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Abstract: In this paper, multiple Fano resonances preferred in the refractive index sensing area are
achieved based on sub-wavelength metal-insulator-metal (MIM) waveguides. Two slot cavities, which
are placed between or above the MIM waveguides, can support the bright modes or the dark modes,
respectively. Owing to the mode interferences, dual Fano resonances with obvious asymmetrical
spectral responses are achieved. High sensitivity and high figure of merit are investigated by using the
finite-difference time-domain (FDTD) method. In view of the development of chip-scale integrated
photonics, two extra slot cavities are successively added to the structure, and consequently, three and
four ultra-sharp Fano peaks with considerable performances are obtained, respectively. It is believed
that this proposed structure can find important applications in the on-chip optical sensing and optical
communication areas.
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1. Introduction

Fano resonance was first demonstrated in the atomic system caused by the coherent interference
between a discrete state and a continuous state [1–3]. The asymmetrical spectrum of Fano resonance
is quite different from the Lorentz one obtained from Fabry–Pérot (FP) resonance, which is suitable
for an optical filter. These ultra-sharp asymmetrical spectra are preferred in the optical sensing area
due to high refractive-index sensitivity and high figure of merit (FOM). Interestingly, Fano resonance
is also investigated in the plasmonic metal-insulator-metal (MIM) waveguide, which can overcome
the optical diffraction limit owing to the characteristics of surface plasmon polaritons (SPPs) [4–10].
Consequently, MIM waveguide structures have been considered as one of the most promising ways
for developing nano-scale integrated photonic circuits, and they are quite preferred in the optical
communication and sensing areas. For example, a bright resonant mode and a dark mode, which are
analogous to the continuous and the discrete states, respectively, are generated in the side-coupled
dual slot-cavity resonators [11]. Due to the interaction between the bright modes and the dark
modes, an asymmetrical sharp transmission peak is achieved in this proposed MIM structure. Besides,
an asymmetrical Fano-type spectrum is observed by using dual parallel grooves [12], which are placed
on the same side of a MIM waveguide. In these proposed MIM structures, single Fano resonances
with high sensitivity and high FOM has been investigated for the sensing purpose [13–22]. However,
considering the development of high integrated photonics circuits, more attention is also paid to
the mechanism of multiple Fano resonances in single one subwavelength MIM structure. Therefore,
composite configurations based on MIM waveguides, such as groove-cavity composite structure and
cascaded grooves structure, have been successively proposed and investigated [23–25]. Dual Fano
transmission peaks with asymmetrical line shapes are achieved in the infrared wavelength range.
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In this case, one would also look forward to exploring the on-chip MIM structures to obtain more Fano
resonant peaks.

In this paper, multiple Fano resonances are achieved by employing an end-coupled slot cavity
resonator. A slot cavity is perpendicularly inserted between the input and output MIM waveguides,
while another horizontal one is placed above the waveguide. Owing to the mode interactions,
dual Fano resonances with high sensitivity and high FOM are achieved. Besides, additional slot
cavities are added on the middle and bottom of the vertical one, triple and quad Fano sharp peaks with
asymmetrical line shapes are also obtained. The performances of the structure are investigated through
the finite-difference time-domain (FDTD) method, and it is believed that the proposed structure can
find applications in the on-chip optical sensing area.

2. Theory and Analysis

Figure 1 shows the schematic diagram of the plasmonic Fano resonant structure. A vertical
slot cavity (named as cavity A) is inserted between the input and output MIM waveguides with
a coupling distance of d. The top of the cavity is aligned with the MIM waveguide. It is well
known that the single end-coupled vertical cavity is regarded as a FP resonator that can support
the bright modes. Stable standing waves can only build up constructively within the cavity
when the following resonant condition is satisfied, based on the principle of a resonant cavity:

4πRe(ne f f )l1/λ + φ = 2mπ, m = 1, 2, 3, · · · [26,27]. Consequently, the resonant wavelength can be
derived as:

λ =
2Re(ne f f )l1
m−φ/2π , m = 1, 2, 3, · · · (1)

where l1 is the length of the cavity, m stands for the resonant-mode order, and φ is the phase
shift caused by the reflection at the FP facet. Re

(
ne f f

)
is the real part of the effective index ne f f ,

which can be obtained from the dispersion equation [28]: εikm + εmkitanh(−jkiw/2) = 0, where

ki,m =
√

εi,m(2π/λ)2 − β2 is the transverse propagation constant in air and silver, respectively, w is
the width of the waveguide, and εi and εm are the dielectric constants of air and silver, respectively.
The propagation constant is represented as the effective index of the waveguide: β = 2πne f f /λ.
The optical phase retardation and the propagation loss coefficient of the plasmonic mode are
determined by the real part Re

(
ne f f

)
and the imaginary part Im

(
ne f f

)
, respectively. Since the

proposed structure is on a nanometer scale, Im
(

ne f f

)
can be ignored and more attention is paid to

Re
(

ne f f

)
for obtaining the relative phase. Usually, the bright mode is considered as the resonant pass

band, and the dark mode is the forbidden band. Therefore, bright modes can be obtained by the
end-coupled cavity A. Likewise, a side-couple slot cavity (named as cavity B), which is placed over
cavity A with a coupling distance of s, is also an FP resonator, but it will generate the forbidden bands
which are regarded as the dark modes. When SPPs are coupled into the slot cavity in the case of a
relatively small coupling distance (less than 50 nm), corresponding stable bright and dark modes can
build up within cavity A and B, respectively. Fano resonance occurs and leads to an asymmetrical
spectrum with ultra-sharp peaks owing to the mode interference, when the wavelength of the bright
mode is close to the dark modes, interference occurs. Accordingly, one must precisely design the
lengths for cavity A and B to access Fano resonance, since the resonant wavelength is proportional to
the length.

Coupled mode theory (CMT) is also employed to analyze the transmission response [29,30].
In Figure 1, S1, 2± stands for the normalized amplitudes of SPPs in the output and input MIM
waveguides, respectively, while a and b are the ones inside cavity A and cavity B, respectively. Qaw and
Qar are the quality factors related to the coupling loss from cavity A into the MIM waveguide and
the intrinsic loss inside cavity A, respectively. Qbw describes the coupling loss from cavity B into
cavity A and the waveguide, and Qbr is the intrinsic loss inside cavity B. Since SPPs are only launched
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into the MIM waveguide from left side, the amplitude S2+ can be assumed as S2+ = 0, and then the
normalized amplitudes a and b of cavity A and B can be expressed as:

da
dt =

(
jω0 − ω0

2Qar
− ω0

2Qaw

)
a +

√
ω0

2Qaw
S1+ + j ω0

2Qbw
b

db
dt =

(
jω0 − ω0

2Qbr

)
b + j ω0

2Qbw
a

S2− = S1+ −
√

ω0
2Qaw

(2)

where ω0 is the resonant frequency. Consequently, the transmission T of the output waveguide is
derived as:

T =

∣∣∣∣∣∣∣
1

Qaw

j2 ω−ω0
ω0

+ 1
Qbr(

j2 ω−ω0
ω0

+ 1
2Qar

+ 1
2Qbr

+ 1
2Qaw

)2
+
(

1
Qbw

)2
−
(

1
2Qar

− 1
2Qbr

+ 1
2Qaw

)2

∣∣∣∣∣∣∣
2

. (3)

2D FDTD simulation is employed to obtain the spectrum, since 2D structures can save a lot of
running time and hardware resource consumption, but the results would still agree well with the 3D
model. In the following FDTD simulation, perfect matching layer is used as the absorption boundary
and the mesh accuracy is 5 nm in both x and y directions. The widths w of the MIM waveguide and
both cavities are the same (50 nm), and the lengths l1 and l2 of cavity A and B are 400 nm and 300 nm,
respectively, and the coupling distances s and d are 25 nm and 15 nm, respectively. The metal and
insulator are firstly assumed as silver and air, respectively. Figure 2a shows the transmission spectrum
of the proposed structure with only cavity A. Owing to FP resonance, there are two pass bands emerging
at 667 nm and 1322 nm, respectively. This kind of structure can perform as a traditional optical filter,
since high transmission (>0.58) and symmetrical line shape are achieved. After adding cavity B above
the waveguide, the dark mode and the bright mode will interact with each other, resulting in Fano
resonance. The transmission spectrum is shown in Figure 2b with black solid line, which indicates
that the previous channel remains at the same wavelength of 1322 nm. In addition, an asymmetrical
ultra-sharp transmission peak with a transmittance of 0.51 arises at 993 nm. The transmission at the
right side of the peak changes slowly, while the one at the left side has a sharp decline and the dip
occurs at 958 nm. The degree of spectral asymmetry F is defined as the ration of high/low wavelength
transmission bandwidths (peak-to-node): F = λhigh/λlow [31–33], as indicated in Figure 2b. For Fano
resonance, high degree of asymmetry is preferred and it is calculated as 4.7 based on the results
in Figure 2b. Actually, the asymmetry will be affected by the wavelengths of the dark mode and
bright mode, and therefore, the lengths of cavity A and B are the important factors to manipulate the
spectral response. Besides, relatively weak Fano resonance is also observed at the wavelengths of
667 nm and 725 nm (corresponding to the Fano peak and dip respectively), since the spectral shape is
also asymmetrical.

Consequently, Fano resonance with asymmetrical spectrum is achieved in this proposed structure.
To evaluate the performance of the structure that acts as an optical on-chip sensor, the sensitivity,
which is one of the most important factors, can be expressed as:

S =
dλres

dn(λres)
(4)

where λres is the resonant wavelength, and n(λres) is the refractive index of the insulator in the MIM
waveguide. When the air is replaced by an insulator with a refractive index of 1.1, the transmission
spectrum has an obvious red shift and the transmittances for all the peaks are almost unchanged,
as shown in Figure 2b with a red dashed line. In this case, the two Fano resonant peaks appear at
731 nm and 1088 nm, thus, the sensitivities of refractive index are S = 640 nm/RIU and 950 nm/RIU,
respectively. The detailed magnetic field distributions that correspond to the peaks and dip in Figure 2a
are shown in Figure 2c–f. Figure 2c–e represent the SPPs’ propagation details of the resonant peaks
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at 667 nm, 993 nm and 1322 nm, respectively. Most of the SPPs can propagate through the MIM
waveguide, and strong energy distributions can be observed in output waveguide. The magnetic
field distribution for the dip at 958 nm is shown in Figure 2f. Interestingly, observed from Figure 2d,f,
strong magnetic intensities occuring at both cavities lead to strong mode interference, and then,
Fano resonance is achieved.
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Figure 2. (a) Transmission spectrum of the proposed structure with only cavity A, (b) Fano spectra
of the proposed structure with both cavities (black solid line for n = 1.0, red dash line for n = 1.1),
and (c–f) The magnetic field distributions at the peak- or dip-wavelengths at 667 nm, 993 nm, 1322 nm,
and 958 nm, respectively (corresponding to the spectra in (b) with n = 1.0).

In addition to the transmission spectrum for the peaks and dips, which will significantly affect the
performance of the proposed structure that acts as a sensor, the phase response is also another important
factor to explore the applications of the structure. Therefore, to further investigate the Fano resonance,
the phase responses and the group delays are also studied, as shown in Figure 3. Accordingly, obvious
phase shifts are achieved around the Fano peaks at 667 nm and 993 nm, respectively, and opposite
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variations are observed at the dips in Figure 3a. Moreover, the phase curve, which changes smoothly
at the FP resonant peak of 1322 nm, is quite different from the one of Fano resonance. More details can
be excavated from the group delays τ(λ) in Figure 3b, and it can be obtained from the phase responses:
τ(λ) = −λ2dθ/2πcdλ, where θ is the phase shift, and c is the light speed. Obviously, there are large
negative group delays within the windows of the Fano dips, and the maximum values of −0.25 ps
and −0.18 ps are achieved at 725 nm and 958 nm, respectively. On the contrary, positive delays of
0.05 ps and 0.07 ps are available at the Fano-peak wavelengths of 667 nm and 993 nm, respectively.
Consequently, in addition to the sensing applications, one can also develop the fast light or slow light
technologies by using the windows of Fano dips or Fano peaks.
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phase response.

Furthermore, FOM is also a quality factors to evaluate the performance of Fano resonance. A high
FOM value will be preferred in Fano resonance for the sensing applications, and it can be expressed
as [11,34]:

FOM = max
(∣∣∣∣dT(λ)/dn(λ)

T(λ)

∣∣∣∣) (5)

where T(λ) is the transmission, and dT(λ)/dn(λ) is the transmission change caused by the refractive
index. Therefore, it can be concluded that an ultra-sharp peak and an ultra-low dip induced by
the index changes are preferred for obtaining a high FOM. Based on the transmission spectrum in
Figure 2b, the maximum FOM of ~5.26 × 104 is achieved at the Fano peak of 993 nm, and the second
largest value of 2.22 × 103 is obtained at another Fano dip, as shown in Figure 4.

To obtain more Fano resonant modes in single one structure, cavity C is added to the right bottom
of cavity A with a coupling distance of s1 = 10 nm, as shown in Figure 5. Likewise, when the resonant
length of cavity C is designed appropriately, the resonant mode supported by cavity C will interact with
the one in cavity A, leading to a new asymmetrical Fano peak. After setting the length and width of
cavity C as l3 = 330 nm and w3 = 40 nm, respectively, the transmission spectrum is shown in Figure 6a.
Comparing to the results in Figure 2b, a new sharp Fano peak with a transmittance of 0.58 arises at the
wavelength of 1141 nm, while the previous two ones are well remained. For this Fano resonant mode,
the asymmetrical dip occurs at the right side of the peak. Then, the sensitivity and the FOM for this
Fano peak are calculated as 1090 nm/RIU and 7.63× 104, respectively. More physical phenomenon can
be found in the phase responses and the group delays Figure 6b. Obviously, phase shifts are achieved
around the three Fano resonant windows, and negative group delays or positive group delays, which
are also considered as the distinguishing features for Fano resonance, are obtained for the peaks or
dips, respectively. Therefore, triple Fano resonances are investigated in this proposed structure.
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According to the analysis above, if one would like to obtain more Fano peaks and enhance the
integration level of the device, it is suggested to design more cavities that can support the proper modes
to interact with the ones in cavity A. Consequently, cavity D is added to the middle position of cavity A
with a coupling distance of s2 = 10 nm in Figure 7. When the length and width are set as l4 = 390 nm
and w4 = 40 nm, respectively, and other parameters are unchanged, the transmission spectrum is
shown in Figure 8. In this case, there are four Fano resonant peaks with asymmetrical spectral shapes
locating at 667 nm, 782 nm, 993 nm, 1141 nm, respectively. Comparing to the spectrum in Figure 6a,
one more Fano peak is obtained at 782 nm in Figure 8a. Similar phase responses and group delays
are achieved in Figure 8b, which illustrates that phase shifts will be induced by Fano resonances and
negative or positive group delays are available at all the Fano dips or peaks, respectively. Specifically,
the maximum negative group delays for four dips are −0.26 ps, −0.18 ps, −0.18ps and −0.08 ps, while
the maximum positive ones for four peaks are 0.10 ps, 0.07 ps, 0.08 ps, and 0.08ps, respectively. It is
believed that this is also another important feature for Fano resonance.
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Compared to the recent work [25], which is a side-coupled tangent-ring Fano resonator,
the proposed structure achieves a more compact configuration by using FP resonators. To achieve
four Fano resonant peaks, there are five tangent-ring resonators [25], but only three slot cavities
are required for the employed structure. Besides, full width half maximum (FWHM) for each peak
in this structure is much smaller than that in the previous structure. For example, the FWHM for
the Fano peak at 993 nm is 17.5 nm in Figure 2b, but the one for the peak at 920 nm is larger than
200 nm in [25]. Consequently, a higher Q factor, which is expressed as λ/FWHM, is achieved in the
proposed structure.

3. Conclusions

In summary, dual, triple, and quad Fano resonances with asymmetrical spectral responses have
been investigated in this proposed structure owing to the mode interactions. Firstly, dual sharp Fano
peaks by using cavities A and B are available at the wavelengths of 667 nm and 993 nm, respectively.
High sensitivity of 950 nm/RIU and high ~5.26 × 104 are investigated for the Fano peak. Then,
three and four Fano resonant peaks emerge in the wavelength range of 600–1800 nm after adding
cavities C and D, respectively, and considerable performance is also achieved. Moreover, negative
and positive group delays have also been investigated in the resonant windows. Compared to the
side coupled grooves, more Fano resonant peaks are achieved in the proposed slot-cavity structure
by properly adding more slot cavities. Single or dual Fano peaks are achieved in the side coupled
grooves, however, four peaks with considerable performances are obtained in the proposed structure.
The integration and the performance of the structure are improved. Therefore, the proposed device
can be used in the on-chip optical sensing, slow light and fast light areas, and it is believed that the
structure will be beneficial to the development of nano-scale integrated photonics.
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