less conservative compared to the model using group assignment.

We explored the potential of scAAnet on data simulated purely from one GEP in S1 Text

section 4 and on developmental data simulated under linear and bifurcating trajectories in S1

Text section 5.

Application of scAAnet to a pancreatic islet dataset

Although scAAnet was designed to identify GEPs in heterogenous cell populations without

categorically delimited cell state boundaries, we still anticipate that scAAnet is able to capture

such discrete cell population structures. We applied scAAnet to a pancreatic islet dataset [13]

in which 10 distinct cell clusters were well-defined (Fig 5A). The number of archetypes and the

choice of distribution used for computing the reconstruction error were determined by model

stability (Methods and S5 Fig). We used outputs from scAAnet with K = 10 and ZINB-based

error term as the results of the pancreatic islet dataset. As shown in the two-dimensional MDS

plots based on results from scAAnet (S6 Fig), the inferred archetypes were tight to the data in

the archetypal space. Since scAAnet belongs to a broader category of decomposition methods,

instead of conducting principal component analysis (PCA) and using top PCs to perform Uni-

form Manifold Approximation and Projection (UMAP), we can use the decomposed usage

matrix as a low-dimensional representation of the observed expression profile. The UMAP

generated from using the usage matrix (Fig 5A middle) preserved the known cell clusters. Fur-

thermore, we can see similar structure of cell clusters in the UMAP generated from the recon-

structed expression profile (Fig 5A right). We also applied NMF to this dataset using K = 10

for comparison. However, results were not satisfactory (see S1 Text section 6 for more discus-

sion). Based on inferred cell usage, most of the 10 GEPs had one-to-one correspondence with

annotated cell clusters (Fig 5B–5D). For epsilon cells, the rarest cell type (13 cells) in this data-

set, there did not exist any inferred GEPs that uniquely corresponded to them. However, sig-

nals from both GEP 3 and GEP 5 were detected in epsilon cells (Fig 5D), indicating the

Fig 4. Comparisons of DEG identifications between using continuous usages and discrete group assignment. (a) ROC AUC results for

datasets simulated under NB distributions. (b) Results for datasets simulated under ZINB distributions with λ = 0.3. (c) Results for datasets

simulated under ZINB distributions with λ = 0.1. (d) Results for datasets simulated under ZINB distributions with λ = 0.0. The values of ROC

AUC were calculated across different signal-to-noise ratio levels. Each box and whisker plot was plotted based on ten simulated datasets.

Central lines represent medians, boxes represent the interquartile range (IQR), and the upper/lower whisker represents the largest/smallest

value no further than 1.5 × IQR. ROC: receiver operating characteristic; AUC: area under curve.

https://doi.org/10.1371/journal.pcbi.1010025.g004
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similarity between epsilon cells and gamma cells as well as delta cells, respectively. Note that

these cell types are all endocrine cell types in pancreas.

As the correspondence between GEPs and cell clusters was established based on cell usage,

we further looked into the inferred GEP matrix to see if known marker genes had higher gene

scores in the corresponding GEP. Marker genes were selected based on published papers and

were validated in this dataset (Fig 5F). For example, GCG, INS, PPY, and SST are endocrine

markers that are highly expressed in alpha, beta, gamma, and delta cells, respectively [19,20].

KRT19 and CPA1 are exocrine markers that are expressed in ductal and acinar cells, respec-

tively [21]. While PDGFRB is a marker of stellate cells [22] and VWF a marker of endothelial

cells [23]. The normalized gene score of each selected marker gene was high in the GEP that

had correspondence with the cell type that it was linked to (Fig 5E), confirming the consistency

between annotated cell clusters and inferred GEPs. We also identified top genes for each GEP

by fitting a Gamma distribution to the normalized gene scores (Methods). The top genes for

Fig 5. scAAnet identified archetypes with correspondence to known cell types in the pancreatic islet dataset. (a) The UMAP visualization

using the top 35 PCs of the observed scRNA-seq data (left), using the inferred cell usage matrix from the encoder (middle), and using the

reconstructed expression profile from the output layer of scAAnet (right). UMAPs are colored by 10 known cell clusters. The average Silhouette

scores for the three UMAPs are 0.604, 0.398 and 0.613, respectively. Black dots are locations of cells that have the largest usage of the

corresponding GEP (marked in Arabic numerals). (b) UMAPs from the observed data colored by inferred cell usage for each GEP. (c) Heatmap

showing the usage of all GEPs (rows) in all cells (columns). Cells are ordered by hierarchical clustering. (d) Heatmap showing the percentage of

cells with usage> 25% of each GEP (rows) in each cell type (columns). Colors in c and d are coded in the same way as those in a. (e) Normalized

gene scores (Methods) of known markers (columns) in each GEP (rows). (f) Mean z-scores of known markers (columns) in each cell cluster

(rows).

https://doi.org/10.1371/journal.pcbi.1010025.g005
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each GEP are listed in S1 Table and the prementioned marker genes all showed up in the top

gene list of the corresponding cell types.

Among all the cell types, the population of beta cells was the only one that was mapped

onto more than one GEP, including GEP 2 and GEP 7 (Fig 5B–5D). To uncover the biological

characteristics of the two GEPs, we performed DEG tests on beta cells for GEP 2 and GEP 7

separately. We identified 26 and 84 significantly upregulated genes specific to GEP 2 (S2

Table) and GEP 7 (S3 Table), respectively (Bonferroni adjusted p-value < 0.05). The top 20

upregulated DEGs (normalized gene scores in S26B Fig) with the smallest adjusted p-values

are plotted in Fig 6B and 6D in which cells are ordered by the inferred cell usage. The expres-

sion pattern of those identified DEGs covaried with the inferred cell usage. For GEP 2, we

found that several genes among the top 20 upregulated DEGs are functional beta genes (e.g.,

IAPP, CHGA, MAFA, and ABCC8). For GEP 7, some identified top genes are related to endo-

plasmic reticulum (ER) stress, including HERPUD1, HSPA5, DDIT3, and PPP1R15A [24].

Moreover, we performed gene set enrichment analysis on all upregulated DEGs of GEP 2

and GEP 7 separately. Enriched Gene Ontology (GO) terms for GEP 2 are related to functions

of beta cells (Fig 6A and S4 Table), including peptide hormone secretion and insulin secretion.

This result is consistent with the finding that many functional beta genes were identified in the

top upregulated genes of GEP 2. GEP 7 is most significantly enriched for gene sets related to

stress response (Fig 6C and S5 Table), among which the top three are response to ER stress,

cellular response to topologically incorrect protein, and stress response to metal ion. We also

conducted enrichment analysis using the Reactome database (S7 Fig, S6 and S7 Tables). The

top three terms enriched for GEP 2 are gluconeogenesis, glucose metabolism, and regulation

of gene expression in beta cells. For GEP 7, terms similar to those identified in the GO enrich-

ment results showed up in the top terms of Reactome results, including cellular response to

external stimuli and Unfolded Protein Response. Results from Reactome further confirmed

the biological features of GEP 2 and GEP 7.

Fig 6. Enriched GO terms and top DEGs of GEP 2 and GEP 7 in the pancreatic islet dataset. (a) The top 10 enriched GO biological process terms

using 26 significantly upregulated genes of GEP 2. (b) The expression levels of the top 20 DEGs of GEP 2 with the largest z-scores from the DEG test

covaried with the inferred usage of GEP 2. (c) The top 10 enriched GO biological process terms using 84 significantly upregulated genes of GEP 7. (d) The

top 20 DEGs of GEP 7 with the largest z-scores. Cells in b and d were sorted in increasing order based on the inferred cell usage of GEP 2 and GEP 7,

respectively.

https://doi.org/10.1371/journal.pcbi.1010025.g006
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To show the robustness of scAAnet, we further applied it to beta cells only and identified

two GEPs (S8A and S8B Fig). We found high correlation (03C1 ρ = 0.98) between the first

GEP and GEP 2 identified using the entire data, and high correlation (ρ = 0.99) between the

second GEP and GEP 7 identified using the entire data (S8C Fig). We also performed DEG

tests for the two GEPs and identified 35 and 130 upregulated DEGs, respectively (S8 and S9

Tables). The 35 DEGs covered 25 out of 26 DEGs identified in GEP 2 and the 130 DEGs cov-

ered 82 out of 84 DEGs in GEP 7. Moreover, the top enriched GO terms of the two GEPs

showed that one of them is responsible for the function of beta cells as GEP 2, while the other

is involved in stress response as GEP 7 (S8D and S8E Fig).

Application of scAAnet to an IPF Lung Dataset

IPF is a chronic and progressive lung disease characterized with scarring in distal lungs.

Patients with IPF often suffer from shortness of breath and a persistent dry cough [25].

Although the scale of IPF studies is increasing, the cellular and molecular determinants of IPF

remain largely unknown. The accumulation of myofibroblasts in lungs of IPF patients has

been observed, where myofibroblasts are involved in the inflammatory response to injury by

secreting cytokines [26,27]. It is known that myofibroblasts are differentiated from fibroblasts,

which synthesize the extracellular matrix and collagen. Therefore, it is interesting to study this

specific cell population in IPF lungs. We applied our model to a lung scRNA-seq dataset [14]

by specifically selecting myofibroblasts and fibroblasts. The dataset contained cells from 32

IPF, 18 chronic obstructive pulmonary disease (COPD), and 28 control lungs. Again, the num-

ber of archetypes and the choice of distribution used for the loss term were determined by

model stability. Results with K = 3 and NB distributions were the most stable and achieved rel-

atively low reconstruction error (S9 Fig), so we will present results obtained under this setting.

Fibroblasts and myofibroblasts are next to each without any gaps in the UMAP (Fig 7A and

7B) which confirms that these two cell types are biologically related and this cell population is

suitable for archetypal analysis. The three inferred GEPs are located near the corners of the

UMAP and this is consistent with the assumption of archetypal analysis that archetypes are

extrema in a dataset. Among the three GEPs, GEP 1 is a fibroblast-specific GEP, while GEP 2

and 3 are myofibroblast-specific (Fig 7C–7E and S10 Fig). GEP 3 is the one not only cell-type-

specific but also disease-related. Among fibroblasts, the inferred usage of GEP 3 in IPF is sig-

nificantly higher than that in both COPD (adjusted p-value = 1.79×10−15) and Controls

(adjusted p-value = 7.13×10−41) (Fig 7F), while the difference between COPD and Controls is

not significant for GEP 3 (adjusted p-value = 1.00). We identified 21, 47, and 16 top genes for

GEP 1, 2, and 3, respectively (S10 Table), based on the normalized gene scores. Among the 21

top genes in GEP 1, there are some genes known to express highly in fibroblasts, such as

PLA2G2A, MFAP5, and PI16 [14,28]. In the meantime, SCN7A, NEBL and ITGA8 showed up

in the 47 top genes for GEP 2, which are marker genes for myofibroblasts [29]. This suggests

GEP 1 and GEP 2 are programs that are typical in fibroblasts and myofibroblasts, respectively.

In contrast, GEP 3 is more likely to be a program specific to IPF patients in myofibroblasts.

To further investigate the differences among the three GEPs, especially for GEP 3, we con-

ducted DEG tests for the three programs separately using marginal negative binomial regressions.

We focused on the upregulated DEGs whose expression levels were positively related with the

inferred cell usage of each GEP (Figs 8B, 8D, 8F, and S26C). The number of upregulated DEGs in

GEP 1, 2, and 3 were 234, 494, and 287, respectively (S11–S13 Tables). Among the top 20 upregu-

lated DEGs in GEP 3, we observed markers of epithelial mesenchymal transitions such as

COL1A1, COL1A3, FN1, and TNC [30]. Then, we used these upregulated DEGs to conduct gene

set enrichment analysis for each GEP separately. Analysis on GEP 1 returned 137 enriched GO
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biological processes (Fig 8A and S14 Table) among which the top one with the smallest p-value is

external encapsulation structure organization (p-value = 4.16×10−7 and adjusted p-

value = 4.17×10−4). Enriched GO terms for GEP 2 contained many that are related to cell adhe-

sion, migration and tube development (Fig 8B and S15 Table). Part of the enriched terms in GEP

3 are similar to those identified in GEP 2, while we also identified biological processes related to

external encapsulating structure organization, connective tissue development, and collagen fibril

organization (Fig 8E and S16 Table). Apart from using the GO biological process database, we

conducted enrichment analysis using the Reactome database (S17–S19 Tables). Among the top

enriched terms, similar pathways were identified which confirmed our results (S11 Fig).

Application of scAAnet to microglia in a prefrontal cortex dataset

AD is a slowly progressing and incurable neurodegenerative disorder affecting millions of peo-

ple around the world, but little is known about the molecular complexity of AD [31]. Microglia

Fig 7. scAAnet identified 3 GEPs in the lung fibroblast and myofibroblast cells. (a) The UMAP visualization (Methods) of observed

scRNA-seq data colored by cell types. (b) The UMAP visualization of observed scRNA-seq data colored by disease groups. Black dots in

a and b are locations of cells that have the largest usage of the corresponding GEP (marked in Arabic numerals). (c) UMAPs colored by

inferred cell usage for each GEP. (d) Heatmap showing the usage of all GEPs (rows) in all cells (columns). Cells are ordered by

hierarchical clustering. (e) Heatmap showing the percentage of cells with usage> 25% of each GEP (rows) in each cell type and disease

group (columns). Colors of cell types and disease groups in d and e are coded in the same way as colors in a and b. (f) Box and whisker

plot of the usage of each GEP in cells of fibroblast (top) and myofibroblast (bottom), colored by disease groups (colors are coded in the

same way as in b). Central lines represent medians, boxes represent the IQR, and whiskers represent the 5th and 95th quantiles.

https://doi.org/10.1371/journal.pcbi.1010025.g007
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are the intrinsic macrophages of the central nervous system and have been found to be

involved in AD pathogenesis through neuroinflammation [32]. Mathy et al. [15] published the

first single-cell-level study of AD pathology in 2019. The study analyzed 48 prefrontal cortex

brain specimens selected from the Religious Orders Study and Memory and Aging Project

(ROSMAP), among which 24 individuals were defined as AD-pathology and 24 as no-pathol-

ogy based on the levels of β-amyloid (Aβ) and other pathological hallmarks. The paper discov-

ered four subclusters within microglia, among which Mic1 was found to be both AD-

pathology and female enriched (Fig 9A–9C). We applied scAAnet with Poisson distribution-

based reconstruction loss to 1,920 microglial cells in this dataset and identified four GEPs that

had close correspondence with the four subclusters (Fig 9D). From MDS visualization (S12

Fig), we can observe that each microglia subcluster was enriched at the corresponding corner

of the simplex. We performed DEG tests for each GEP (S20–S23 Tables, normalized gene

scores in S26D Fig) and the correspondence was further confirmed by the enrichment analysis

between the DEGs of each GEP across sets of marker genes of the four microglia subclusters

(Fig 9E and S24 Table), which were provided by the original paper. As we can tell, GEP 1, 2, 3,

and 4 are mostly enriched in Mic0, Mic3, Mic2, and Mic1, respectively.

Then, we investigated whether the overall usage of the four GEPs differs between AD-

pathology and no-pathology group (Figs 9f and S13a), and between females and males in each

Fig 8. Enriched GO terms and top DEGs of GEPs in the lung fibroblast and myofibroblast cells. (a) The top 10 enriched GO terms using upregulated

DEGs in GEP 1. (b) The expression levels of the top 20 DEGs of GEP 1 covaried with the inferred usage of GEP 1. (c) The top 10 enriched GO terms using

upregulated DEGs in GEP 2. (d) The expression levels of the top 20 DEGs of GEP 2 covaried with the inferred usage of GEP 2. (e) The op 10 enriched GO

terms using upregulated DEGs in GEP 3. (f) The expression levels of the top 20 DEGs of GEP 3 covaried with the inferred usage of GEP 3. Top 20 genes in

b, d and f were selected based on their z-scores. Cells in b, d and f were sorted by increasing order of the inferred cell usage of GEP 1, GEP 2 and GEP 3,

respectively. Colors of cell types and disease groups in b, d and f are coded in the same way as colors in Fig 7a and 7b, respectively.

https://doi.org/10.1371/journal.pcbi.1010025.g008

PLOS COMPUTATIONAL BIOLOGY Non-linear archetypal analysis of scRNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010025 April 1, 2022 13 / 31

https://doi.org/10.1371/journal.pcbi.1010025.g008
https://doi.org/10.1371/journal.pcbi.1010025


microglia subcluster (Figs 9g and S13b). Among all the subclusters, we observed clear distinc-

tion between the two AD groups or the two sex groups in the percentage of cells that used GEP

2 and GEP 4 in Mic1 (Fig 9F and 9G), the only subcluster in microglia that was AD-pathology-

associated [15]. Since GEP 4 was found to be mostly enriched in Mic1, it was not surprising

that there were more cells using GEP 4 in the AD-pathology or the female group than in the

non-pathology or the male group. Moreover, we found that about 58.8% of Mic1 cells in the

non-pathology group used GEP 2, while the percentage was only 19.6% in the AD-pathology

group. In the meantime, about 58.2% of Mic1 cells from males used GEP 2, while only 25.4%

of Mic1 cells from females used GEP 2.

To study the biological functions underlying each GEP, we conducted gene set enrichment

analysis using significantly upregulated DEGs in each GEP and identified 65, 108, and 86

enriched GO terms for GEP 2, 3, and 4, respectively (S25–S27 Tables). GEP 2 was found to be

involved in biological processes that are related to regulation of phosphorylation and protein

modification (Fig 10A and 10B), while GEP 4 was characterized by protein targeting to mem-

brane, RNA catabolic process, and protein localization to ER (Fig 10C). Furthermore, we

found many ribosomal protein coding genes (RPS6, RPS11, RPS15, RPS19, RPS20, RPS24,

Fig 9. scAAnet identified 4 GEPs using microglia in the prefrontal cortex dataset. (a) UMAP of the observed scRNA-seq data colored by

microglia subclusters. (b) UMAP of the observed scRNA-seq data colored by AD pathology group. (c) UMAP of the observed scRNA-seq data

colored by sex. Microglia subclusters, AD pathology group and sex are provided by the original paper. Black dots in a, b and c are locations of cells

that have the largest usage of the corresponding GEP (marked in Arabic numerals). (d) UMAPs colored by inferred cell usage for each GEP. (e)

Heatmap showing the enrichment of identified DEGs in each GEP across sets of marker genes of the four microglia subclusters. Colors are

negative log of adjusted p-values from hypergeometric tests. P-values were adjusted by Bonferroni over all GEPs and subclusters. (f) Heatmap

showing the percentage of cells with usage> 25% of each GEP (rows) in each subcluster and AD group (columns). (g) Heatmap showing the

percentage of cells with usage> 25% of each GEP (rows) in each subcluster and sex (columns). Colors of subclusters, AD group and sex in f and g

are coded in the same way as colors in a, b and c.

https://doi.org/10.1371/journal.pcbi.1010025.g009
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RPL13, RPL19, RPL23A, RPL28, RPL32, PRL35, PRL37A, and RPLP2) among the top 20 upre-

gulated DEGs in GEP 4 (Fig 10D). This is consistent with the finding that ribosomal dysfunc-

tion might be a crucial event in AD [33]. Besides, APOE was the gene with the third largest z-

score among all the DEGs in GEP 4 and APOE can influence the onset of Aβ deposition

[34,35], which indicates the importance of GEP 4 in AD pathology.

Discussion

Traditional cluster analysis on scRNA-seq data groups mixed cell populations into discrete cell

clusters, which does not consider the continuous changes of cell states and possible sharing of

GEPs among those cell clusters (see S1 Text section 7 for discussion on the level of sharing in

the three real datasets). Therefore, archetypal analysis can be a more effective way to model the

observed expression profile as a convex combination of GEPs, as this allows the utilization of

more than one GEP in a single cell and the sharing of the same GEP among cells [3]. PCA is

another commonly used data decomposition method for dimensionality reduction of scRNA-

seq data [36]. The difference between archetypal analysis and PCA comes from the non-nega-

tivity of the two low-rank matrices and the convexity. The convexity ensures that elements in

the usage/coefficient vector of a cell are non-negative and sum to 1. Those elements can be

interpreted as how much a cell ‘uses’ different GEPs or the relative activity of GEPs in a cell.

Moreover, the inferred archetypes are some ‘pure’ types or extrema of the real data, while prin-

cipal components are not required to resemble ‘pure’ types in the data and their elements can

be either positive or negative. Therefore, archetypal analysis adds to more interpretability than

PCA and suits the mixture property of expression data better than cluster analysis.

Here, we present scAAnet, an autoencoder-based model for non-linear archetypal analysis

designed specifically for scRNA-seq data. There are mainly three advantages of scAAnet over

Fig 10. Enriched GO terms and top DEGs of GEP 2 and GEP 4 in the prefrontal cortex dataset. (a) The top 10 enriched GO biological process terms using

upregulated DEGs in GEP 2. (b) The expression levels of the top 20 DEGs with the largest z-scores covaried with the inferred usage of GEP 2. (c) The top 10

enriched GO biological process terms using upregulated DEGs in GEP 4. (d) The expression levels of the top 20 DEGs of GEP4 covaried with the inferred

usage of GEP 4. Cells in b and d were sorted by increasing order of the inferred cell usage of GEP 2 and GEP 4, respectively.

https://doi.org/10.1371/journal.pcbi.1010025.g010
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the existing methods for archetypal analysis. First, scAAnet is able to perform non-linear

decomposition in the case where data are not generated linearly, such as features in high-

dimensional biological systems. Second, we measure the reconstruction error by modeling

scRNA-seq data using count distributions. We showed that count distribution-based loss led

to more accurate results than MSE using synthetic scRNA-seq data. Third, we added an arche-

typal constraint in the loss function to decrease the distance between archetypes and data

points in the latent space. We compared scAAnet against some existing methods that can per-

form archetypal analysis and showed that it is important to impose the archetypal constraint

to find the tightest GEPs. It is worth mentioning that if we replace all non-linear activation

functions by identity functions and remove the hidden layer in all decoders/encoders, scAAnet

would perform linear archetypal decomposition on count data. This is equivalent to one group

of methods based on topic models [37,38], such as latent semantic indexing [39] and latent

Dirichlet allocation [40].

We applied scAAnet to three real datasets to showcase the ability of scAAnet to identify bio-

logically meaningful GEPs and illustrate how results from scAAnet can be used for down-

stream analysis such as identifying program-specific DEGs and gene set enrichment analysis.

The first dataset is a pancreatic islet dataset [13] where 10 cell types were clearly defined and

categorically delimited in UMAP visualization. We found a good correspondence between

GEPs identified by scAAnet and the 10 well studied cell types. Besides, beta cells were related

to two distinct GEPs, among which one was responsible for beta cell functions and the other

was linked to ER stress response. The results are consistent with findings in published papers

[13,41]. However, in the original paper, the authors detected these two ‘subtypes’ through a

more exploratory type of analyses. More specifically, they performed PCA on beta cells and

found genes positively correlated with the value of PC1 were functional beta genes and genes

negatively correlated with the value of PC1 were involved in the stress response. We think the

benefit of our method is that it provides a more systematic and principled way of identifying

the heterogeneity within a cell type. The second dataset is an IPF lung dataset. We identified

three GEPs using fibroblasts and myofibroblasts and showed that GEP 3 was an IPF-related

archetype with higher signals in myofibroblasts. GEP 3 was not only related to cell migration

and adhesion, but also involved in collagen fibril and extracellular matrix organization, sug-

gesting its potential role in pulmonary fibrosis [42,43]. Note that in the original paper of this

dataset, two pseudotime-based archetypes were identified within myofibroblasts and fibro-

blasts separately, and myofibroblasts ordered towards the end of the trajectory were found to

be enriched in IPF lungs [14]. Therefore, scAAnet was not only able to recover the trajectory-

based archetype that was both IPF and myofibroblast enriched, but also identify one more

archetype in fibroblasts, suggesting the potential of scAAnet on trajectory-based analysis at a

higher resolution. The third dataset is a prefrontal cortex dataset from patients with varying

degree of AD pathology. We identified four GEPs using microglia and illustrated the close

connection between them and the four microglia subclusters presented in the original paper

[15]. Our approach showed that Mic1’s association with AD pathology resulted from both the

higher activity level of GEP 4 and the lower activity level of GEP 2, demonstrating the ability of

scAAnet to reveal cellular heterogeneity at a higher resolution.

There are some limitations and practical issues of scAAnet. First, although scAAnet is able

to deliver similar results to cluster analysis on a cell population which contain categorically

delimited cell types, we still recommend not to apply scAAnet directly to such a scRNA-seq

dataset. This is because scAAnet is a deep learning-based method that involves stochastic

training and many hyperparameters and it will take more resources to run compared with tra-

ditional cluster analysis. Instead, we recommend users to run scAAnet on a subset of cell types

that are likely to involve shared programs (UMAP visualization and pre-clustering combined
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with domain knowledge can be used to determine this) or are of particular interest to research-

ers. Second, the number of archetypes (K) for scAAnet is provided by users and since arche-

typal analysis is unsupervised, there is no universally definitive criteria to choose the value of

K. In practice, we run scAAnet with a set of different Ks and select the one that is reasonably

stable with relatively low reconstruction error (Methods). Then, we can vary K around the

choice and to see if approximately the same core set of GEPs are identified. Third, the current

version of scAAnet is designed for identifying GEPs using single-cell transcriptomic data, but

with the recent advances in single-cell multi-omics sequencing technologies [44–48], more

simultaneously measured multi-omics data from single cells will be available and scAAnet can

be extended to infer GEPs based on multiple modalities jointly. Fourth, although we have

shown the potential of scAAnet on trajectory analysis when the topology is simple (e.g. linear

or bifurcation), scAAnet cannot replace state-of-the-art trajectory inference methods because

most developmental data contain a more complex topology (e.g. multifurcation or circular)

[49]. Encompassing such data within a simplex would result in loss of resolution. Therefore,

we recommend using scAAnet as a complement for trajectory analysis when the topology is

simple, or data are measured within a relatively short developmental period.

Altogether, scAAnet enables the non-linear decomposition of scRNA-seq data and identifi-

cation of expression programs in mixed cell populations, especially when cell types are related

and are not categorically delimited. The latent representation (the usage matrix) of scRNA-seq

data can be used as an effective baseline for various visualization tools such as tSNE [50,51]

and UMAP [52,53]. We also provide accompanying downstream analysis tools such as top

gene identification and DEG tests to help interpret the results from scAAnet. We expect this

method can be used as an alternative to cluster analysis in analyzing scRNA-seq data when

researchers want to explore shared programs among different cell states.

Methods

Design of scAAnet

Architecture and model formulation: scAAnet models count scRNA-seq data with ZINB dis-

tributions, so the outputs include not only the mean μ, but also the dispersion θ and dropout

probability π. We present the architecture of scAAnet in the following specifications for cell i:

ai ¼ fEað�xiÞ

bi ¼ fEbð�xiÞ

ei ¼ aiZ
fix ð1Þ

mi ¼ fDmðeiÞ

yi ¼ fDyðei; liÞ

pi ¼ fDpðei; liÞ

where fEa and fEb represent two non-linear transformations through the encoder side, and

fDm ; fDy , and fDp are decoder neural networks that map the latent representations to the mean,

the dispersion, and the dropout probability parameter, respectively. Encoder Ea and Eb are

designed to share the same set of layers except for the last one. Similarly, decoder Dθ and Dπ
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also share the same set of layers before their respective output layer. The input to scAAnet

includes �xi and li, where li is library size of cell i calculated by the total number of counts and �xi
is the expression profile of cell i normalized by the library size. In the above formulation, ai
and bi are two latent vectors generated from the encoders. Here, ai is a usage vector that is

used as the input for decoders to estimate the three parameters of the ZINB distribution, while

bi is an auxiliary vector that helps constrain the distance between archetypes and data points in

the latent space. Moreover, we set positions for archetypes in the latent space in matrix Zfix and

by multiplying ai with Zfix, we can get locations of data points relative to the preset archetypes

(ei). This information is used for constructing an archetypal constraint in the loss function.

The activation functions chosen for the layers that output mean, dispersion, and dropout

probability are Softmax, softplus, and sigmoid, respectively. Softmax transformation is applied

to the outputs from encoders and a leaky ReLU activation is used for other hidden layers.

To increase flexibility, scAAnet allows users to choose from Poisson, ZI-Poisson, and NB

distributions apart from ZINB distributions. In addition, users are able to choose whether the

dispersion parameter is both cell and gene specific or constant across cells for the same gene.

Construction of loss function: The loss function of scAAnet consists of two parts, a recon-

struction error term and an archetypal constraint. Since we model count scRNA-seq data

using ZINB distributions, the reconstruction error is quantified by the negative log-likelihood

(NLL) of ZINB distributions using the three parameters estimated by scAAnet:

RE ¼
Pn

i¼1
NLLZINBðxi; mili; yi; piÞ ð2Þ

where xi is the unnormalized raw count data. The archetypal constraint of scAAnet is repre-

sented as the Frobenius norm between two matrices:

iAT ¼ kZ
fix � BTEk2

F ð3Þ

In this term, we multiply the auxiliary matrix B (the ith column is bi) with the computed

locations of data points relative to Zfix (E, whose ith row is ei) to get the inferred locations of

archetypes. Then, we indirectly constrain the distance between archetypes and the data in the

latent space by penalizing the distance between preset archetypes and inferred archetypes.

Algorithm: We train scAAnet using the following algorithm:

Algorithm 1 Training of scAAnet

Input: raw count scRNA-seq data xi, i = 1,. . .,n; number of archetypes K; maximum epoch

number E; batch size b; number of warm-upsW.

Output: usage ai, i = 1,. . .,n; archetypes zk, k = 1,. . .,K; reconstructed expression profile x̂i;
i = 1,. . .,n.

Init: initialize network parameters using Xavier normal initializer and Zfix
for m = 1 to E do # iterate through E epochs
for q = 1 to ceiling(n/b) do # iterate through mini-batches
sample a mini-batch of size b
calculate loss Lq ¼ REq þ lATq
if m�W then
update network parameters through backpropagation using the

RMSprop optimizer
else
update network parameters and Zfix through backpropagation using

the RMSprop optimizer
end if
end for
if the early stopping criterion is satisfied then
break
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end for
for i = 1 to n do
ai ¼ fEað�xiÞ
x̂i ¼ fDmðaiZ

fixÞli
end for
for k = 1 to K do
zk ¼ fDmðZ

fix
k Þ

end for
The initial learning rate used by scAAnet is 0.01 and we reduce the learning rate by a factor

of 0.5 if the loss does not improve in a given number of epochs (by default, 10). The minimum

learning rate can be reduced to is 0.001. We also adopt an early stopping approach, in which

training is stopped if the loss does not improve in a given number of epochs (set to 100) and

the model weights are restored from the best epoch.

Although the locations of the archetypes in the latent space are set in the beginning, our

algorithm allows Zfix to be trainable after a warm-up period to make the shape of latent space

more flexible to the input data. We found that scAAnet achieved a good balance between the

accuracy of cell usage inference and the accuracy of GEP inference on simulated data after a

warm-up period of 20 (S14 Fig). After 20, the performance was relatively robust as the number

of warm-up periods increased. Therefore, we set the warm-up period to be 20 as the default

value and adopt this strategy in real data analysis.

Description and implementation details of methods

NMF [17]: NMF was implemented through function non_negative_factorization in the

Python library scikit-learn (version 0.23.2). The expression profile of each cell was normalized

by the total counts before performing NMF. Apart from the maximum iteration number,

which was set as 400, all the other parameters were set as their default values.

AAnet [9]: AAnet (version 0.1.0) was downloaded from https://github.com/

KrishnaswamyLab/AAnet. AAnet is an autoencoder neural network designed for non-linear

archetypal analysis. AAnet forces the sum of loadings of data onto archetypes to be 1 by intro-

ducing a novel regularization on the middle layer, but the reconstruction error used by AAnet

is still MSE. The expression count data need to be normalized before applying the AAnet

model. According to the instruction of AAnet, we normalized data first by total counts and

then applied a square root transformation. Parameters we chose for batch size, hidden layer

size, and number of batches were 64, 128, and 10,000, respectively.

scVI [11]: scVI (version 0.9.0a2) was downloaded from https://github.com/YosefLab/scvi-

tools. scVI is a deep generative model based on a variational autoencoder. The expression pro-

file of each cell is modeled as a sample that follows a ZINB distribution and a latent embedding

vector can be inferred by the encoder of scVI. The loss function of scVI is composed of two

parts. The first part is the expectation of the logarithm of the conditional probability of the

expression profile given the latent vector. The second part is the Kullback–Leibler divergence

between a standard normal distribution and the inferred distribution of each latent vector.

The latent vector is modeled as a normally distributed random vector in the traditional scVI,

but it can be set to follow a logistic normal distribution to make it positive and sum to 1. In

this case, scVI can be utilized to mimic the behavior of archetypal analysis. Since scVI models

scRNA-seq data with a ZINB distribution, we do not need to perform any normalization on

the raw count data. Parameters we used for batch size, hidden layer size, and the maximum

epoch number were 64, 128, and 200, respectively.

LDVAE [18]: LDVAE was developed based on the framework of scVI and it is incorporated

in the same Python package of scVI. Compared to scVI, LDVAE provides interpretability and
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enables identification of gene programs by replacing the non-linear decoder with a linear

reconstruction function, while keeping a non-linear inference model on the encoder side. Sim-

ilar to scVI, we used raw count data without any normalization as the input for LDVAE and

we used the same set of parameters as scVI.

Simulation of synthetic single-cell RNA-seq data

We simulated synthetic scRNA-seq datasets using Splatter’s [16] framework which is based on

negative binomial distributions (equivalent to Gamma-Poisson hierarchical models). We

reimplemented Splatter in Python tailored to our needs for archetypal analysis. For all simu-

lated datasets, 4 GEPs were generated, which formed a 3-simplex with 4 vertices. The usage of

these 4 GEPs for each cell was sampled from the simplex using a Dirichlet distribution. About

50% of the samples were generated from the boundary of the simplex by randomly setting one

of the usages to be zero followed by normalization. The purpose of this construction is to allow

the existence of cells that don’t contain all the GEPs and to show scAAnet is able to handle

such cells (see S1 Text section 8 for more discussion). Each dataset contained 2,000 genes and

3,000 cells. In each GEP, the proportion of DEGs among all the 2,000 genes was set to 10% and

overlap of DEG sets among GEPs was allowed. The differential expression ratios for those

genes were sampled from a log-normal distribution with the scale parameter as 1.0, and the

location parameter as either 1.0, 0.75, or 0.5 to mimic different signal-to-noise ratios. For each

signal-to-noise level, ten datasets were randomly generated. Other Splatter parameters were

the same as those used in Kotliar et al. [3] and they were inferred by Splatter from 8,000 cells of

the organoid dataset in Quadrato et al. [54]. Furthermore, we generated synthetic datasets that

follow ZINB distribution by introducing a parameter λ to control the dropout ratio. For cell i
and gene j, its dropout probability is defined as

pij ¼ expð� lm2

ijÞ ð4Þ

where μij is the mean expression level drawn from a Gamma distribution and such a relation-

ship was used in a previous scRNA-seq study [55]. The values of λ we chose were 0.3, 0.1, and

0.01. The dropout proportions in simulated datasets under different scenarios are shown in

S15 Fig where Inf means NB distributions. With decreasing λ, the dropout proportion goes up.

Single-cell RNA-seq data preprocessing

We used the Python library Scanpy [56] (version 1.7.2) to perform all the preprocessing and

visualization of scRNA-seq data. Details for each dataset are provided below.

The pancreatic islet dataset [13]: This human scRNA-seq dataset contained 1,937 cells and

20,125 genes. We filtered out genes with non-zero expression in fewer than 3 cells and genes

whose mean expression levels were lower than 0.001 across all cells before normalization. This

dataset was prelabeled with a total of 14 cell types. We calculated the number of cells in each

cell cluster and deleted cells whose cluster had fewer than 15 cells. One exception was for epsi-

lon cells. There were only 13 of them but we decided to keep them because this cell type is an

endocrine cell type along with other four cell types (alpha, beta, gamma, delta). The final data-

set analyzed contained 1,908 cells and 14,739 genes. We then selected top 2,000 highly variable

genes (HVGs) based on the pipeline in Scanpy for scAAnet. HVGs were selected by first

modeling the relationship between mean and dispersion of all genes across cells. Genes with

higher dispersion compared to genes with similar mean expression would be regarded as

HVGs [57].

The lung IPF dataset [14]: The entire lung IPF data contained 312,928 cells which were clas-

sified into 38 discrete cell types and 45,947 unique transcripts. Here, we only used cells that
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were annotated as fibroblast or myofibroblast because these two cell types were closely related

so that they were suitable for archetypal analysis. We filtered out genes with non-zero expres-

sion in fewer than 10 cells and mean expression lower than 0.001. We also removed mitochon-

drial genes. The filtered dataset had 6,166 fibroblast and myofibroblast cells and 25,431 features.

We then selected top 1,500 HVGs from this dataset for analysis according to the original paper.

The prefrontal cortex dataset [15]: We downloaded the filtered dataset provided by the

paper, which contained 70,634 cells and 17,926 genes. We selected 1,920 microglial cells based

on the provided cell label and top 2,000 HVGs for further analysis.

UMAP visualization

We used UMAP [52,53] for the visualization of scRNA-seq datasets. Before applying UMAP,

we ran a number of steps to prepare the data. First, cells were normalized by library size to a

target sum of 10,000 counts. Then, they were log-transformed after adding one pseudo count.

In the next step, the total counts per cell (and the percentage of mitochondrial genes for the

lung dataset) were regressed out and the expression of each gene was scaled across cells with

absolute values larger than 10 being clipped. Next, PCA was performed to reduce the

dimensionality and top PCs were used to construct a neighborhood graph with a fixed size of

local neighborhood. Last, the neighborhood graph was used to generate a two-dimensional

UMAP. Details for each dataset are provided below.

The pancreatic islet dataset [13]: The number of top PCs we used for this dataset was 35

with default number of neighbors as 15. Apart from generating UMAP for the original expres-

sion profile using PCA, we also generated UMAPs based on the inferred usage matrix and on

the reconstructed expression profile. For the former one, the neighborhood graph was con-

structed using the usage matrix instead of top PCs and the number of neighbors was 20. For

the latter one, we repeated the previously described pipeline using the reconstructed matrix

and the number of neighbors was also 20.

The lung IPF dataset [14]: After generating the UMAP based on the pipeline, we continued

to conduct the following steps according to the original paper [14] of this dataset. The Louvain

[58] clustering was run on the constructed neighborhood (resolution = 0.45). Then, partition-

based graph abstraction [59] (PAGA) was used to quantify the connectivity among Louvain

clusters and a diffusion map [60,61] was calculated using the top 5 PCs. Next, a new neighbor-

hood graph was constructed with the neighborhood size as 80 using the diffusion map. Finally,

a UMAP was generated on this new graph using PAGA as initial embedding positions

(spread = 0.8).

The prefrontal cortex dataset [15]: We used top 10 PCs as in the original paper with default

number of neighbors as 15 to generate the two-dimensional UMAP coordinates.

Selection of number of archetypes (K)

Note that there is no universally definitive way to select the number of archetypes (K), but we

still use some criteria to help the selection process. Generally speaking, we select K based on

both the reconstruction error and stability of decomposition. For stability, we can assess both

the stability of archetype inference and the stability of cell usage inference. To select K, we ran

scAAnet 30 times using different random seeds for each candidate K. Candidate Ks are chosen

from a reasonably wide range.

The reconstruction error is obtained from the first term in the loss function of scAAnet (Eq

2), which is the negative log-likelihood of a chosen count distribution. To evaluate the stability

of cell usage inference under different numbers of archetypes, we use a similar method

adopted from Brunet et al. [62]. For a cell usage inference result, we can assign each cell to a
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dominant archetype based on its maximum cell usage. Across all 30 repeats, we can calculate

the proportion that each pair of cells are assigned to the same archetype to get a consensus

matrix C. The entries of C range from 0 to 1 and indicate the probability that two cells are

assigned to the same archetype. If a K delivers stable cell usage results over 30 repeats, we

expect entries of C are close to 0 or 1. To assess the stability of archetype inference under dif-

ferent numbers of archetypes, we borrow the idea from Kotliar et al. [3]. Under a given K, we

concatenate 30 archetype matrices inferred using different random states. Then, we perform

K-means clustering on the 30K archetypes and use Euclidean distance silhouette score to

quantify the robustness of archetype inference across 30 repeats.

Identification of top genes for archetypes

The first interesting question to be asked is what the dominating or top genes for each inferred

GEP are. Here, we adopt a similar approach proposed by Gonzalez-Blas et al. [63] to identify

top gene sets. After getting the archetype matrix Z from scAAnet, we can calculate gene scores

across GEPs for each gene using the following equation:

Sgk ¼ Zgk logZgk �
PK

i¼1
logZgi
K

 !

; ð5Þ

where Zgk is the scaled mean of gene g in GEP k and K is the total number of archetypes. Then,

we normalize the gene score to make it fall between 0 and 1:

NSgk ¼
Sgk � minðSjk; 8jÞ

maxðSjk; 8jÞ � minðSjk; 8jÞ
ð6Þ

The next step is to identify the top gene set for each GEP based on normalized gene scores.

A Gamma distribution can be fitted to the gene scores and a cutoff will be set based on a user-

given probability threshold (default is 0.975). Any genes with normalized gene scores larger

than the cutoff are collected into the top gene set for that GEP.

Differentially expressed gene (DEG) test for archetypes

We designed a test for identifying archetype-specific DEGs. The test is based on marginal neg-

ative-binomial (NB) regression where we regress the count data of each gene g onto the usage

vector of each GEP k across all the cells and using the log transformed total counts (library

size) as the offset. The equation of our regression model is:

logðEðxigÞÞ ¼ b0gk þ b1gkUik þ logli; i ¼ 1; . . . ; n:

where xig is the raw count of gene g in cell i, Uik is the inferred cell usage of GEP k in cell i and

li is the library size of cell i.
Multiple comparison adjustment like Bonferroni correction or Benjamini–Hochberg pro-

cedure can be performed after testing all the candidate genes. Two options of NB regression

are provided in our test. The first one is the general NB regression with variance being mþ m2

y
,

where μ is the mean and θ is the dispersion parameter. The value of θ in the Python implemen-

tation of NB regression will be truncated if it’s less than 0.5 or larger than 100. The second

option is naïve NB regression where variance is equal to μ+μ2. The second option is computa-

tionally more efficient without much loss of inference accuracy (S16 Fig).

To assess the performance of our DEG test using the continuous usage variable, we simu-

lated datasets following similar steps as described in the first section in Methods. The only
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difference was that instead of allowing different GEPs to have the same gene as their DEG, one

gene could only appear as a DEG for one GEP. This simulation design was intentionally used

to facilitate the assessment and model comparison.

Gene set enrichment analysis

We performed gene set enrichment analysis for the upregulated DEGs identified in GEPs

using hypergeometric tests. Gene sets including GO biological process [64,65] and Reactome

[66] (version 7.4) were downloaded from the Molecular Signatures Database [67,68]

(MSigDB). We tested for these two databases separately on each GEP and p values were

adjusted by the Benjamini–Hochberg procedure. The cutoff for adjusted p-values was chose at

0.05.

Supporting information

S1 Fig. Selection of K in a simulated dataset. (a) Stability of usage, (b) stability of archetypes

and (c) reconstruction loss across different Ks for four count distributions. (d) Distance matrix

showing archetype stability under K = 2–5. The darker the color the smaller the distance. (e)

Consensus clustering matrices showing the usage stability under K = 2–5. The warmer the

color the large the similarity.

(TIF)

S2 Fig. Performance of scAAnet and other methods on synthetic scRNA-seq datasets in all

settings. (a) Results from datasets that were simulated under NB distributions. (b) Results

under ZINB distributions with λ = 0.3. (c) Results under ZINB distributions with λ = 0.1. (d)

Results under ZINB distributions with λ = 0.01. For each panel, figures from left to right are

MSE between inferred cell usages and true usages of the 4 GEPs, Pearson correlation between

inferred GEPs and true GEPs, and MSE between reconstructed scaled means and true means.

Each box and whisker plot was plotted based on ten simulated datasets. Central lines represent

medians, boxes represent the IQR, and the upper/lower whisker represents the largest/smallest

value no further than 1.5 × IQR. D.E.: differential expression.

(TIF)

S3 Fig. MDS interpolation visualization of archetypal space recovered from scAAnet. (a)

scAAnet with MSE, (b) scAAnet with Poisson, (c) scAAnet with ZIP, and (d) scAAnet with

NB distributions as the reconstruction error term. Red dots are the locations of archetypes.

Figures in each column are colored by the true cell usage of the corresponding archetype

(GEP).

(TIF)

S4 Fig. Comparison of DEG test results between using continuous usages and discreate

group assignment on synthetic scRNA-seq datasets. (a) Datasets were simulated under NB,

(b) ZINB with λ = 0.3, (c) ZINB with λ = 0.1, and (d) ZINB with λ = 0.01. For each panel, fig-

ures from left to right are TPR at q-value < 0.05 and FPR at q-value < 0.05 calculated across

different signal-to-noise ratio levels. Bonferroni correction was used to obtain q-values. Each

box and whisker plot was plotted based on ten simulated datasets. Central lines represent

medians, boxes represent the IQR, and the upper/lower whisker represents the largest/smallest

value no further than 1.5 × IQR. TPR: true positive rate; FPR: false positive rate.

(TIF)

S5 Fig. Selection of K in the pancreatic islet dataset. (a) Stability of usage, (b) stability of

archetypes and (c) reconstruction loss across different Ks for four count distributions. (d)
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Consensus clustering matrices showing the usage stability under K = 8–12. The warmer the

color the large the similarity.

(TIF)

S6 Fig. MDS visualization of archetypal space in the pancreatic islet dataset. (a) MDS visu-

alization colored by cell types. Locations of inferred archetypes are shown as black dots. (b)

MDS visualization colored by the inferred usage of the ten GEPs. Locations of inferred arche-

types are shown as red dots.

(TIF)

S7 Fig. REACTOME enrichment results of the two GEPs related to beta cells in the pancre-

atic islet dataset. (a) Top enriched terms identified using significantly upregulated genes in

GEP 2. (b) Top 10 enriched terms identified using significantly upregulated genes in GEP 7.

(TIF)

S8 Fig. scAAnet is able to identify two GEPs using beta cells only that are similar to GEP 2

and GEP 7 identified in the pancreatic islet dataset. (a) The UMAP visualization of the pan-

creatic islet scRNA-seq dataset, with beta cells highlighted in red. Black dots are locations of

cells that have the largest usage of the 2 GEPs (marked in Arabic numerals). (b) UMAPs col-

ored by inferred cell usage for each GEP. (c) Heatmap showing the Pearson correlations

among GEP 1 and GEP 2 identified using beta cells only and GEP 2 and GEP 7 identified

using the entire dataset. (d) The top 10 enriched GO biological process terms using 35 signifi-

cantly upregulated genes of GEP 1. (e) The top 10 enriched GO biological process terms using

130 significantly upregulated genes of GEP 2.

(TIF)

S9 Fig. Selection of K in the lung fibroblast and myofibroblast cells. (a) Stability of usage,

(b) stability of archetypes and (c) reconstruction loss across different Ks for four count distri-

butions. (d) Consensus clustering matrices showing the usage stability under K = 2–5. The

warmer the color the large the similarity.

(TIF)

S10 Fig. MDS visualization of archetypal space in the lung fibroblast and myofibroblast

cells. (a) MDS visualization colored by cell types. (b) MDS visualization colored by disease

groups. Locations of inferred archetypes in a and b are shown as black dots. (c) MDS visualiza-

tion colored by the inferred usage of the three GEPs. Locations of inferred archetypes are

shown as red dots.

(TIF)

S11 Fig. REACTOME enrichment results of the three GEPs in the lung fibroblast and myo-

fibroblast cells. (a) Top enriched terms significantly upregulated genes in GEP 1, (b) GEP 2

and (c) GEP 3, respectively.

(TIF)

S12 Fig. MDS visualization of archetypal space of microglial cells in the prefrontal cortex

dataset. (a) MDS visualization colored by subclusters. (b) MDS visualization colored by AD

pathology groups. (c) MDS visualization colored by sexes. Locations of inferred archetypes in

a, b and c are shown as black dots. (d) MDS visualization colored by the inferred usage of the

four GEPs. Locations of inferred archetypes are shown as red dots.

(TIF)

S13 Fig. Sex and AD group differences in cell usage of 4 GEPs in each Microglia subcluster.

Box and whisker plot of the usage of each GEP in cells of subcluster Mic0, Mic1, Mic2, and
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Mic3 (from top to bottom), colored by (a) AD pathology group and by (b) sex, respectively.

Central lines represent medians, boxes represent the IQR, and whiskers represent the 5th and

95th quantiles.

(TIF)

S14 Fig. Performance of scAAnet over increasing number of warm-up. (a) Cell usage infer-

ence performance. MSE between inferred usage and true usage was calculated. (b) GEP infer-

ence performance. Pearson correlations between inferred GEPs and true GEPs were

calculated. For both a and b, red dashed lines are vertical lines plotted at the number of warm-

up periods being 20. Ticks along x-axis are numbers of warm-up periods (0, 5, 10, 20, 30, 40,

50, 70, 100, 150, and 200). The total number of epochs was fixed at 200 in this experiment, so if

the number of warm-up period is 200, it means Zfix is not allowed to be trainable.

(TIF)

S15 Fig. Dropout proportions of synthetic scRNA-seq datasets across different values of λ
and mean D.E. log2 fold change of GEP-specific genes. Each box and whisker plot was plot-

ted based on ten simulated datasets. Central lines represent medians, boxes represent the inter-

quartile range (IQR), and the upper/lower whisker represents the largest/smallest value no

further than 1.5 × IQR. D.E.: differential expression.

(TIF)

S16 Fig. Comparison of DEG test results among different regression models on synthetic

scRNA-seq datasets. (a) Datasets were simulated under NB, (b) ZINB with λ = 0.3, (c) ZINB

with λ = 0.1, and (d) ZINB with λ = 0.01. For each panel, figures from left to right are TPR at

q-value < 0.05 and FPR at q-value < 0.05 calculated across different signal-to-noise ratio lev-

els. Bonferroni correction was used to obtain q-values. Each box and whisker plot was plotted

based on ten simulated datasets. Central lines represent medians, boxes represent the IQR, and

the upper/lower whisker represents the largest/smallest value no further than 1.5 × IQR. TPR:

true positive rate; FPR: false positive rate; AUC: area under curve.

(TIF)

S17 Fig. Influence of relative weight of the archetypal loss on scAAnet. (a) Change of the

archetypal loss. (b) Change of the reconstruction loss. (c) Change of the total loss. (d) Perfor-

mance on cell usage inference across different weights. (e) Performance on GEP inference

across different weights. (f) Performance on reconstruction accuracy across different weights.

(TIF)

S18 Fig. Robustness of scAAnet to misspecified K in a simulated dataset. (a) Correlation

heatmap between pairs of archetypes inferred using K = 3 and K = 4 (left), and between

inferred using K = 5 and K = 4 (right). (b) UMAPs colored by the inferred GEP usage. From

top to bottom are results based on K being 3, 4, and 5, respectively. Orange arrows indicate the

progression of GEPs as K increases.

(TIF)

S19 Fig. Robustness of scAAnet to misspecified K across all simulation settings. Each bar

represents a simulation setting where ten repeated experiments were run under different

seeds. The percentage on the y-axis was calculated as the number of experiments where GEPs

inferred under K = 3 constituted a perfect subset of GEPs inferred under K = 4 divided by ten.

A perfect subset was defined as no overlaps among the GEPs inferred under K = 4 that had the

largest correlations with the GEPs inferred under K = 3.

(TIF)
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S20 Fig. Performance of scAAnet and other methods on datasets simulated with no shared

GEPs. (a) Results from datasets that were simulated under NB distributions. (b) Results under

ZINB distributions with λ = 0.3. (c) Results under ZINB distributions with λ = 0.1. (d) Results

under ZINB distributions with λ = 0.01. Other details are the same as S2 Fig.

(TIF)

S21 Fig. scAAnet identified GEPs corresponding to milestones in simulated trajectory-

based data. (a) Linear trajectory with three milestones colored by inferred GEP usage. (b)

Bifurcation trajectory with four milestones colored by inferred GEP usage. Milestones are

marked as black dots and backbone of the trajectory is shown in black curves.

(TIF)

S22 Fig. UMAP visualization using NMF results on the pancreatic islet dataset. From left to

right are UMAPs plotted using the top 35 PCs of the observed scRNA-seq data, using the

inferred cell usage matrix, and using the reconstructed expression matrix. UMAPs are colored

by 10 known cell clusters. Black dots are locations of cells that have the largest usage of the cor-

responding GEP (marked in Arabic numerals).

(TIF)

S23 Fig. UMAP visualization using NMF results on microglial cells in the prefrontal cortex

dataset. (a) UMAP colored by microglia subclusters. Black dots are locations of cells that have

the largest usage of the corresponding GEP (marked in Arabic numerals). (b) UMAPs colored

by the inferred usage of each GEP.

(TIF)

S24 Fig. The level of sharing of GEPs in the real data. Barplots showing the distribution of

the largest inferred usage across cells grouped by annotated clusters in the pancreas islet data-

set (a), the lung fibroblasts and myofibroblasts (b), and the microglial cells (c).

(TIF)

S25 Fig. The level of sparsity of inferred usage in the real data. Barplots showing the distri-

bution of the smallest inferred usage across cells grouped by annotated clusters in the pancreas

islet dataset (a), the lung fibroblasts and myofibroblasts (b), and the microglial cells (c).

(TIF)

S26 Fig. Heatmaps of normalized gene scores of the top 20 DEGs across different GEPs. (a)

In a simulated dataset, where top is from the true GEP matrix and bottom is from the inferred

the GEP matrix (rearranged GEPs to match the order of true GEPs by Pearson correlation);

(b) in the pancreatic islet dataset (where the bottom if a subset of the top figure without IAPP

for a better resolution); (c) in the lung dataset; (d) in the prefrontal cortex dataset.

(TIF)
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