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Abstract. Stomach adenocarcinoma (STAD) accounts for 
95% of cases of malignant gastric cancer, which is the third 
leading cause of cancer-associated mortality worldwide. The 
pathogenesis and effective diagnosis of STAD have become 
popular topics for research in the previous decade. In the present 
study, high‑throughput RNA sequencing expression profiles and 
clinical data from patients with STAD were obtained from The 
Cancer Genome Atlas database and were used as a training 
dataset to screen differentially expressed genes (DEGs). 
Prognostic DEGs were identified using univariate Cox regres-
sion analysis and were further screened by the least absolute 
shrinkage and selection operator regularization regression algo-
rithm. The resulting genes were used to construct a risk score 
model, the validation and effectiveness evaluation of which 
were performed on an independent dataset downloaded from the 
Gene Expression Omnibus database. Stratified and functional 
pathway (gene set enrichment) analyses were performed on 
groups with different estimated prognosis. A total of 92 genes 
significantly associated with STAD prognosis were obtained by 
univariate Cox regression analysis, and 10 prognosis-associated 
DEGs; hemoglobin b, chromosome 4 open reading frame 48, 
Dickkopf WNT signaling pathway inhibitor 1, coagulation factor 
V, serpin family E member 1, transmembrane protein 200A, 
NADPH oxidase organizer 1, C-X-C motif chemokine ligand 3, 
mannosidase endo-α-like and tripartite motif-containing 31; 
were selected for the development of the risk score model. The 
reliability of this prognostic method was verified using a valida-
tion set, and the results of multivariate Cox analysis indicated 

that the risk score may serve as an independent prognostic 
factor. In functional DEG analysis, eight Kyoto Encyclopedia 
of Genes and Genomes pathways were identified to be signifi-
cantly associated with STAD risk factors. Thus, the 10-gene risk 
score model established in the present study was regarded as 
credible. This risk assessment tool may help identify patients 
with a high risk of STAD, and the proposed prognostic mRNAs 
may be useful in elucidating STAD pathogenesis.

Introduction

Gastric cancer (GC) is currently the fifth most common type 
of cancer and the third leading cause of cancer-associated 
mortality worldwide among both sexes (1,2). Stomach adeno-
carcinoma (STAD) accounts for 95% of malignant GC cases (3). 
The incidence of GC increased annually in young Hispanic and 
US populations (20-49  years) between 2,000 and 2014 (4,5). 
Patients with advanced GC exhibit poor prognosis, which is 
frequently explained by a lack of early diagnostic biomarkers 
and effective treatment (6). As the prognosis of GC is associ-
ated with the stage of the disease at diagnosis, novel effective 
diagnostic tools for early stages of GC are urgently required (7).

The phenotypic alterations and the molecular mechanisms 
underlying GC have been increasingly elucidated, and the 
majority of researchers believe that GC is a multifactorial 
disease, the development of which involves various risk 
factors, such as Helicobacter pylori infection, smoking habits 
and dietary factors (8-10). With the advances in molecular 
biology and genetic detection techniques, the aberrant expres-
sion of certain genes, including miR-125b, -199a and -100 
has been demonstrated to be significantly associated with the 
pathogenesis and prognosis of GC (11). However, the aberrant 
expression of a limited number of genes cannot accurately 
reflect the pathogenesis and prognosis of GC. Therefore, it may 
be clinically useful to develop statistical models for disease risk 
prediction and tools for subsequent risk assessment (12,13).

Risk assessment tools are considered to be able to help 
estimate the probability that a person with a specific set of 
risk factors will develop a disease of interest (13). These risk 
assessment tools can facilitate the identification of high‑risk 
populations in relation to a disease and are useful in the 
subsequent clinical decision-making process for healthcare 
providers and patients (12). Risk assessment tools have been 
used to predict the outcome of a number of diseases, such 
as thromboembolism, Lynch syndrome and certain types of 
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cancer, including GC (12,14-20). This indicates the potential 
to establish a risk assessment tool using valuable prognostic 
factors with predictive capacity. Wang et al (20) developed 
a 53-gene signature for predicting prognosis of patients 
with GC. Although the prognostic scoring system has been 
demonstrated to successfully predict patient overall survival, 
the detection of expression of these 53 genes in one patient at 
a time is a complicated task in the clinical setting. Therefore, 
further efforts to establish a prognostic prediction model with 
fewer genes are still warranted.

The present study aimed to use large amounts of mRNA 
expression profiling data from STAD samples to screen 
significantly differentially expressed genes (DEGs) and 
establish a risk score (RS) model based on the screened genes. 
The RS model was simultaneously validated by means of an 
independent dataset from another database and via a correla-
tion analysis between clinical characteristics and prognosis. 
This RS model might provide a new tool for predicting the 
prognosis of patients with STAD.

Materials and methods

Analysis workflow. The steps of the workflow were as follows: 
i) High-throughput RNA sequencing (RNA-seq) expression 
profiles and clinical data from patients with STAD were 
downloaded from The Cancer Gene Atlas (TCGA) database 
(https://portal.gdc.cancer.gov) and to be used as a training 
dataset; ii) the samples in the training set were subdivided into 
tumor and control samples according to the clinical data and 
were subjected to screening to identify DEGs; iii) prognostic 
DEGs were identified in the training set by univariate Cox 
regression analysis; iv) the prognostic DEGs selected in the 
previous step were screened using the least absolute shrinkage 
and selection operator (LASSO) regularization regression 
algorithm (21), and the resulting genes were used to develop 
the RS model. The model validation and effectiveness evalua-
tion were performed on an independent dataset retrieved from 
the Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo); v) screening and stratified analysis of 
clinical factors were performed to identify independent prog-
nostic risk factors; vi) screening of mRNA-seq data for DEGs 
and Gene Set Enrichment Analysis (GSEA) were performed in 
groups with different estimated prognosis. The overall analysis 
process is presented in Fig. 1.

Data. On April 8, 2018, the training dataset, comprising 348 
samples with RNA-seq expression profile data and corre-
sponding clinical information, was downloaded from TCGA. 
The 348 samples comprised 37 control samples and 311 STAD 
samples with survival times >6 months. The validation dataset 
GSE62254 (22), comprising 300 samples with RNA-seq 
expression profile data and the corresponding clinical informa-
tion, was retrieved from the National Center for Biotechnology 
Information GEO database [platform GPL570 (HG-U133_
Plus_2), Affymetrix Human Genome U133 Plus 2.0 Array]. 
The clinical information from the training and validation 
datasets is presented in Table I.

Screening of RNA‑seq data for mRNAs with significant 
differential expression between groups with different prognosis. 

The edgeR package, version 3.20.9, of the R 3.4.0 language 
(http://bioconductor.org/packages/release/bioc/html/edgeR.html) 
(23) was used with the training dataset to identify significant 
differences in mRNA expression between the 311 STAD samples 
and 37 control samples. There were two thresholds selected: False 
discovery rate <0.05 and |log2(fold-change)| >0.5. According to 
the significant differences in mRNA expression between the 
training set samples, two-way hierarchical clustering analysis 
of the mRNA expression values was performed using pheatmap 
version 1.0.8 in R 3.4.0 (https://cran.r-project.org/web/pack-
ages/pheatmap/index.html) (24) according to a centered Pearson 
correlation algorithm (25).

Identification of prognosis‑associated mRNAs and clinical 
factors. Cox regression analysis was performed on the 311 
STAD tumor samples in the training dataset using survival 
package version 2.41.3 in R 3.4.0 (https://cran.r-project.
org/web/packages/survival/index.html) (26,27) to screen the 
mRNAs and clinical factors for those significantly associ-
ated with overall survival time. The screening threshold was 
log-rank test P<0.05.

Establishment and evaluation of the risk assessment tool 
(RS model)

Selection of an optimal mRNA combination. Based on 
the identified prognosis-associated mRNAs, the optimal 
mRNA combination was identified by the LASSO regular-
ization regression algorithm (21) in the penalized package, 
version 0.9.50 in R 3.4.0 (https://cran.r-project.org/web/pack-
ages/penalized/index.html) (28). Optimized parameter l in the 
screening model was determined through cyclic execution of 
1,000 repetitions of cross-validation likelihood (CVL) algo-
rithm (29).

Determination of the mRNA expression level cutoff. For each 
mRNA included in the optimal mRNA combination, the 
expression level cutoff value was determined using the X-Tile 
Software (https://medicine.yale.edu/lab/rimm/research/soft-
ware.aspx) (30). Monte-Carlo P<0.05 was used as the threshold 
to determine the cut-off value. The status of each sample was 
determined according to the cut-off value of each mRNA; when 
the mRNA expression level in the sample was higher compared 
with the cut‑off value, the status of this sample was defined 
as 1; otherwise, the status of this sample was defined as 0. 
Subsequently, a sample RS model was constructed using a linear 
combination of mRNA expression levels weighted by a regres-
sion coefficient (β) (obtained using the Cox regression model); 
thus, a prognostic index of each sample (i.e., RS) was calculated 
as follows: RS = Σ [β (mRNAn) x status (mRNAn)]. The RS of 
each sample in the training set was calculated, and the training 
samples were divided into prognostic high- (samples with an RS 
value ≥ median RS value) and low‑risk groups (samples with 
an RS value < the median RS value) according to the median 
RS value. The prognostic difference between the high- and 
low-risk groups was evaluated using Kaplan-Meier curves and 
the significance was calculated using the log‑rank test, and the 
effectiveness of the RS model was estimated by the area under 
the receiver-operating characteristic curve. In the validation set, 
the expression level of each mRNA was converted to the same 
probability distributions as that of the training dataset using 
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Z score transformation, and the prognosis of the samples in the 
validation set was evaluated using the RS model.

Construction of a nomogram to study the association between 
independent prognostic factors and survival prognosis. In 
order to further investigate the association between clinical 
data and survival prognosis, the mRNAs identified to be 
significantly associated with prognosis were used to develop 
a nomogram using RMS package version 5.1-2 in R 3.4.0 
(https://cran.r-project.org/web/packages/rms/index.html) (30). 
The scoring criteria were established according to the regres-
sion coefficients of all independent variables. Each value of 
an independent variable was assigned a score, and a total 
score was calculated for each sample. The probability of the 

outcome for each sample was calculated from the total score 
using a transforming function. The probability evaluation was 
performed using the nomogram method (31), and the nomo-
gram was used to assess the association between the clinical 
factors and prognosis.

Screening and pathway analysis of mRNAs associated with 
prognostic risk. The training dataset samples were divided into 
high- and low-risk groups according to the RS. The differences 
between the groups in the mRNA expression matrix of the 
samples were analyzed using the edgeR package with false 
discovery rate <0.05 and |log2(fold-change)|>1 applied as 
thresholds to define significant differences. Pathway enrichment 
analysis was performed on the mRNAs with significant 

Figure 1. Overall analysis workflow. TCGA, The Cancer Genome Atlas; DEG, differentially expressed gene; GEO, gene expression omnibus; PH, proportional 
hazard; GSEA, Gene Set Enrichment Analysis.
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differential expression between the high- and low-risk groups 
using the GSEA (32). P<0.05 was selected as the threshold for 
identification of Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways significantly enriched in the DEG set (33).

Results

Identification of mRNAs with significant differential expres‑
sion between groups with different prognosis. According to the 
source tissue, the 348 samples in the training set were divided 

into 311 STAD and 37 control samples, and the differences 
in the mRNA expression levels between the two groups were 
analyzed using the edgeR package. A total of 1,597 significantly 
differentially expressed mRNAs were identified (Fig. 2A). The 
results of hierarchical clustering analysis revealed a significant 
difference in the gene expression patterns between the tumor 
and control samples (Fig. 2B).

Screening for prognosis‑associated genes and clinical factors. 
In the training set, univariate Cox regression analysis was 

Figure 2. Differences in mRNA expression between the tumor and control groups. (A) Distribution diagram of mRNAs exhibiting significantly differential 
expression. The red, green and blue points indicate upregulated DEGs, downregulated DEGs and non-DEGs, respectively, in the tumor samples compared with 
the control group. (B) Bidirectional hierarchical clustering of mRNA expression levels based on significant differences in expression. In the bottom strip, white 
represents control samples and black represents tumor samples. DEGs, differentially expressed genes.

Table I. Clinical information of samples in the training and validation datasets.

Characteristic TCGA (n=311) GSE62254 (n=300)

Age, years, mean ± SD, 64.91±10.23 61.94±11.36
Sex, male/female 203/108 199/101
Subtype, MSI-H/MSI-L/MSS/unknown 60/42/208/1 Unknown
Reflux, yes/no/unknown 36/163/112 Unknown
H. pylori infection, yes/no/unknown 20/141/150 Unknown
Pathological T, T1/T2/T3/T4/unknown 15/64/138/93/1 2/186/91/21
Pathological N, N0/N1/N2/N3 93/82/60/70/6 38/131/80/51
Pathological M, M0/M1/unknown 285/15/11 273/27/0
Pathological stage, I/II/III/IV/unknown 43/96/145/26/1 30/96/95/77/2
Grade, 1/2/3/unknown 7/109/186/9 Unknown
Antireflux treatment, yes/no/unknown 30/137/144 Unknown
Radiation therapy, yes/no/unknown 57/248/6 Unknown
Recurrence, yes/no 44/218 125/157/18
Survival status, dead/alive/unknown 122/189/0 135/148/17
Progression-free survival, months, mean ± SD 17.78±17.28 33.72±29.82
Overall survival, months, mean ± SD 18.45±17.15 50.59±31.42

TCGA, The Cancer Genome Atlas; SD, standard deviation; MSI-H, microsatellite instability-high; MSI-L, microsatellite instability-low; 
MSS, microsatellite stability. Tumors were staged according to the 7th edition TNM staging system (55).
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performed on the 1,597 significantly differentially expressed 
mRNAs, 92 of which were identified to be significantly associated 
with survival prognosis (P<0.05; data not shown). In addition, the 
clinical information associated with the samples in the training 
set was subjected to univariate and multivariate Cox regression 
analyses; the results demonstrated that age, radiation therapy and 
recurrence were significantly associated with prognosis and were 
significant independent prognostic factors (Table II).

Establishment and evaluation of the RS model
Selection of an optimal mRNA combination. The expression 
matrix of the 92 mRNAs significantly associated with prognosis 
in the training set was selected as the input, and mRNA combi-
nations were screened for optimal results using the LASSO 
Cox regression model in the penalized package. In the cyclic 
execution of the 1,000 CVL algorithm, the maximum CVL 
value (-730.883) was obtained with λ=21.178 (Fig. 3A and B), 
and 10 mRNAs were selected based on this parameter: 
Hemoglobin β (HBB), chromosome 4 open reading frame 48 
(C4orf48), mannosidase endo-α-like (MANEAL), C-X-C motif 
chemokine ligand 3 (CXCL3), tripartite motif-containing 31 
(TRIM31), transmembrane protein 200A (TMEM200A), serpin 
family E member 1 (SERPINE1), coagulation factor V (F5), 
NADPH oxidase organizer 1 (NOXO1) and Dickkopf WNT 
signaling pathway inhibitor 1 (DKK1 (Table III; Fig. 3C).

Determination of the mRNA expression cutoff values. For 
each mRNA included in the optimal mRNA combination, the 
expression level cut-off value was selected using the X-Tile 
Software with the Monte-Carlo P<0.05. As presented in Fig. 4, 
the cut-off values of HBB, C4orf48, DKK1, F5, NOXO1, 
SERPINE1, CXCL3, TMEM200A, MANEAL and TRIM31 
were 6.4, 4.4, 1.6, 3.0, 1.2, 3.8, 5.8, 0.9, 1.4 and 0.9, respectively. 
Improved survival time was observed in patients with high 

expression levels of HBB, C4orf48, DKK1, F5, SERPINE1 
and TMEM200A compared with patients with high expression 
levels of these genes, as well as in patients with low expression 
levels of NOXO1, CXCL3, MANEAL and TRIM31 compared 
with patients with low expression levels of these genes (Fig. 4).

The RS prediction model was established as follows: RS 
= 0.27 x status (HBB) + 0.191 x status (C4orf48) + (-0.726) x 
status (MANEAL) + (-0.240) x status (CXCL3) + (-0.567) x 
status (TRIM31) + 0.022 x status (TMEM200A) + 0.663 x status 

Table II. Prognostic analysis of clinical factors in the training dataset.

 Univariate Multivariate
 -------------------------------------------------------------------------- ------------------------------------------------------------------------
Variables HR (95% CI) P-value HR (95% CI) P-value

Age, years 1.023 (1.005-1.041) 0.013a 2.293 (1.334~3.943) 0.003a

Sex, male/female 1.476 (0.989-2.201) 0.055 - -
Subtype, MSI-H/MSI-L/MSS/- 1.191 (0.940-1.508) 0.146 - -
Reflux, yes/no/‑ 0.718 (0.370‑1.393) 0.325 ‑ ‑
Antireflux treatment, yes/no/‑ 0.899 (0.499‑1.619) 0.723 ‑ ‑
H. pylori infection, yes/no/- 0.519 (0.222-1.212) 0.123 - -
Radiation therapy, yes/no/- 0.467 (0.279-0.780) 0.003a 0.459 (0.223-0.948) 0.035a

Pathological_M, M0/M1/- 2.480 (1.292-4.760) 0.005a 1.917 (0.666-5.518) 0.228
Pathological_N, N0/N1/N2/N3 1.282 (1.091-1.506) 0.002a 1.062 (0.765-1.476) 0.719
Pathological_T, T1/T2/T3/T4/- 1.340 (1.067-1.684) 0.012a 1.339 (0.895-2.005) 0.156
Pathological stage, I/II/III/IV/- 1.565 (1.248-1.964) <0.001a 1.208 (0.675-2.159) 0.525
Grade, 1/2/3/4 1.351 (0.947-1.927) 0.020a 1.513 (0.869-2.633) 0.143
Recurrence, yes/no/- 2.261 (1.407-3.635) <0.001a 1.334 (1.047-3.943) 0.001a

aP<0.05. Tumors were staged according to the 7th edition TNM staging system (55). ‘‑’, data not available; HR, hazard ratio; CI, confidence 
interval; MSI-H, microsatellite instability-high; MSI-L, microsatellite instability-low; MSS, microsatellite stability. 

Table III. Optimized mRNA combination.

Gene coef HR (95%CI) P-value

HBB 0.270  1.115 (1.012-1.230) 0.028
C4orf48 0.191  1.206 (1.043-1.394) 0.011
MANEAL -0.726  0.756 (0.639-0.895) 0.001
CXCL3 -0.240  0.891 (0.807-0.984) 0.023
TRIM31 -0.567  0.869 (0.788-0.959) 0.005
TMEM200A 0.022  1.234 (1.026-1.484) 0.025
SERPINE1 0.663  1.236 (1.093-1.397) 0.001
F5 0.429  1.147 (1.025-1.282) 0.016
NOXO1 -0.288  0.782 (0.669-0.914) 0.002
DKK1 0.729  1.129 (1.045-1.220) 0.002

Coef, coefficient; HR, hazard ratio; CI, confidence interval; HBB, 
hemoglobin β; C4orf48, chromosome 4 open reading frame 48; 
MANEAL, mannosidase endo-α-like; CXCL3, C-X-C motif chemo-
kine ligand 3; TRIM31, tripartite motif-containing 31; TMEM200A, 
transmembrane protein 200A; SERPINE1, serpin family E member 1; 
F5, coagulation factor V; NOXO1, NADPH oxidase organizer 1; 
DKK1, Dickkopf WNT signaling pathway inhibitor 1.
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(SERPINE1) + 0.429 x status (F5) + (-0.288) x status (NOXO1) 
+ 0.729 x Status (DKK1). The RS prediction model was used 
to evaluate and verify the risk prediction effect for samples in 
the training and validation datasets (Fig. 5). According to the 
median RS value, high‑ and low‑risk stratified analyses of the 
samples were performed. As exhibited in Table IV, five clinical 
factors were revealed to be associated with overall survival time 
according to univariable analysis, including age, pathological T, 
pathological stage, radiation therapy and recurrence in the 
low-risk group (P<0.05). Further multivariable Cox regression 
analysis revealed that radiation therapy was an independent 
clinical factor associated with STAD prognosis (P=0.035). 
In the high-risk group, H. pylori infection, pathological T, 
pathological N, pathological M, pathological stage and tumor 
grade were significantly associated with overall survival time 
(P<0.05). Among these factors, pathological N was an indepen-
dent clinical factor for STAD prognosis (P=0.011).

Association between clinical factors and survival prognosis 
according to the nomogram analysis. In the training set, 
three clinical factors (age, radiation therapy and recurrence) 
were subjected to stratified analysis in order to study the 
differences between the low- and high-risk groups for each 
clinical factor (Fig. 6). As shown in Fig. 6, the low-risk group 
exhibited longer overall survival times than the high-risk 
group.

In order to further analyze the association between age, 
radiation treatment, recurrence, and risk score with survival 
prognosis, a nomogram analysis was performed. Cox regression 
analysis suggested these four clinical factors were all signifi-
cantly associated with survival prognosis (P<0.05, Fig. 7A). 
Then, a nomogram was established to predict the survival time 
of the samples. According to the nomogram, the 3- and 5- year 
survival probability may be predicted by matching the clinical 
indicators to the ‘Total Points’ axis (Fig. 7B).

Figure 3. Selection of the optimal mRNA combination. (A) Plot of the l parameter vs. CVL. The horizontal axis and the vertical axis represent λ and CVL, 
respectively. The intersection of red dotted lines indicates that the maximal CVL value (-730.883) was obtained with λ=21.178. (B) The coefficient distribution 
line graph of all mRNAs on the basis of the Cox proportional hazards model of the least absolute shrinkage and selection operator penalized regularization 
regression algorithm. (C) Coefficient distribution line graph of the mRNAs in the optimal mRNA combination. CVL, cross‑validation likelihood.
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Figure 4. X-Tile analysis results on (A) HBB, (B) C4orf48 and (C) DKK1. Cyan and gray bars indicate the number of samples exhibiting high- and 
low-expression levels, respectively. The number at the junction of two colors represents the cutoff value of for high- and low-expression samples. 
In the right panel, cyan and gray Kaplan-Meier curves represent mRNAs in the high- and low-expression groups, respectively. HBB, hemoglobin β; 
C4orf48, chromosome 4 open reading frame 48; MANEAL, mannosidase endo-α-like; CXCL3, C-X-C motif chemokine ligand 3; TRIM31, tripartite 
motif-containing 31; TMEM200A, transmembrane protein 200A; SERPINE1, serpin family E member 1; F5, coagulation factor V; NOXO1, NADPH 
oxidase organizer 1; DKK1, Dickkopf WNT signaling pathway inhibitor 1; AUC, area under the curve.
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Figure 4. Continued. X-Tile analysis results on (D) F5, (E) NOXO1 and (F) SERPINE1. Cyan and gray bars indicate the number of samples exhibiting high- and 
low-expression levels, respectively. The number at the junction of two colors represents the cutoff value of for high- and low-expression samples. In the right 
panel, cyan and gray Kaplan-Meier curves represent mRNAs in the high- and low-expression groups, respectively. HBB, hemoglobin β; C4orf48, chromosome 
4 open reading frame 48; MANEAL, mannosidase endo-α-like; CXCL3, C-X-C motif chemokine ligand 3; TRIM31, tripartite motif-containing 31; TMEM200A, 
transmembrane protein 200A; SERPINE1, serpin family E member 1; F5, coagulation factor V; NOXO1, NADPH oxidase organizer 1; DKK1, sDickkopf WNT 
signaling pathway inhibitor 1; AUC, area under the curve.
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Figure 4. Continued. X-Tile analysis results on (G) CXCL3, (H) TMEM200A (I) MANEAL. Cyan and gray bars indicate the number of samples exhibiting 
high- and low-expression levels, respectively. The number at the junction of two colors represents the cutoff value of for high- and low-expression samples. 
In the right panel, cyan and gray Kaplan-Meier curves represent mRNAs in the high- and low-expression groups, respectively. HBB, hemoglobin β; C4orf48, 
chromosome 4 open reading frame 48; MANEAL, mannosidase endo-α-like; CXCL3, C-X-C motif chemokine ligand 3; TRIM31, tripartite motif-containing 
31; TMEM200A, transmembrane protein 200A; SERPINE1, serpin family E member 1; F5, coagulation factor V; NOXO1, NADPH oxidase organizer 1; DKK1, 
Dickkopf WNT signaling pathway inhibitor 1; AUC, area under the curve.
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Figure 4. Continued. X-Tile analysis results on (J) CXCL3. Cyan and gray bars indicate the number of samples exhibiting high- and low-expression levels, 
respectively. The number at the junction of two colors represents the cutoff value of for high- and low-expression samples. In the right panel, cyan and gray 
Kaplan-Meier curves represent mRNAs in the high- and low-expression groups, respectively. HBB, hemoglobin β; C4orf48, chromosome 4 open reading frame 
48; MANEAL, mannosidase endo-α-like; CXCL3, C-X-C motif chemokine ligand 3; TRIM31, tripartite motif-containing 31; TMEM200A, transmembrane 
protein 200A; SERPINE1, serpin family E member 1; F5, coagulation factor V; NOXO1, NADPH oxidase organizer 1; DKK1, Dickkopf WNT signaling 
pathway inhibitor 1; AUC, area under the curve.

Figure 5. Risk prediction effect of the RS model for samples in the (A) training and (B) validation datasets. (A-a) The Kaplan-Meier curves of overall survival 
in the training dataset. Green and red curves denote low- and high-risk samples, respectively. (A-b) The Kaplan-Meier curves of recurrence-free survival in 
the training set. Blue and purple curves represent low- and high-risk samples, respectively. (A-c) The ROC curve for the training set. Black and purple indicate 
ROC curves for overall and recurrence-free survival, respectively. (B-a) The Kaplan–Meier curves of overall survival in the validation set. Green and red 
curves represent low- and high-risk samples, respectively. (B-b) The Kaplan-Meier curves of recurrence-free survival in the validation set. Blue and purple 
curves represent low- and high-risk samples, respectively. (B-c) The ROC curve for the validation set. Black and purple indicate ROC curves for overall and 
recurrence-free survival, respectively. ROC, receiver operating characteristic; AUC, area under the curve.
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Pathway analysis of the mRNAs associated with prognosis. 
The training dataset was subdivided into high- and low-risk 
groups according to the RS, and the differences in the mRNA 
expression matrix of the samples between these groups were 
analyzed using the edgeR package (Fig. 8A). A total of 728 
significant DEGs were identified, including 221 downregu-
lated and 507 upregulated DEGs. The samples were sorted 
according to the cor value and were clustered using the top 
100 DEGs (top 50 positive and negative cor values; Fig. 8B).

GSEA pathway enrichment annotation was performed on 
the DEGs significantly associated with risk factors, and a total 
of eight significant KEGG pathways were identified (Table V). 
The heatmap of the genes involved in each pathway and the 

association between gene expression levels and pathways are 
presented in Fig. 9.

Discussion

The aberrant expression levels of certain genes are significantly 
associated with the pathogenesis and prognosis of GC (34). 
In the present study, a large amount of mRNA expression 
profiling data and clinical information from patients with 
STAD documented in TCGA database were used to identify 
statistically significant DEGs between STAD and healthy 
tissues. A total of 92 mRNAs significantly associated with 
survival were obtained by univariate Cox regression analysis.

Figure 5. Continued. Risk prediction effect of the RS model for samples in the (A) training and (B) validation datasets. (A-a) The Kaplan-Meier curves of 
overall survival in the training dataset. Green and red curves denote low- and high-risk samples, respectively. (A-b) The Kaplan-Meier curves of recurrence-free 
survival in the training set. Blue and purple curves represent low- and high-risk samples, respectively. (A-c) The ROC curve for the training set. Black and 
purple indicate ROC curves for overall and recurrence-free survival, respectively. (B-a) The Kaplan-Meier curves of overall survival in the validation set. 
Green and red curves represent low- and high-risk samples, respectively. (B-b) The Kaplan-Meier curves of recurrence-free survival in the validation set. Blue 
and purple curves represent low- and high-risk samples, respectively. (B-c) The ROC curve for the validation set. Black and purple indicate ROC curves for 
overall and recurrence-free survival, respectively. ROC, receiver operating characteristic; AUC, area under the curve.
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The risk assessment tools that are based on gene expres-
sion levels can identify high-risk populations in relation 
to a specific disease and may be useful in the subsequent 
clinical decision-making process for healthcare providers 
and patients (12). In order to construct a risk assessment 
tool for the assessment of prognosis in patients with STAD, 
an optimal mRNA combination was identified among the 
92 significant DEGs comprising 10 mRNAs in the present 
study, which were selected as a prognostic gene signature to 
create the RS model. The effectiveness of this model was 
evaluated in the training and validation datasets, and the 

results suggested that this risk assessment tool was useful for 
identifying populations with a high risk of developing STAD. 
To the best of our knowledge, aside from the present study, 
there is only one published RS model constructed according 
to gene expression levels, which includes a 53-gene signature 
and a prognostic scoring system (20). There are two other risk 
assessment tools that have been developed for the Japanese 
population, and their risk factors include age, sex, the combi-
nation of an anti-H. pylori antibody and serum pepsinogen, 
HbA1c level, smoking status, family history of GC and 
consumption of high-salt food (12,18). The risk assessment 

Table IV. Stratified analysis of clinicopathological characteristics in the high‑ and low‑risk groups.

A, Low-risk group (n=155)

 Univariate Multivariate
 ------------------------------------------------------------------------ -------------------------------------------------------------------------
Variables HR (95% CI) P-value HR (95% CI) P-value

Age, years 1.060 (1.020-1.103) 0.003a 1.041 (0.99-1.096) 0.118
Sex, male/female 1.207 (0.613-2.375) 0.586 - -
Subtype, MSI-H/MSI-L/MSS/- 0.938 (0.650-1.353) 0.732 - -
Reflux, yes/no/‑ 1.240 (1.092‑2.647) 0.997 ‑ ‑
H. pylori infection, yes/no/- 0.969 (0.286-3.287) 0.960 - -
Pathological T, T1-T2/T3-T4/- 1.320 (0.865-2.016) 0.198 - -
Pathological N, N0-N1/N2-N3/- 1.367 (1.014-1.843) 0.040a 1.022 (0.598-1.746) 0.937
Pathological M, M0/M1/- 1.148 (0.273-4.821) 0.851 - -
Pathological stage, I/II/III/IV/- 1.804 (1.158-2.810) 0.009a 2.006 (0.872-4.612) 0.101
Grade, 1/2/3/4 0.882 (0.476-1.637) 0.691 - -
Anti‑reflux treatment, yes/no/‑ 1.177 (0.443‑3.130) 0.743 ‑ ‑
Radiation therapy, yes/no/- 0.198 (0.068-0.575) 0.003a 0.197 (0.044-0.889) 0.035a

Recurrence, yes/no/- 3.622 (1.466-8.948) 0.005a 1.911 (0.691-5.289) 0.212

B, High-risk group (n=156)

 Univariate Multivariate
 ------------------------------------------------------------------------ -------------------------------------------------------------------------
Variables HR (95% CI) P-value HR (95% CI) P-value

Age, years 1.012 (0.992-1.032) 0.247 - -
Sex, male/female 1.334 (0.808-2.204) 0.260 - -
Subtype, MSI-H/MSI-L/MSS/- 1.138 (0.818-1.583) 0.444 - -
Reflux, yes/no/‑ 0.751 (0.378‑1.492) 0.413 ‑ ‑
H. pylori infection, yes/no/- 0.166 (0.038-0.725) 0.017a 0.175 (0.039-0.777) 0.171
Pathological T, T1-T2/ T3-T4/- 1.542 (1.157-2.054) 0.003a 1.689 (0.757-3.771) 0.201
Pathological N, N0-N1/N2+N3/- 1.307 (1.077-1.586) 0.007a 1.790 (1.145-2.796) 0.011a

Pathological M, M0/M1/- 3.965 (1.858-8.465) <0.001a 5.620 (1.297-14.348) 0.199
Pathological stage, I/II/III/IV/- 1.643 (1.254-2.152) <0.001a 0.963 (0.465-1.992) 0.918
Grade, 1/2/3/4 1.552 (0.995-2.420) 0.053 - -
Anti‑reflux treatment, yes/no/‑ 0.490 (0.209‑1.148) 0.101 ‑ ‑
Radiation therapy, yes/no/- 0.902 (0.501-1.624) 0.730 - -
Recurrence, yes/no/- 1.342 (0.767-2.349) 0.302 - -

aP<0.05. ‘‑’, data not available; HR, hazard ratio; CI, confidence interval; MSI‑H, microsatellite instability‑high; MSI‑L, microsatellite 
instability-low; MSS, microsatellite stability. Tumors were staged according to the 7th edition TNM staging system (55).
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Figure 6. Kaplan-Meier curves of overall survival in patient groups by (A) age, (B) radiation treatment and (C) recurrence in the training set. Green and red 
represent low‑ and high‑risk samples, respectively. HR, hazard ratio; the numbers in brackets denote the 95% confidence interval.

Figure 7. Association between clinical factors and survival prognosis according to the nomogram analysis. (A) The results of multivariate Cox regression 
analysis of three clinical factors (age, radiation treatment, recurrence) and risk score. *P<0.05,  ***P<0.001. (B) The predictive nomogram. HR, hazard ratio; 
CI, confidence interval. 
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tool developed in the present study is simple and inexpensive 
enough to be used both in normal clinical practice and for 
mass screening.

The results of the present study revealed an improved prog-
nosis for patients with high expression levels of HBB, C4orf48, 
DKK1, F5, SERPINE1 and TMEM200A and low expression 

Figure 8. mRNAs differentially expressed between the high- and low-risk groups. (A) The mRNA test volcano plot for the high- and low-risk groups. Red, 
green, and black points indicate significantly upregulated DEGs, downregulated DEGs and non‑DEGs, respectively, in the high‑risk group compared with the 
low-risk group. (B) Heatmap of the top 100 DEGs according to the correlation with the RS in the high- and low-risk groups. DEGs, differentially expressed 
genes; FC, fold change; FDR, false discovery rate; RS, risk score.

Figure 9. Heatmap of genes involved in each pathway and the association between gene expression levels and pathways. The saturation of the color in the red 
boxes indicates the level of correlation. KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table V. KEGG pathways significantly associated with risk grouping.

Name ES NES NOM P-value

KEGG_ADHERENS_JUNCTION 0.608 1.288 0.017
KEGG_TGF_BETA_SIGNALING_PATHWAY 0.605 1.167 0.030
KEGG_ECM_RECEPTOR_INTERACTION 0.567 1.076 0.041
KEGG_WNT_SIGNALING_PATHWAY 0.524 1.093 0.042
KEGG_JAK_STAT_SIGNALING_PATHWAY 0.429 1.009 0.043
KEGG_MAPK_SIGNALING_PATHWAY 0.486 1.050 0.045
KEGG_PATHWAYS_IN_CANCER 0.366 1.015 0.047
KEGG_MTOR_SIGNALING_PATHWAY 0.589 1.017 0.049

KEGG, Kyoto Encyclopedia of Genes and Genomes; ES, enrichment score; NES, Normalized enrichment score; NOM P-value, nominal 
P-value.
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levels of NOXO1, CXCL3, MANEAL and TRIM31. Although 
there are limited relevant studies on F5 and TMEM200A, 
certain functions of the remaining genes have been investi-
gated. HBB is a globin protein constituting the most common 
form of hemoglobin in adult humans, and abnormal expression 
of HBB can lead to blood diseases, such as hemoglobinopathy 
and hereditary nigremia (11,35). C4orf48 is a gene identi-
fied in the Wolf‑Hirschhorn syndrome critical chromosomal 
region that encodes a putative neuropeptide and is important 
for development of the neocortex and cerebellar (36) and cell 
differentiation (37). DKK1 protein is a soluble inhibitor of 
WNT that serves important roles in skeletal development (38) 
and is associated with the presence of lytic bone lesions in 
patients with multiple myeloma (39). SERPINE1, also known 
as plasminogen activator inhibitor type 1, is a member of the 
serine protease inhibitor family and is the major physiological 
regulator of the urokinase-type plasminogen activator-depen-
dent pericellular plasmin-generating cascade (40,41). 
SERPINE1 has also been reported to serve roles in in acute 
lymphoblastic leukemia (42) and keratinocyte migration (43).

With the exception of MANEAL, which may be involved 
in neurological disorders (44), the other three genes with high 
expression levels in the samples with good prognosis are asso-
ciated with cancer, particularly NOXO1 and TRIM31 (45-49). 
NOXO1 can be induced in tumor epithelial cells and serves 
an important role in tumorigenicity and the tumor-initiating 
property of GC cells (46). In addition, NOXO1 may affect 
colon epithelium homeostasis and prevent inflammation (45). 
Previous studies have demonstrated that CXCL3 may be 
a biomarker of breast and prostate cancer (47,49). TRIM31, 
which is a ring finger, B‑box and coiled‑coil protein upregu-
lated in GC cells and a potential biomarker of GC, can inhibit 
cell proliferation (48), and its cellular level may be regulated by 
a number of mechanisms, including the ubiquitin-proteasome 
system (50). GSEA pathway enrichment annotation revealed 
that eight pathways were enriched in the DEGs significantly 
associated with the risk factors, such as the ‘adherens junc-
tion’, ‘TGF-β signaling pathway’, ‘Wnt signaling pathway’, 
‘JAK-STAT signaling pathway’, ‘MAPK signaling pathway’, 
‘mTOR signaling pathway’ and ‘pathways in cancer’, all of 
which serve substantial roles in human carcinogenesis (51-54). 
The functions of these prognostic genes are different compared 
with those of the genes identified in a previous study, which 
were associated with the cell cycle, RNA/non-coding RNA 
processes, acetylation and extracellular-matrix organiza-
tion (20).

Independent validation of two different datasets and 
previous studies indicate that the RS model developed in 
the present study may be effective. However, a limitation of 
the present study was that it was an extensive bioinformatics 
analysis based on published data; the results should be vali-
dated using in vitro or in vivo models. However, the results 
of the present study may help other investigators to conduct 
relevant research.

In conclusion, a risk assessment tool for assessing the 
prognosis of patients with STAD was developed and vali-
dated in the present study. The 10 identified prognostic 
mRNAs were associated with several cellular processes and 
signaling pathways, such as the ‘adherens junction’, TGF-β 
signaling pathway’, ‘Wnt signaling pathway’, ‘JAK-STAT 

signaling pathway’, ‘MAPK signaling pathway’, ‘mTOR 
signaling pathway’ and ‘pathways in cancer’, and may be 
recommended as promising prognostic biomarkers or a 
prognostic signature of STAD. The present risk assessment 
tool may help identify patients with a high risk of STAD, 
and the proposed prognostic mRNAs may help elucidate the 
pathogenesis of STAD.
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