
Faculty Reviews 2021 10:(47)Faculty Opinions

Neurog1, Neurod1, and Atoh1 are essential for spiral ganglia, 
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Abstract

We review the molecular basis of three related basic helix–loop–helix (bHLH) genes (Neurog1, Neurod1, and Atoh1) and 
upstream regulators Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b during the development of spiral ganglia, 
cochlear nuclei, and cochlear hair cells. Neuronal development requires early expression of Neurog1, followed by its downstream 
target Neurod1, which downregulates Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and 
require Neurod1 and Neurog1 expression for various aspects of development. Several experiments show a partial uncoupling of 
Atoh1/Neurod1 (spiral ganglia and cochlea) and Atoh1/Neurog1/Neurod1 (cochlear nuclei). In this review, we integrate the 
cellular and molecular mechanisms that regulate the development of auditory system and provide novel insights into the 
restoration of hearing loss, beyond the limited generation of lost sensory neurons and hair cells. 
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Introduction
Without a doubt, loss of hair cells, in combination with dep-
rivation of sensory neurons and cochlear nuclei, results in  
severe aging-related hearing loss1–5. Various approaches to hear-
ing restoration focus mostly on hair cell regeneration, often 
without a full appreciation of the apparent interaction of hair  
cells with sensory neurons and cochlear nuclei6–8. For instance, 
the loss of hair cells also reduces most, but not all, spiral gan-
glion neurons9–11. Furthermore, early loss of sensory neurons 
massively affects the cochlear nuclei12. Thus, the best way of  
approaching the development/regeneration of hair cells, sensory 
neurons, and cochlear nuclei neurons is to resolve their depend-
ence on each other: how are the development of hair cells,  
sensory neurons, and cochlear nuclei related13–18?

Three basic helix–loop–helix (bHLH) genes were shown to 
be crucial for hair cell, sensory neuron, and cochlear nucleus  
development:

1. Neurog1 plays a crucial role in sensory neuron develop-
ment, affects hair cells19,20, and has a limited impact on cochlear  
nuclei21.

2. Neurod1 plays a role in neuronal differentiation, cochlear  
nucleus development, and hair cell development16,22,23.

3. Atoh1 is essential for cochlear hair cells and cochlear 
nuclei development24–26 and has a limited effect on sensory  
neurons27,28.

Sensory neurons exit the cell cycle from the base to the apex 
between embryonic day 10 (E10) and E12 in mice, followed 
by cochlear hair cells from the apex to base between E12  
and E1429. In parallel, cochlear nuclei exit the cell cycle 
between E10 and E1430. Spiral ganglion neurons project to 
cochlear hair cells (from base to apex; E13–E16; Figure 1) and  
nearly simultaneously send central processes to cochlear nuclei 
(from base to apex; E12– E16)31–36. Neurons and hair cells 
have been suggested to have a clonal relationship because of 
similarities in bHLH gene expression. This relationship may  
play a role in neuronal pathfinding for at least the periphery37; 
however, central targeting is less understood but may involve  
Neurod116.

Spiral ganglion neurons depend upon Neurog119 and  
Neurod122. In contrast to Neurog1 null mice19, which showed 
a complete loss of neurons, Neurod1 null mice23 showed resid-
ual spiral ganglion neurons extending centrally to smaller  
cochlear nuclei16,22. Unlike Neurog1, which is possibly tran-
siently expressed in cochlear nuclei, Neurod1 was found mas-
sively expressed, overlapping with Atoh126, Ptf138,39, and  
Lmx1a/b14,25. Peripherally, it was established that cochlear hair 
cells critically depend on Atoh1 (Math1)24. Furthermore, the 
length of the cochlea depends on Neurog119 and Neurod122,23. 
Neurog1 is upstream of Neurod120, and both are upstream of  
Atoh128,40. Neurog1 and Neurod1 truncate Atoh1 expression19,27. 
Similarly, in the cerebellum, Neurod1 negatively regulates  
Atoh141, suggesting that these genes interact in many areas 

of neuronal development. Also, a loss or reduction of coch-
lear hair cells occurs following the absence of Gata342, Pax243,  
Eya1/Six144, Foxg145,46, and Lmx1a47–49, and many of these 
genes and others also affect the sensory neurons innervating  
them31,42,43,50–53.

We will provide a comprehensive review of the interplay of the 
three bHLH genes (Neurog1, Neurod1, and Atoh1) in the con-
text of spiral ganglia, cochlear nuclei, and cochlear hair cells  
development. In addition, we will examine the role of other  
transcription factors (Eya1/Six1, Sox2, Pax2, Gata3, Foxg1, and  
Lmx1a/b) known to be involved in their development.

Spiral Ganglion Neurons
Crosstalk of Neurog1, Neurod1, and Atoh1 determines 
inner ear sensory neuron fate
Both Neurog1 and Neurod1 play important roles in sensory 
neuron development and differentiation. All inner ear sensory  
neurons were lost in Neurog1 null mice19. Similarly, many sensory 
neurons were lost in Neurod1 null mice; however, not all neu-
rons were lost54. More recent work in Neurod1 null mice showed 
that of those neurons that survived, there was an intermingled  
vestibular and auditory sensory neuron projection to coch-
lear hair cells16,27 and showed a reduced and aberrant central  
projection to cochlear nuclei10,16.

What is unknown is whether there is a direct role of Atoh1 in 
sensory neuron development or whether it is indirect. Hair cells 
depend on neuronal innervation for long-term maintenance55–57.  
Similarly, neurons depend on hair cells and supporting cells 
for their maintenance12. Logically, one would assume that the 
absence of hair cells will eventually cause degeneration of 
many neurons because of a lack of neurotrophic support. Atoh1 
null mouse embryos, which lack hair cells, showed reduced  
Bdnf-lacZ staining and reduced hair cell innervation in the 
basal turn of the cochlea (Figure 2). The apex, which retained  
Bdnf-lacZ staining in undifferentiated cells of these mice, 
showed a denser spacing of spiral ganglion neurons, suggest-
ing that Bdnf expression may not depend on Atoh1 in the apex58.  
Conditional deletion of Atoh1 resulted in residual innerva-
tion correlated to residual hair cell formation11,27, demon-
strating that near-normal residual cochlear hair cells receive  
innervation from a surprisingly large number of neurons27.  
Pou4f3 ( 3c)   Brn3  null  mice,  which  develop  only immature hair cells 

  and have limited expression     of neurotrophins59, show little effect 
on innervation patterns beyond the lack of innervation to outer 
hair cells (OHCs) birth. The absence of inner hair cells (IHCs),  
through the loss of Atoh1 or in Bronx-waltzer mutants, results 
in spiral ganglion projections to OHCs and disorganized cen-
tral projections10,60,61 (Figure 2). Interestingly, replacing an allele 
of Atoh1 with Neurog1 in Atoh1kiNeurog1 mice showed a differ-
ent pattern of spiral ganglia projections to reach out the organ of  
Corti62,63 (Figure 2), consistent with a reduction in the number  
of neurons and hair cells16.

Furthermore, although Atoh1/Neurod1 double null mice have  
no differentiated hair cells, they retain cochlear nuclei and a 
diminished spiral ganglion with aberrant innervation27, suggesting 
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Figure 1. The auditory system revealed in development. Organization of the cochlear hair cells, the spiral ganglia, and the innervation of 
the cochlear nuclei (A). Details show the differential innervation of spiral ganglion neurons to the inner hair cells (IHCs) (yellow, expresses 
both Ntf3 and brain-derived neurotrophic factor (BDNF)) and outer hair cells (OHCs) (red, expresses BDNF). Note that only Ntf3 (green) 
is expressed in cochlear nucleus neurons (B). After the apex-to-base cell cycle exit (E12.5–14.5), a base-to-apex differentiation of hair 
cells by Atoh1 follows (E14.5–18.5) (C). In addition, differences in hair cells and supporting cells and the size and thickness of the organ 
of Corti are depicted (C). DCN, dorsal cochlear nucleus; E, embryonic day; VCN, ventral cochlear nucleus. This figure was adapted with 
permission from Booth KT et al.64 under the terms of the Creative Commons 4.0 Attribution License (CC BY 4.0) (A and C) and from Rubel and  
Fritzsch12 (B).
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Figure 2. Spiral ganglion neurons depend primarily on Neurog1 for the development. BDNF-LacZ of control mice (A) is compared with 
Atoh1f/f; BDNFLacZ (B) and Neurog1f/f; BDNFLacZ (C). There is an absence of some, but not all, hair cells in Atoh1 null mice (A, B) and loss 
of sensory neurons and gain and loss of different hair cells in Neurog1 null mice (C). Atoh1LacZ at embryonic day 14.5 (E14.5) shows near-
complete hair cell development near the apex (D). In E14.5 Lmx1a−/− mutants, there is a delayed expression of Atoh1LacZ (E). By postnatal day 
7 (P7), the hair cells develop, but there is a fusion of the organ of Corti (OC) with the saccule (SM) (F). Detailed comparisons show normal 
inner ear afferents in controls (G, G′), reduced afferents in Atoh1-cre; Atoh1f/f “self-termination” (H), an expansion of afferents to outer hair 
cells in the absence of inner hair cells in Bronx waltzer (bv/bv) (I) and Atoh1-cre; Atoh1f/kiNeurog1 (J) mutants and altered innervation and cell 
type formation in Neurod1 conditional deletions (K) (arrows). AC, anterior canal crista; DR, ductus reuniens; Ggl, ganglion; HC, horizontal 
canal crista; P, postnatal day; PC, posterior canal crista; S, saccule; U, utricle. This figure was adapted with permission from Jahan et al.10 
(A–C), from Matei et al.28 (D–F), and from Copyright Clearance Center: Springer Nature, Cell and Tissue Research, Nichols et al.49, Copyright 
© 2008, Springer-Verlag (G–K).
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an uncoupling of innervation and hair cell differentiation.  
The inactivation of both bHLH transcription factors in double 
Atoh1/Neurod1 null mutants uncouples fiber growth and expan-
sion of remaining neurons27 that could be useful for hair cell 
restoration3,5,65,66. More recent data using RosaCreER; Rainbow  
mice showed clones of spiral ganglion neurons and hair cells in 
the organ of Corti, suggesting that they arose from a typical pro-
genitor cell67. Initially, the meaning of the transient expression  
of apparently cochlear-derived neurons was unclear.

In contrast to the loss of spiral ganglion neurons in mice lack-
ing Neurog119,28, overexpression of Neurog1 in immortalized  
multipotent otic progenitors (a cellular system for spiral gan-
glion neuron differentiation) drives proliferation via increased  
Cdk2. It promotes neuronal differentiation through the expres-
sion of Neurod168. These findings suggest that Neurog1 can 
promote proliferation or neuronal differentiation and possibly  
impact hair cells without affecting cochlear nuclei68,69. It 
appears that a set of data support the transformation of  
astrocytes into neurons in Neurod170 and Neurog271. The induc-
tion of neuronal proliferation and otic progenitor cell trans-
plantation is a potential strategy to replace lost spiral ganglion  
neurons.

Recent work on the characterization of neuronal and hair 
cell progenitors revealed insights into early gene expression  
during neuronal development7,72. Markers for spiral ganglion 
neurons, Isl173,74 and Gata39,75,76, were detected in develop-
ing neurons, although Neurod1 was seen in only the youngest  
neurons7.

In summary, the known deletion of spiral ganglion neurons in 
Neurod1 and Neurog1 null mice27,28 suggests these as potential  
genes for the induction of new neurons with or without induc-
ing hair cells7,68 and is consistent with predictions of various cell 
types that require independent inducers9,10. Understanding how  
the expansion of neuronal projections in the absence of hair 
cells could be helpful to restore lost innervation3,5,72,77,78, in par-
ticular, understanding how to reinnervate the flat epithelia after  
long-term hearing loss, will be beneficial79.

Deletion of Sox2 and other genes affect spiral ganglion 
neuron development
Initially, deletion of Sox2 was thought to eliminate all sensory 
neurons80,81; however, a transient development of vestibular  
neurons was recently shown31. A delayed loss of Sox2 in Isl1-cre; 
Sox2f/f mice showed a transient development of spiral gan-
glion neurons with abnormal innervation to disorganized hair  
cells in the base but no hair cells or sensory neurons in the  
apex73. That the later-forming neurons in the apex never devel-
oped suggests that Sox2 is essential for late neuronal devel-
opment. Any similarities between different Sox2 deletions  
(Lcc, Ysb, Isl1-cre; Foxg1-cre) remain to be investigated. Eya1/
Six1 induces Sox2 expression to promote proneurosensory- 
lineage specification. Ablation of the ATPase-subunit Brg1  
or both Eya1/Six1 results in loss of Sox2 expression and lack of 
neurosensory identity, leading to abnormal apoptosis within  

the otic ectoderm. Brg1 binds to two of three distal 3′ Sox2 
enhancers occupied by Six1, and Brg1 binding to these regions 
depends on Eya1/Six1 activity82. Recent work provides insight  
into SOX2 and NEUROD1 protein expression dynamics dur-
ing neuronal differentiation. Quantification of the fluores-
cence intensity of nuclear proteins in immortalized multipotent 
otic progenitors showed expression dynamics of SOX2 and  
NEUROD1 from a progenitor into differentiated neurons. Dur-
ing neuronal differentiation, SOX2 levels decreased while  
NEUROD1 levels increased69. Evaluation of Neurog1 was excluded 
because of its dual roles in both proliferation and neuronal  
differentiation68. The increase of Neurod1 expression is in line 
with what is known for Neurod1 in collaboration with Sox210,31. 
Understanding the expression dynamics of crucial transcrip-
tion factors helps design replacement strategies for lost sensory  
neurons69.

The deletion of Pax2 resulted in a near absence of spiral  
ganglion neurons43, comparable to the significant loss of spi-
ral ganglion neurons in Isl1-cre; Sox2f/f mice73. Many addi-
tional genes derail the development of the inner ear and its  
innervation9,83–86. For example, disorganized projections to the 
cochlea are shown with Sox10 deletion in Schwann cells87.  
In addition, partial loss of hair cells reorganizes the remain-
ing afferents and efferents75,88,89. These data provide a baseline of 
various deficits that require further examination, including the  
disorganized innervation in conditional deletions of Gata39,32,90. 
Other genes, such as those involved in Wnt signaling, affect  
afferent innervation to OHCs85, but more work is needed to 
fine-tune the different effects. Finally, Lmx1a loss results in a  
delayed upregulation of Atoh1 combined with a transforma-
tion of basal turn hair cells into a mix of cochlear and vestibular 
hair cells10,13. In summary, Sox2 is essential for sensory neuron  
development31 in combination with other downstream neuro-
nal inducers (Neurog1 and Neurod1) known to interact with  
Atoh116,27.

Cochlear Nuclei
Neurod1 and Atoh1 are expressed in the cochlear nuclei
Beyond a transient and limited expression of Neurog1 expres-
sion in vestibular nuclei21,91,92, the other bHLH genes, Atoh1 and  
Neurod1, are expressed in cochlear nuclei18,93,94. Atoh1 is 
expressed in developing cochlear nuclei, and the dorsal cochlear 
nucleus specifically requires Neurod122,23. Atoh1 is expressed  
dorsally in the central nervous system and its deletion dis-
rupted spinal cord, brainstem, and cerebellum development95,96. 
Rhombomere-specific deletion of Atoh1 demonstrates that the 
cochlear nucleus forms from cells in rhombomeres 3–517,97. 
Atoh1 expression is negatively regulated by Neurod1 in the  
cerebellum41,98, the cochlear hair cells and neurons10, and the 
intestine99 but has not yet been shown for the cochlear nucleus. 
An additional bHLH gene, bHLHb597, is also necessary to prop-
erly form the dorsal cochlear nucleus. Both bHLHb5 and another 
gene, Ptf1a, are strongly expressed in the dorsal cochlear  
nucleus39,100; however, details on central projections for losing 
either of those two genes have not yet been provided94,101. Loss 
of Atoh1 or Ptf1a resulted in a loss of excitatory or inhibitory  
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cochlear nuclei neurons, respectively, suggesting that both 
genes are important for regulating cell fate determination38,39.  
Recent molecular work on Atoh1 and Ptf1a lineage contributions 
to cochlear nuclei development show conserved and divergent  
origins across species15,102.

Neurod1 deletion is shown to affect the central targeting of 
inner ear neurons massively. Not only are auditory neuron pro-
jections aberrant, but there is also an overlap of cochlear and  
vestibular projections16. Furthermore, the central projections 
are disorganized to the inferior colliculi16, expanding previous 
work on defects generated with Hoxb2 mutants103. In contrast,  
Atoh1 null mutants, which lack cochlear nuclei, show near- 
normal central projections104, suggesting that neither Atoh1 nor 
the cochlear nuclei themselves have a notable role in afferent  
pathfinding centrally. The conditional deletion of Atoh1 in the 
ear, but retaining Atoh1 expression in cochlear nuclei, shows  
near-normal segregation of central projections27, expanding the 
critical independence of Atoh1 in neuronal pathfinding. Not sur-
prisingly, then, Atoh1/Neurod1 double null mice had little addi-
tional disorganized projection of cochlear afferents beyond  
that of Neurod1 alone27 (Figure 3). Atoh1/Neurod1 forms a 
complex interaction in the cerebellum41,98,105, which is useful 
for Neurod1 to convert astrocytes and Schwann cells into  
neurons70,106,107. Details are needed to determine whether devia-
tions of central projections (Figure 1) would occur in older 
stages after cochlear nuclei are formed30 and dependence of  
cochlear nuclei on neuronal input declines12. Recent data sug-
gest plastic reinnervation of cochlear nuclei108, but it remains  
unclear whether this plasticity is permanent.

These data implicate several different bHLH genes (Atoh1,  
Neurod1, Ptf1a, and bHLHb5) in cochlear nuclei develop-
ment. The interactions of these genes in cochlear nuclei  
development and innervation remain to be fully characterized.

Sox2 and Lmx1a/b are expressed in cochlear nuclei
Sox2 is essential for proneuronal regulation throughout the 
entire brain109,110 and is broadly expressed in cochlear nuclei,  
but its role has not been detailed by selective Sox2 deletion in 
cochlear nuclei. Lmx1a/b double null mutants lack cochlear  
nuclei and choroid plexus and have a hindbrain reminiscent 
of a spinal cord13. In these mice, central projections of spiral  
ganglion neurons are lost, and vestibular fibers project bilaterally 
to the dorsal hindbrain and interdigitate with contralateral ves-
tibular fibers13. The presence of these bilateral projections cor-
related with the expression of other genes, such as Wnt3a and  
Tbr2. The suggested Wnt3a attraction expands on previous data 
showing that loss of the Wnt receptor, Fzd3111, or downstream 
Wnt signaling component, Prickle186, affects central projec-
tions. Recent work suggests that another gene, Npr2, affects 
central projections, showing the gain and loss of afferents to  
different cochlear nuclei32,35.

In summary, the expression of Lmx1a/b for the proper forma-
tion of the hindbrain is essential and the deletion of Lmx1a/b  
causes aberrational projections. In contrast to the detailed 
description of Lmx1a/b loss, there is limited information on  

the role of Sox2 and other genes (Npr2, Prickle1, Fzd3, and  
Wnt3a) on central projections.

Cochlear Hair Cells
Neurog1, Neurod1, and Atoh1 interaction in developing 
hair cells
Without a doubt, the development of all hair cells depends 
upon Atoh1 expression24. Atoh1 expression initiates in the  
cochlea at the upper-middle turn around E13.5 and progresses 
bilaterally toward the base and apex. Atoh1 expression shows 
a delayed upregulation in the apex compared with the base24,58,  
combined with very late apical hair cell differentiation at  
E18.5112,113. Interestingly, inner pillar cells were positive for 
Atoh1, suggesting that Atoh1 expression does not always result 
in a hair cell fate28,114. In contrast to differentiation of hair cells 
starting near the base and progressing toward the apex, hair cells  
exit the cell cycle first in the apex, at E12.5, and progress 
toward the base28,29,115. Furthermore, cell exit progresses radially 
from IHCs to OHCs10,116,117, as was shown initially using green  
fluorescent protein (GFP) labeling118. Loss of Neurog1 results 
in hair cells exiting the cell cycle two days earlier than  
controls28. Furthermore, there is a premature Atoh1 upregulation 
in an atypical apex-to-base progression in hair cells following 
Neurog1 loss19,28. Likewise, in Neurod1 null mice, early upregu-
lation of Atoh1 from apex to base resulted in the formation of  
IHC-like cells in the region of OHCs, suggesting a trans-
formation of OHCs into IHCs because of increased Atoh1  
expression16,23. The cellular processes driving remodeling of 
the prosensory domain during cochlear development indicate 
that combinations of cellular growth contribute to base-to-apex  
cochlear extension, allowing different interpretations of OHC 
progression10,88,116,117,119,120. Despite its prominent role in hair 
cell differentiation, Atoh1 (Figure 4) does not seem to have a  
role in cochlear length determination27. In contrast, Neurog1 
deletion resulted in a 50% reduction in cochlear length, a  
reduction in the size of vestibular epithelia28, and ectopic hair 
cells in the utricle9,121. Likewise, loss of Neurod1 (Figure 4) 
shortened the cochlea by about 50%16,23. Atoh1/Neurod1 double  
knockout added minimally to the cochlear length reduc-
tion in Neurod1 loss alone27. Although this suggests a possible  
interaction of bHLH genes, the reduction in length may be influ-
enced simply by the loss of Shh normally generated by spi-
ral ganglion neurons122, which would be absent or reduced  
in number in Neurog1 or Neurod1 null mice. The reduction 
of the organ of Corti is affected by several deletions of Shh123, 
Gata375, Foxg145,124, and Lmx1a47,49 in addition to Neurog1 and  
Neurod1.

Conditional deletion of Atoh1 using Pax2-cre showed that 
most hair cells were lost during late embryonic development;  
however, some undifferentiated cells express Myo7a in  
postnatal stages and are targeted by neurons. A “self-terminating” 
system (Atoh1-cre; Atoh1f/f), in which a transient expression of  
Atoh1 results in some initial hair cell development, demon-
strated progressive loss of IHCs and most OHCs shortly after  
birth11. However, some Myo7a-positive OHCs remained in 
adults in these mice. This suggests that most hair cells depend 
upon continued Atoh1 expression for at least some time. Various  
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other conditional deletions of Atoh1 established that contin-
ued Atoh1 expression is essential for hair cell survival and  
maturation100,125. Interestingly, generating a transgenic mouse 
in which Neurog1 replaces Atoh1 (Atoh1kiNeurog1/kiNeurog1) showed 

that, although Neurog1 cannot fully rescue the Atoh1 null hair 
cell loss phenotype, it does form additional patches of undiffer-
entiated “hair cells” rather than a flat epithelium63. In addition,  
heterozygote mice expressing one copy of each gene  

Figure 3. Atoh1 is expressed in the cochlear nuclei and the cerebellum for development. Loss of Atoh1 (Atoh1LacZ/LacZ) results in the loss 
of the cerebellum and cochlear nuclei (A, B). Likewise, Neurod1 is expressed in cochlear nuclei and cerebellum (C). It shows later differential 
expression in the dorsal cochlear nucleus (DCN) (low level of Atoh1; (D)) compared with the stronger expression of Neurod1 in the DCN  
(E), suggesting a negative feedback between Atoh1 and Neurod1. The central projection of sensory neurons is nearly identical between 
controls (F) and Atoh1 CKO mutants (G, G′). In contrast, both Neurod1 CKO (H, H′) and Atoh1/Neurod1 CKO mice (I, I′) show scrambled 
central projections. AVCN, anteroventral cochlear nucleus; CB, cerebellum; E, embryonic day; IEE, inner ear efferents; LVN, lateral vestibular 
nucleus; PVCN, posteroventral cochlear nucleus; VCN, ventral cochlear nucleus; vg, vestibular ganglion. This figure was adapted with 
permission from Fritzsch et al.91 under the terms of the Creative Commons 4.0 Attribution License (CC BY 4.0) (A–E), from Copyright Clearance 
Center: Springer Nature, Cell and Tissue Research, Pan et al.41, Copyright © 2009, Springer-Verlag (D,E), and from Copyright Clearance 
Center: Springer Nature, Molecular Biology, Filova et al.27, Copyright © 2020, Springer Nature (F–I′).
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Figure 4. Expressed of Atoh1 is needed for cochlear hair cells for development. Loss of Atoh1 has a limited effect of cochlea extension 
(A, B) compared with the shortened cochlea in Neurog1 (C) and Neurod1 (D) null mice. Detailed images compare control hair cells (E) within 
Bronx waltzer (bv/bv) (F) and “self-terminating” Atoh1f/f (G) mice. They demonstrate near-complete loss of inner hair cells in Atoh1f/kiNeurog1 mice 
(H, H′), demonstrating incomplete development of different sets of hair cells. Expression of Atoh1 in situ hybridization (ISH) depends on the 
normal expression pattern in control end organs (I). Ectopic “hair cells” after Neurod1 deletion are shown with ISH for Atoh1, Fgf8, and Nhlh1 
(I′, J, K). Hair cells within vestibular epithelia (L) as well as ectopic hair cells (L–L″, arrow in L”) are positive for Myo7a. Myo7a labeling 
also shows ectopic hair cells innervated by tubulin-labeled vestibular neurons (VN) (M). AC, anterior canal crista; eHC, ectopic hair cells; 
HC, horizontal canal crista; P, passage; PC, posterior canal crista; S, saccule; U, utricle. Bar indicates 100 µm (A–L′, M) and 10 µm (L″). This 
figure was modified after Fritzsch et al.58 (A,B) and was adapted with permission from Matei et al.28 (C), from Jahan et al.54 under the terms 
of the Creative Commons Attribution License (D, I–M), and from Booth KT et al.64 under the terms of the Creative Commons 4.0 Attribution 
License (CC BY 4.0) (E–H’). 
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(Atoh1 kiNeurog1/+) showed some disorganization of hair cell dis-
tribution (Figure 2 and Figure 4) not observed in Atoh1 het-
erozygotes, suggesting cross-interaction between Atoh1 and  
Neurog1. Using an ingenious system to overexpress Atoh1, in 
which the Atoh1 coding sequence is under the control of a tetra-
cycline response element (TRE), generated viable ectopic “hair 
cells” in early postnatal mice126 in line with an upper induction of  
proliferation127.

Loss of Neurod1 resulted in the formation of Atoh1-positive 
“hair cell”-like cells within intraganglionic vesicles (Figure 4)  
in the vestibular ganglion54, suggesting a potential conversion 
of vestibular sensory neurons into hair cells. The ectopic hair 
cells are forming in addition to the saccule and utricle and are  
positive for several genes—such as Atoh1, Fgf8, and Nhlh1— 
that generally are expressed outside the hair cells (Figure 4). 
This finding indicates the normal suppression of Atoh1 by Neu-
rod1 in these neurons and implies that Neurod1 might suppress  
hair cell fate in sensory neurons16. Similar Neurod1–Atoh1 inter-
actions were reported in the cerebellum41,98 and the intestine99  
and were used to transform astrocytes to neurons106,107. In the 
absence of both Atoh1 and Neurod1 in double null mutants, 
these “ectopic hair cells” are not formed27, suggesting that  
Neurod1 and Atoh1 interact upregulate neurons into ectopic hair 
cells after the loss of Neurod1.

In summary, using progenitor cells for spiral ganglia and hair 
cell replacement seems to be a possible way forward for hear-
ing restoration7,68, in addition to various other approaches6,8,77,128.  
Unfortunately, generation of new hair cells in later stages beyond 
the earliest stages has not yet been achieved127. Understand-
ing how to generate new hair cells at later stages is needed for  
older animals and humans with aging-related hearing loss1,2. 
Fully understanding the various mutations and putting them 
into the context of different cell fates require identifying certain 
steps necessary to initiate specific distributions of sensory hair  
cells10,113,129,130. What remains is understanding the various inter-
actions of Neurog1, Neurod1, and Atoh1 for the complete  
formation of all hair cells.

Sox2 interacts with other genes for hair cell expression
Sox2 is also essential for hair cell formation52, likely through 
the activation of Atoh1 expression109,110,131. Interestingly, two  
independent approaches using delayed deletion of Sox253,73,131 
showed different results. In one, a delayed loss of Sox2 using 
Sox2-cre-ER demonstrated effects in the apex only131. In the 
other study, conditional deletion of Sox2 using Islet1-cre resulted  
in the loss of hair cells in the apex and a delayed loss in the 
base, showing unusual basal turn hair cells/supporting cells  
and inner pillar cells73, suggesting a role for the timing of Sox2 
expression. As expected, the timing of Sox2 expression was 
later demonstrated to be essential for sensory development81,132.  
Furthermore, a complete deletion of Sox2 in the ear using 
Foxg1-cre showed the overall cochlear reduction and no hair 
cell development31. These combined studies provide an essential  

role of Sox2, although the interaction of Sox2 with Atoh1 is  
not fully understood6,8,68,76,77,88,117.

Other genes are also crucial for inner ear and hair cell devel-
opment. For example, Eya1/Six1 is essential for early ear  
development and is needed to form the cochlea44,50,53 and induces 
Sox2 expression, as described earlier82. Another gene, Pax2,  
is necessary for organ-of-Corti formation43 and cooperates with 
Sox2 to activate Atoh1 expression51. Conditional deletion of 
Gata3 using Pax2-cre showed deletion of many hair cells and a 
complete loss of all hair cells with an earlier deletion of Gata3  
using Foxg1-cre42,75. In these latter mice, levels of Atoh1 expres-
sion were significantly reduced, and genes downstream of 
Atoh1 were not detected following this early deletion of Gata3.  
Mice mutant for another gene, Lmx1a, showed a delayed 
expression of Atoh1 followed by transforming some organ-of-
Corti hair cells into differentiated vestibular hair cells2,13,47,133.  
Foxg1 null mice show a reduced cochlear length and a dis-
organized apex of multiple rows of hair cells with disori-
ented polarities45,46,124,134. A somewhat similar phenotype is  
reported for n-Myc null mutants accompanied with apical cell  
fate changes46,57,135–137.

The partial deletion of some, but not other, hair cells is an 
exciting perspective that needs to be explored. Inactivation of  
Fgfr1 in the inner ear by Foxg1-Cre–mediated deletion leads 
to an 85% reduction in the number of auditory hair cells138.  
Likewise, Sox2 omission shows a partial loss of hair cells in 
the Yellow submarine (Ysb) mutation52. Using Pax2-cre to con-
ditionally delete Dicer89 resulted in incomplete hair cell loss  
compared with the total hair cell loss with Foxg1-cre condi-
tional deletion, comparable to the equivalent conditional dele-
tions of Gata375,139. Finally, Bronx-waltzer mice, which are 
mutant for the gene Srrm4 (Figure 4), lose IHCs and vestibular 
hair cells but retain OHCs60,61. OHCs, meanwhile, express Srrm3  
independent of the Srrm4 gene downstream of REST61.

These data show that cochlear hair cells are affected by sin-
gle gene deletions and complex interactions of several genes,  
including compound analysis of partial deletions10, prima-
rily unexplored in detail7,72. While Atoh1 alone is the domi-
nant gene24, interactions with other genes need to be worked  
out44,77,78.

Summary and conclusion
Inner ear sensory neurons, cochlear nuclei, and cochlear hair 
cells all require bHLH genes for their proper development. 
Atoh1 is essential for cochlear hair cell and cochlear nuclei  
development. Neurog1 and Neurod1 are vital for sensory neu-
ron development and differentiation. All three genes play 
crucial roles in a feedback network to regulate specific cell  
fate appropriately and in coordination with other genes. Some 
of these additional genes interact with the bHLH genes in 
these contexts, such as Lmx1a/b, requiring more detailed  
investigation.
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