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Abstract

The binding of p120-catenin and B-catenin to the cytoplasmic domain of E-cadherin establishes epithelial cell-cell
adhesion. Reduction and loss of catenin expression degrades E-cadherin-mediated carcinoma cell-cell adhesion and
causes carcinomas to progress into aggressive states. Since both catenins are differentially regulated and play
distinct roles when they dissociate from E-cadherin, evaluation of their expression, subcellular localization and the
correlation with E-cadherin expression are important subjects. However, the same analyses are not readily
performed on squamous cell carcinomas in which E-cadherin expression determines the disease progression. In the
present study, we examined expression and subcellular localization of p120-catenin and 3-catenin in oral carcinomas
(n = 67) and its implications in the carcinoma progression and E-cadherin expression using immunohitochemistry. At
the invasive front, catenin-membrane-positive carcinoma cells were decreased in the dedifferentiated (p120-catenin,
P < 0.05; B-catenin, P < 0.05) and invasive carcinomas (p120-catenin, P < 0.01; B-catenin, P < 0.05) and with the E-
cadherin staining (p120-catenin, P < 0.01; B-catenin, P < 0.01). Carcinoma cells with B-catenin cytoplasmic and/or
nuclear staining were increased at the invasive front compared to the center of tumors (P < 0.01). Although the p120-
catenin isoform shift from three to one associates with carcinoma progression, it was not observed after TGF-3, EGF
or TNF-a treatments. The total amount of p120-catenin expression was decreased upon co-treatment of TGF-B with
EGF or TNF-a. The above data indicate that catenin membrane staining is a primary determinant for E-cadherin-
mediated cell-cell adhesion and progression of oral carcinomas. Furthermore, it suggests that loss of p120-catenin
expression and cytoplasmic localization of B-catenin fine-tune the carcinoma progression.

Citation: Sasaya K, Sudo H, Maeda G, Kawashiri S, Imai K (2013) Concomitant Loss of p120-Catenin and B-Catenin Membrane Expression and Oral
Carcinoma Progression with E-Cadherin Reduction. PLoS ONE 8(8): e69777. doi:10.1371/journal.pone.0069777

Editor: Aamir Ahmad, Wayne State University School of Medicine, United States of America
Received February 15, 2013; Accepted June 12, 2013; Published August 6, 2013

Copyright: © 2013 Sasaya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by a grant from JSPS KAKENHI 22592103. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.
* E-mail: kimai@tky.ndu.ac.jp

Introduction microenvironments surrounding the carcinoma cells at the
invasive front play an important role in progression [2].
Oral squamous cell carcinoma is a common malignant Epithelial cells develop tight cell-cell adhesions as compared

.neoplasm. of the head and neck and prevalence is predicted t.o to other cell-types. They form distinct tissue layers through the
increase in the next few decades. Regardless of therapeutic formation of tissue boundaries and change tissue shapes
approach, location, or stage of the disease, more than 50% of iy cell rearrangements or the conversion between

patients experience a relapse [1]. Although treatment failure . . . .
! . ) histological cell states and the long-range migration of cells.
can be attributed to multiple factors, understanding molecular o s .
The stratified squamous epithelium that covers the oral cavity

the mechanisms regulating carcinoma progression will aid in . il I ized and f ; l-cell adhesi
developing novel strategies for cancer therapy. At the first step 1S es.pema ywe orgar.uze an or.m strong ceti-cefl a §S|ons
mediated by cadherins. Cadherins are a superfamily of

of progression, carcinoma cells must sequester from their ) )
primary sites and invade into the basement membrane and calcium-dependent  transmembrane  proteins  that  are

underlying tissues. Here, they expose themselves to a more developmentally regulated and evolutionally conserved cell-cell
advanced state of progression as they weaken cell-cell adhesion molecules. Within the cadherin superfamily,
adhesion and invade in the form of small subsets or individual epithelial-type E-cadherin plays a decisive role for development
cells. During the invasion, interaction with the and maintenance of epithelium at the adherence junction [3].
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Figure 1. Expression of p120-catenin and B-catenin in oral carcinoma cells and normal keratinocytes. Membrane binding
fraction and membrane non-binding fraction of oral carcinoma cells (TSU, KOSC2, KOSC3, Ca9.22, HSC2, OSC19, SCCKN) and
normal keratinocytes (HaCaT) were subjected to the immunoblot for p120-catenin (isoform 1-4) and B-catenin. Na/K ATPase and -
actin were probed as the control of membrane binding protein and membrane non-binding protein, respectively.

doi: 10.1371/journal.pone.0069777.g001

The cytoplasmic domain of E-cadherin binds with catenins.
Catenins mediate the interaction of E-cadherin with the
cytoskeleton including actin filaments and microtubules, and
stabilize adherence junctions [4]. p120-catenin binds to the
juxtaposed cell membrane region of the cytoplasmic domain
and regulates microtubule accumulation at the junctions [5].
Exposure of the p120-catenin binding region initiates E-
cadheirn endocytosis and destabilizes the junctions [6,7], while
loss of p120-catenin expression enhances cellular migration
[8]. Multiple p120-catenin isoforms (isoform 1-4) are generated
by alternative usage of the translation start sites. The isoforms
preserve the armadillo-repeats domain, which binds to the
juxtaposed region of the cell membrane, but vary in the length
of the NH,-terminal region; isoform 1 is the longest variant and
isoform 4 is the shortest variants [9].

B-catenin binds to the COOH-terminal of the E-cadherin
cytoplasmic domain through the armadillo-repeats domain and
mediates ligation of actin filaments [10]. The cytoplasmic pool
of B-catenin, free of E-cadherin, is increased by WNT signaling.
B-catenin translocates into the nucleus and regulates the WNT
target gene transcription, resulting in enhancement of
migration, proliferation, invasion and metastasis of carcinoma
cells [11]. This indicates that both catenins primarilly control the
intercellular adhesion of carcinoma cells, but play dynamically
different roles when they dissociate from E-cadherin.

Both catenins can also support neural N-cadherin-mediated
cell-cell adhesion as in E-cadherin, and E-cadherin to N-
cadherin switch, enhancing carcinoma progression [2,3].
However, previous studies reported that catenin expression
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declines with loss of E-cadherin expression in
adenocarcinomas regardless of the gain of N-cadherin
expression [12—14]. Thus underlies the difficulty in concluding
the role of catenin in carcinoma progression. Oral carcinomas
advance their pathological states with the loss of E-cadherin
expression and negligibly express N-cadherin [15], indicating
that loss of E-cadherin is a critical determinant for the
progression. This suggests that expression and subcellular
localization of catenins differentially regulate oral carcinoma
progression. The present study intends to examine the
immunohistochemical expression and subcellular localization of
p120-catenin and B-catenin in oral carcinomas, and consider
the association with E-cadherin expression and the
clinicopathological parameters.

Results

Catenin expression in carcinoma cell lines

Since p120-catenin protein consists of four isoforms, we
used an antibody that can equally recognize all of them [16]. All
isoforms (isoform 1, 120 kDa; isoform 2, 110 kDa; isoform 3, 97
kDa; isoform 4, 75 kDa) were detected in the membrane-
binding (MB) fraction, and isoform 3 was predominant in
normal keratinocytes (HaCaT cells) and oral carcinoma cells.
Regardless of the isoform, expression levels in carcinoma cells
were frequently below HaCaT cells (Figure 1). B-catenin was
detected as a single band of 92 kDa. Although the biological
role is uncertain, p120-catenin isoform 3 and B-catenin in the
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Figure 2. Localization of p120-catenin and B-catenin in oral normal epithelium. Expression and localization of p120-catenin
(A, B) and B-catenin (D, E) in oral normal epithelium was examined by immunostaining. Arrowheads indicate the basal cells. D:

negative control. Bar = 65 ym (A, C, E), and 4.3 ym (B, D).
doi: 10.1371/journal.pone.0069777.9g002

membrane-non-binding (MNB) fractions tended to be

expressed in a different set of cells.

Expression of catenin in the normal oral epithelium

Both catenins immunolocalized at the cell membrane region
of normal oral epithelial cells from the basal to suprabasal
layers and weaken the reactivity toward the cornified layer
(Figure 2). At the basal cells, p120-catenin staining was weak
and restricted to the cell membrane, whereas B-catenin
diffusely localized at the cytoplasm in a high frequency. None
of stromal cells were stained with these catenins.

Expression of p120-catenin in oral carcinomas

The p120-catenin was strongly detected at the center of the
tumors but rapidly decreased toward the invasive front (Figure
3A-C). Since catenins have distinct roles at the cell membrane
and in the cytoplasm [11,17], we independently calculated the
percentage of membrane-positive and cytoplasm-positive
carcinoma cells at the center and invasive front of the tumors.
Although the percentage of membrane-positive cells was
significantly reduced at the invasive front (center, 67.4 *
26.7%, mean + S.D.; invasive front, 24.8 + 30.1%; P < 0.01),
there was no statistical significance between the cytoplasm-
positive cells at the center (18.7 £ 23.1%) and the invasive
front (19.1 + 25.6%; P = 0.91). The percentage of membrane-
positive cells inversely correlated with the cytoplasm-positive
cells at the center (P < 0.01, R? = 0.13) but not at the invasive
front (P = 0.90, R? = 0.00). The nuclear staining was not
detected in this study.

The percentage of membrane-positive cells was decreased
in parallel with tumor dedifferentiation (center, P < 0.01;
invasive front, P = 0.01; Table 1). At the invasive front, the
membrane-positive cells were declined in a group of high-
invasive carcinomas (grades 1 and 2 vs. 4C and 4D, P < 0.01;
Table 1; see Table S1 for other parameters). The statistical
analyses for the cytoplasmic staining were summarized in
Table S2.
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Table 1. Membrane immunoreactivities of p120-catenin and
B-catenin and clinicopathological implications.

p120-catenin

Center Invasive front
Mean * SD Pt Mean * SD Pt
76.20+17.80 <0.01 36.07+31.78 0.01

Category Subcategory

Differentiation ~ Well

Moderate 73.33 £20.75 19.75 £ 25.70
Poor 36.00 + 31.75 8.15 + 24.68
Invasion” Grade 1 76.70+17.04 0.11  47.30+33.49 <0.01
Grade 2 78.00 + 24.86 21.67 +£28.93
Grade 3 69.79 £ 21.76 27.75+7.75
Grade 4C 59.38 + 38.72 7.75+17.29
Grade 4D 35.71 £27.40 0.00 £ 0.00
B-catenin
Category Subcategory  Center Invasive front

Mean + SD =
64.30+26.65 0.01

Mean + SD Pt

Differentiation ~ Well 22.13+21.07 0.01

Moderate 76.58 + 20.70 32.63 + 30.40

Poor 44.46 + 26.65 9.00 + 16.07
Invasion” Grade 1 7150 £14.10 0.91 23.80 £22.95 0.03

Grade 2 68.17 + 23.61 26.25 + 21.47

Grade 3 63.46 + 33.26 27.75 £ 27.54

Grade 4C 61.00 + 35.86 16.88 + 28.36

Grade 4D 64.29 + 23.64 4.42+5.71

* Patients were categorized by mode of invasion by Yamamoto et al. (1983).
T Welch’'s ANOVA

Expression of B-catenin in oral SCCs

B-catenin membrane staining was observed in most
carcinoma cells at the center (Figure 3D and 3E). Carcinoma
cells rapidly declined with respect to membrane staining at the
invasive front but showed increased cytoplasmic staining and
nuclear staining (Figure 3D and 3F). The percentage of
membrane-positive cells at the invasive front (23.3 £ 31.2%)
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Figure 3. Localization of p120-catenin and B-catenin in oral carcinomas. Expression and localization of p120-catenin (A-C)
and B-catenin (D—F) in oral carcinomas were examined by immunostaining. The staining at the center of tumor (B, E, G) and the
invasive front (C, F, H) was showed in high-power view. Non-immune IgG was use as a negative control instead of primary
antibodies (G, H). Arrowheads indicate the cytoplasmic staining of B-catenin in D and the nuclear staining in F. Bar = 80 um (A, D),

and 15 pm (B, C, E—H).
doi: 10.1371/journal.pone.0069777.g003

was significantly lower than at center (64.9 + 28.6%, P < 0.01),
and the cytoplasm/nucleus-positive cells at the invasive front
(47.5 + 31.2%) were higher than that at center (23.9 + 25.4%,
P < 0.01). An inverse correlation between membrane-positive
cells and cytoplasm/nucleus-positive cells at the center (P <
0.01, R? = 0.39) and invasive front (P < 0.01, R? = 0.11; Figure
4A) was found. The membrane staining was decreased with
tumor dedifferentiation (center, P = 0.01; invasive front, P =
0.01; Table 1; see Table S3 in detail). Membrane staining also
decreased in parallel with the mode of invasion at the invasive
front (P = 0.03, Table 1). The cytoplasmic/nuclear staining and
its correlation with the clinicopathological parameters are
summarized in Table S4.

Correlation between expression of catenins and E-
cadherin

At the invasive front, membrane staining of p120-catenin was
positively correlated with that of B-catenin (Figure 4B). The
percentage of E-cadherin-positive carcinoma cells rapidly
decreases at the invasive front [15], suggesting the close
association of E-cadherin and catenin expression. To this end,
the percentage of E-cadherin-positive cells was quoted from
our recent study [15] and compared with that of catenin-
positive cells (Table 2, see Table S5 for detail). Percentage of
E-cadherin positive cells at the membrane was correlated with
the p120-catenin (Figure 4C) and [-catenin positive cells
(Figure 4D). The cluster analysis divided carcinoma cells into
p120-catenin"9"/E-cadherin"s" and p120-catenin'"/E-cadherin*
groups (P < 0.01, R? = 0.60, Figure 4C). The analysis on B-
catenin and E-cadherin categorized a B-catenin'¥/E-cadherin'¥
group and another (P < 0.01, R2 = 0.29, Figure 4D).
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Catenin class switch and reduction under stimulation

Carcinoma cells and HaCaT cells were treated with tumor
stimulus, TGF-B, TNF-a or EGF. These stimuli did not
apparently affect the expression of p120-catenin isoforms
(Figure 5). However, co-treatment of TGF-B with TNF-a or EGF
reduced isoform 3, and produced a protein band at the same
position as isoform 4. B-catenin was not affected by these
treatments except for HSC2 cells in which the co-treatment
partially degraded B-catenin. In fact, the densitometric analysis
confirmed that the reduction in total amount of p120-catnin
isoforms by TGF-B + EGF treatment (0.534 + 0.389, mean *
S.D.; P = 0.0279) and TGF-B + TNF-a treatment (0.694 +
0.326; P = 0.0688). B-catenin expression was not affect by the
treatments (TGF-$ + EGF, 0.867 + 0.290, P = 0.3323; TGF-B +
TNF-a, 0.842 + 0.267, P = 0.2220). Single treatment of cells
with TGF-B, TNF-a or EGF did not affect their expression (data
not shown).

Discussion

Catenins stabilize adherence junctions by binding to
cadherins and to cytoskeletons. E-cadherin-mediated cell-cell
adhesion regulates proliferation and differentiation of epithelial
cells [18,19] and suppresses carcinoma development [20].
Carcinoma cell-cell adhesion of the epithelial origin is largely
dependent on E-cadherin expression, and the reduction and
loss of E-cadherin prompts aggressive features of carcinoma
cells including migration, proliferation and degradation of
extracellular matrix proteins [3]. In the current study, we
showed that membrane staining of p120-catenin and B-catenin
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Figure 4. Correlation of percentage of catenin- and E-cadherin-positive carcinoma cells. A: The percentage of 3-catenin-
membrane-positive and —cytoplasm-positive at the invasive front were inversely correlated (P < 0.01, R? = 0.11). B: The positive
correlation of the percentage of membrane-positive carcinoma cells for p120-catenin and B-catenin at the invasive front (P < 0.01,
R? = 0.33). C: The percentage of membrane-positive carcinoma cells for p120-catenin and E-cadherin at the invasive front showed
the positive correlation (P < 0.01, R? = 0.60). Cluster analysis grouped carcinomas into p120""/E-cadherin"" (green) and p120"°*/E-
cadherin" (red) fractions. D: The positive correlation between the percentage of membrane-positive carcinoma cells for 3-catenin
and E-cadherin at the invasive front (P < 0.01, R? = 0.29) was observed. Carcinoma cells were categorized into B-catenin"/E-
cadherin™" (green) and B-catenin*/E-cadherin" (red) fractions.

doi: 10.1371/journal.pone.0069777.g004

was rapidly decreased at the invasive front of aggressive oral
carcinomas with loss of E-cadherin expression.

E-cadherin expression is inactivated by the transcriptional
repressor binding and promoter hypermethylation in oral
carcinomas [21,22]. In addition to the transcriptional level, it is
negatively regulated by protein degradation and shedding [3].
The p120-catenin conditional knockout mouse exhibits
hyperproliferation of skin keratinocytes with loss of E-cadherin
protein and spontaneously develops invasive oral carcinomas
[23,24]. Patients with advanced carcinomas frequently lose
p120-catenin expression or mis-localize it in the cytoplasm
and/or nucleus [24-27]. We confirmed that the loss of
membrane expression was significant in the dedifferentiated

PLOS ONE | www.plosone.org

and invasive carcinomas. However, the cytoplasmic/nuclear
staining was limited and did not correlate with the
clinicopathological parameters. The cluster analysis divided
carcinomas with the membrane staining into p120-catenin""/E-
cadherinf®  and  p120-catenin*/E-cadherin  groups,
suggesting that oral carcinoma cells at the invasive front
concomitantly lose p120-catenin and E-cadherin expression.
Loss of p120-catenin initiates E-cadherin protein degradation
[5,28,29], but E-cadherin reduction and loss does not affect
p120-catenin expression [5]. Loss of p120-catenin expression
per se may define E-cadherin-mediated adhesion at the protein
level independent of the transcriptional control in aggressive
oral carcinomas. Although the mechanism for p120-catenin

August 2013 | Volume 8 | Issue 8 | e69777
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Figure 5. Effects of TGF-B, EGF and TNF-a on expression of catenins. Oral carcinoma cells (TSU, KOSC2, HSC2, SCCKN)
and HaCaT cells were treated with TGF-B (lane b), TNF-a (lane c), EGF (lane d), TGF-B/TNF-a (lane e) or TGF-B/EGF (lane f), and
subjected to immunoblot for p120-catenin and B-catenin. PBS was used to treat cells as a control (lane a). -actin was used for the

internal control.
doi: 10.1371/journal.pone.0069777.9g005

Table 2. Correlation of percentage of catenin and cadherin
positive carcinoma cells.

Center

Parameter R* P Correlation
p120-catenin membrane vs. B-catenin membrane 0.15 <0.01 positive
vs. B-catenin cytoplasm 0.07 0.03 inverse
p120-catenin cytoplasm vs. B-catenin membrane 0.13 <0.01 inverse

vs. B-catenin cytoplasm 0.15 <0.01 positive
Invasive front

Parameter R F Correlation
p120-catenin membrane vs. B-catenin membrane 0.33 <0.01 positive
vs. E-cadherin membrane 0.60 <0.01 positive
B-catenin membrane vs. E-cadherin membrane 0.29 <0.01 positive

* Regression analysis

down-regulation in carcinoma tissues is not defined clearly, it is
transcriptionally inactivated by ZEB2, an E-cadherin repressor
that is predominantly expressed at the invasive front of oral
carcinomas with worse prognosis [21,30]. The miR-197 that
targets p120-catenin mRNA is expressed in oral carcinomas
[31,32]. Unveiling the inhibitory mechanism for p120-catenin
expression will contribute to understand the regulation of E-
cadherin-mediated carcinoma cell-cell adhesion.

Among p120-catenin isoforms, this study confirmed the
predominant expression of isoform 3 in oral carcinoma cells
and normal keratinocytes. Since previous studies suggested
the involvement of isoform shift from 3 to 1 in carcinoma
progression [16,33], we treated cells with tumor stimulus (TGF-
B, EGF and TNF-a) that facilitate the progression [34—-36] and
examined the shift. Unexpectedly, carcinoma cells did not show
the shift. However, co-stimulation of TGF-f with TNF-a or EGF
increased the isoform 4 or partially degraded them at the size
of isoform 4, and reduced total amount of the isoform
expression. In lung squamous cell carcinomas, loss of p120
catenin expression associates with tumor progression and the
patient prognosis worsen regardless of the shift on the mRNA

PLOS ONE | www.plosone.org

[37]. Since antibodies that can distinguish them are not
available, we did not consider the isoform shift in carcinoma
tissues and its pathological role in this study. However, the fact
that the p120-catenin membrane staining was significantly
decreased in advanced carcinomas and that the p120-catenin
cytoplasmic staining was limited and did not associate with E-
cadherin staining emphasizes again the impact of loss of p120-
catenin expression, but not the subcellular localization and the
isoform shift, on the carcinoma progression and loss of E-
cadherin expression.

As in a number of previous studies, B-catenin staining at the
cell membrane was decreased in parallel with carcinoma
dedifferentiation and diffuse invasion, but the cytoplasmic/
nuclear staining was detected in almost half of carcinoma cells.
B-catenin did not alter its expression under TGF-3, EGF and
TNF-a treatment that decreased p120-catenin, suggesting that
the mechanism for B-catenin expression is largely different
from p120-catenin. B-catenin localizes at the cytoplasm and
nucleus in parallel with WNT expression in oral carcinoma cells
at the invasive front [38]. In addition, 3-catenin-mediated WNT
signaling directly inactivates E-cadherin expression and up-
regulates the E-cadherin repressors [39—41]. Multi-faceted
events during carcinoma progression are activated by WNTs
[42]. Although the cytoplasmic expression of p120-catenin
enhances WNT signaling in an in vitro condition [8], it was
limited in a small number of carcinoma cells at the invasive
front. Loss of p120-catenin expression and the cytoplasmic/
nuclear expression of B-catenin suggest the synergistic or
stepwise regulation for loss of E-cadherin expression and what
follows.

In normal oral epithelium, p120-catenin expression was weak
and strictly restricted at the cell membrane of basal cells. The
weak expression polarizes the basal cells to secrete basement
membrane proteins to the underlying tissue [43], and genes
involving the integrity of basal cell-types are frequently over-
expressed in oral carcinomas [44,45]. In contrast to p120-
catenin, B-catenin was diffusely detected at the cytoplasm of
basal cells in a high frequency. Stratified squamous epithelial
stem cells reside at the basal cell layer [46]. Since WNT
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signaling is indispensable for the development and
maintenance of epithelial stem cells [47], the cytoplasmic
localization of B-catenin and the membrane-restricted weak
expression of p120-catenin at the basal cells strengthen the
understanding that catenins play a distinct role in oral
epithelium physiology.

E-cadherin expression is one of prime determinant for the
carcinoma progression of epithelial origin [2] and it is regulated
at the gene and protein levels [3]. Catenins play a decisive role
in protein regulation. This study demonstrates that the
immunohistochemical detection of p120-catenin and B-catenin
at the membrane is an important indicator of carcinoma
progression. In contrast to degradation of E-cadherin at the cell
membrane by loss of p120-catenin expression [5,28,29], B-
catenin gene targeting did not result in degradation [48].
Therefore, loss of p120-catenin expression may accelerate the
progression by initiation of E-cadherin protein degradation and
cytoplasmic/nuclear localization of B-catenin may strengthen
the disease progression in synergistic and/or stepwise
mechanisms.

Materials and Methods

Patient population

A total of 67 individual oral carcinomas were taken at
Kanazawa University Hospital from biopsies or surgeries from
1988 to 2003. The median age of the study patients was 63.7-
yrs (range, 37-93-yrs) at the time of diagnosis. The details of
the pretreatment clinical and pathologic characteristics were
summarized in Table S6. Histologic grading and staging were
assessed according to the International Union Against Cancer
(UICC) tumor-node-metastases classification. The mode of
invasion classified carcinomas according to their histologic
characters: grade 1, well-defined borderline; grade 2, cords,
less marked borderline; grade3, groups of cells, no distinct
borderline; grade 4C, diffuse invasion, cord-like type; and
grade 4D, diffuse invasion, widespread type [49]. Normal oral
epithelium was obtained from carcinoma-free patients. All
tissues were obtained with the written consent of the patient
and with approval by the institutional review boards of
Kanazawa University and Nippon Dental University.

Cell lines and cell treatments

Immortalized human oral carcinoma cell lines (TSU, HSC2,
KOSC2, KOSC3, SCCKN, OSC19, and Ca9.22) were used
[15]. Cells were maintained in 10% fetal bovine serum-
containing DMEM or RPMI1640 medium (Sigma-Aldrich, St.
Louis, MO) in a 5% CO, incubator. Immortalized normal
keratinocyte cell line, HaCaT [15,50], was maintained in 10%
fetal bovine serum-containing DMEM. All cells were cultured
until 80-90% confluency was obtained.

Immunohistochemistry

Unstained formalin-fixed and paraffin-embedded sections of
oral carcinomas and normal epithelium were treated with
microwave (500 W) in 0.01 M sodium citrate buffer, pH 6.0, and
incubated with mouse antibodies against p120-catenin (clone

PLOS ONE | www.plosone.org
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98/pp120, BD Biosciences, Heidelberg, Germany) or B-catenin
(clone 14, BD Biosciences) followed by biotinylated secondary
antibodies (DAKO, Glostrup, Denmark). After treatment with
avidin-biotin complexes (Vector Laboratories, Burlingame, CA),
the color was developed with 3,3-diaminobenzidine
tetrahydrochloride. The percentage of carcinoma cells stained
at the membrane or cytoplasm were calculated at least 3,000
cells for each section randomly selected. We determined that
carcinoma cells with the strong circumferential membranous
staining were membrane-positive and with strong cytoplasmic
granular staining were cytoplasm-positive. The percentage of
carcinoma cells stained membrane and cytoplasm was
independently determined according to previous studies
[15,51-54]. To clarify the specificity of the staining, sections
were reacted with non-immune mouse IgG instead of primary
antibodies.

Immunoblot

The MB proteins and MNB proteins were isolated from oral
carcinoma cells and HaCaT cells by the ProteoExtract Native
Membrane Protein Extraction Kit (EMD Chemicals,
Philadelphia, PA). After size-fractionation of proteins on SDS-
polyacrylamid gels under the reduction (2 pjg/lane) and
electrotransferring to PDVF membranes, the membranes were
probed with anti-p120-catenin or -B-catenin antibodies. Anti-
Na/K ATPase (Abcam, Tokyo, Japan) and -B-actin (Sigma-
Aldrich) antibodies were used for the positive controls of MB
and MNB fractions, respectively. To determine the p120-
catenin isoform shift by immunoblotting, cells were incubated in
serum-free medium overnight, treated with human TGF-38 (10
ng/ml; PeproTech, Rocky Hil, NJ), EGF (100 ng/ml;
PeproTech) and TNF-a (10 ng/ml; Sigma-Aldrich) for 48 h, and
harvested the hole-cell lysates in SDS-polyacrylamide gel
sample buffer. The membranes were put on a flatbed scanner,
and intensity of the bands was compared using the ImageJ
1.46r [55].

Statistical analysis

Association of percentage of catenin-positive carcinoma cells
and the clinicopathological parameters were analyzed by
Welch’s ANOVA, regression analysis or Mann-Whitney U test
using JMP 7.0.1 (SAS Institute Inc., Cary, NC). To analyze the
percentage of catenin-positive cells and E-cadherin-positive
cells at the invasive front (n = 39), the raw data for E-cadherin-
positive cells were quoted from our previous study published in
PLoS ONE [15] and subjected to regression and cluster
analyses. Expression of total p120-catenin isoforms and (-
catenin on the immunoblot membranes was standardized by
that of B-actin and analyzed by student’s t-test.

Supporting Information
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carcinoma cells and clinicopathological implications.
(DOC)
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carcinoma cells and clinicopathological implications.
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Table S3. Percentage of B-catenin-membrane positive
carcinoma cells and clinicopathological implications.
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Table S4. Percentage of B-catenin-cytoplasm stained
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Table S5. Correlation of percentage of catenin and
cadherin positive carcinoma cells.
(DOC)

Table S6. Clinicopathological parameters of 67 primary
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