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Botryosphaeriaceae, as a major family of the largest class of kingdom fungi
Dothideomycetes, encompasses phytopathogens, saprobes, and endophytes. Many
members of this family are opportunistic phytopathogens with a wide host range
and worldwide geographical distribution, and can infect many economically important
plants, including food crops and raw material plants for biofuel production. To date,
however, little is known about the family evolutionary characterization, mating strategies,
and pathogenicity-related genes variation from a comparative genome perspective.
Here, we conducted a large-scale whole-genome comparison of 271 Dothideomycetes,
including 19 species in Botryosphaeriaceae. The comparative genome analysis provided
a clear classification of Botryosphaeriaceae in Dothideomycetes and indicated that the
evolution of lifestyle within Dothideomycetes underwent four major transitions from
non-phytopathogenic to phytopathogenic. Mating strategies analysis demonstrated
that at least 3 transitions were found within Botryosphaeriaceae from heterothallism
to homothallism. Additionally, pathogenicity-related genes contents in different genera
varied greatly, indicative of genus-lineage expansion within Botryosphaeriaceae. These
findings shed new light on evolutionary traits, mating strategies and pathogenicity-
related genes variation of Botryosphaeriaceae.

Keywords: Botryosphaeriaceae, phytopathogen, evolution traits, mating strategies, pathogenicity-related genes

INTRODUCTION

Dothideomycetes represents the largest and most important class of ascomycete fungi, including 23
orders, 110 families, 1,261 genera, and 19,000 species (Wijayawardene et al., 2017). The members
of Dothideomycetes comprise both phytopathogenic (Ohm et al., 2012) and non-phytopathogenic
fungi with diverse lifestyles (Ruibal et al., 2009) as well as many mycorrhizal fungi (Peter et al.,
2016). Among these 110 families, Botryosphaeriaceae is an important and distinctive family.
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This is because it includes saprobes, endophytes, and
phytopathogens, and it is one of the most widely geographically
distributed groups of opportunistic plant pathogens. The host
range of this family is very wide, and many economically
important plants worldwide can be infected by them (Slippers
and Wingfield, 2007). These pathogenic fungi can infect plants
through wounds or natural openings, such as lenticels and
stomata. Once they enter host tissues, they may survive as
endophytes to stay at a biotrophic stage for a long time and
turn into the destructive necrotrophic stage when the host
is stressed (Yan et al., 2013; Morales-Cruz et al., 2015). The
members of Botryosphaeriaceae can infect many woody plants
and cause serious disease symptoms, such as dieback, branch
canker, leaf spots, and fruit and seed rot (Marsberg et al.,
2017). But the interaction of some of Botryosphaeriaceae fungi
like Botryosphaeria dothidea (B. dothidea) with host plants
includes a latent or endophytic phase, which makes the fungal
infection easily be neglected (Bostock et al., 2014; Marsberg
et al., 2017; Wang et al., 2018). Therefore, it is of substantial
biological significance to explore the evolutionary characteristics
of Botryosphaeriaceae at the level of Dothideomycetes.

The exceptional feature of Botryosphaeriaceae fungi is that
it is difficult to observe their sexual structure under both
natural and experimental conditions, but this does not mean
that sexual reproduction does not occur for these fungi (Phillips
et al., 2013). With more in-depth research being conducted, the
mating strategies (homothallism or heterothallism) of increasing
members of the Botryosphaeriaceae family have been reported
(Bihon et al., 2012a,b, 2014; Billiard et al., 2012; Lopes et al.,
2017, 2018), revealing some unresolved questions regarding
their sexual reproduction. For example, how conservative are
the nucleic acid and protein sequences of the mating type
determination genes; how conservative are the genes and their
arrangement at the mating type determination loci; how has
the mating type evolved, and what is the origin type. In
addition, the host range of different Botryosphaeriaceae fungi
varies greatly. B. dothidea is a common pathogen with a wide
range of hosts. Generally, the infection becomes symptomatic
when the host is subjected to drought, physical damage,
waterlogging, or freezing stress (Bostock et al., 2014; Marsberg
et al., 2017; Wang et al., 2018). The symptoms primarily
include canker on young seedlings, branches, and stems; the
necrosis of branches; and fruit decay, which may lead to the
death of the host in extreme cases (Kim et al., 2005; Tang
et al., 2012). Botryosphaeria kuwatsukai (B. kuwatsukai) can also
cause symptoms, such as fruit softening and decay, and severe
canker of branches and stems (Wang et al., 2021). However,
B. kuwatsukai has a relatively narrow host range and primarily
infects apple and pear trees (Xu et al., 2015). Therefore, a
systematic study of the mating strategies and differences of
pathogenicity-related genes in Botryosphaeriaceae fungi will lead
to a better understanding of their molecular evolutionary history
and pathogenic characteristics.

Currently, genomics technology has been widely used
to study many pathogenic fungi of plants, and greatly
promoted the understanding of their evolution and pathogenic
mechanisms (Islam et al., 2012; Blanco-Ulate et al., 2013;

van der Nest et al., 2014; Nagel et al., 2018; Félix et al., 2019;
Landi et al., 2020; Meile et al., 2020). For example, gene
family expansion associated with virulence factors in wood-
colonizing pathogenic fungi in the Botryosphaeriaceae was
revealed via phylogenomic comparisons (Garcia et al., 2021);
the comparative genome analyses of latent plant pathogens
in the Botryosphaeriaceae were conducted to define their
genomes (Nagel et al., 2021). In addition, a large-scale
comparative genomic analysis can better reveal the physiological
characteristics and evolutionary history of fungi (Guttman
et al., 2014; Haridas et al., 2020; Miyauchi et al., 2020).
Therefore, in this study, 167 Dothideomycetes fungi, including
19 Botryosphaeriaceae species, were fully sequenced, and a
comparative genomics approach was used to comprehensively
analyze the molecular evolution characteristics, mating strategies
and pathogenicity within Botryosphaeriaceae fungi. The sequence
differences of related genes benefit our understanding of the
evolutionary history of Botryosphaeriaceae fungi and provide
useful information for the prevention and control of the diseases
caused by these fungi.

MATERIALS AND METHODS

Fungal Strains
A total of 167 Dothideomycetes fungal strains, including 160
Botryosphaeriaceae fungi (19 species) (Supplementary Table 1),
from the Fungal Strain Library of Shandong Agricultural
University, Tai’an, China, were sequenced in this study. The
sequencing data are found at NCBI (PRJNA777748).

Sequencing and Genome Assembly
The CTAB (hexadecyltrimethylammonium bromide) method
(Murray and Thompson, 1980) was used to extract high-quality
DNA. A 500 bp DNA fragment library was constructed, and
PE150 sequencing was performed using Illumina HiSeq 4,000
(San Diego, CA, United States). The raw data obtained from
sequencing were inputted into Trimmomatic v0.39 (Bolger et al.,
2014) for quality control, and reads with an average quality of
less than 30 were filtered. Jellyfish v2.3.0 (Marçais and Kingsford,
2011) was used to calculate k-mer distribution and GenomeScope
v2.0 (Ranallo-Benavidez et al., 2020) was then used to assess
genome size of each fungus. The assembly was carried out using
SPAdes v3.13.1 (Bankevich et al., 2012).

Gene Prediction and Genome Annotation
RepeatModeler v2.0.11 was used to construct custome repeat
libraries for each assembly, and RepeatMasker v4.1.12 was
used to determine repeat contents with the custom repeat
libraries. For ab initio gene prediction, GeneMark-ES v4.48_3.60
(Lomsadze et al., 2014) and AUGUSTUS v3.2.1 (Stanke and
Morgenstern, 2005) were used with default parameters. First,
GeneMark-ES was used to predict gene models, then the
models were used to train AUGUSTUS. Exonerate v2.2.0

1http://www.repeatmasker.org/RepeatModeler/
2http://www.repeatmasker.org/
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(Slater and Birney, 2005) was used for homology comparison
prediction. Finally, MAKER v3.01.03 (Campbell et al., 2014)
was used to predict protein-coding genes by combining the
gene models from GeneMark-ES, AUGUSTUS, and Exonerate.
BUSCO v4.1.4 was used to evaluate the completeness of genomes
and genome annotations based on pezizomycotina_odb9 (3156
core ortholog genes) (Waterhouse et al., 2018). Functional
annotations on the putative genes were performed using the
following softwares: BLAST v2.8.1 + (Camacho et al., 2009) for
the NCBI non-redundant protein (NR, 2020-06), SwissProt and
FunSecKB2 databases (E-value threshold of 1E-05); HMMER
v3.2.1 (Eddy, 2008) for the Pfam 32.0 and TransportDB 2.0
databases; KofamKOALA v1.2.0 (Aramaki et al., 2020) for KEGG
annotation; and dbCAN2 (Zhang et al., 2018) for annotating
carbohydrate active enzymes (CAZy).

Evolutionary Analysis of
Botryosphaeriaceae Fungi
To construct an accurate evolutionary tree, eight outgroups
(Supplementary Table 1) were selected and OrthoFinder v2.3.11
(Emms and Kelly, 2015) was used for gene family clustering.
According to the clustering results, single copy orthogroups were
extracted and aligned using MAFFT v7.427 (Katoh et al., 2002).
These processed single copy orthogroups were then concatenated
using a self-written Perl script and filtered using Gblock
v0.91b (Castresana, 2000). PartitiosnFinder v2.1.1 (Lanfear et al.,
2017) and RAxML v.8.2.2 (Stamatakis, 2014) were used to
determine the optimal amino acid substitution model and
build the Maximum Likelihood (ML) tree with 1,000 bootstrap
replicates, respectively.

The known ecologies states (multistate and binary) and
FUNGuild were used to determine the ecologies of each species
(Nguyen et al., 2016). Mesquite v3.61 software was then used to
infer ancestral ecological character states (Haridas et al., 2020).

Functional Enrichment Analysis of
Botryosphaeriaceae
To find the differences in gene function annotation of
Botryosphaeriaceae fungi with different lifestyles, scipy.stats
package in Python was used to perform the two-tailed Fisher
exact test for functional annotation with p-value threshold of
0.01. To reduce false positives, functional annotations with the
number of genes less than 100 were filtered.

Mating Strategies of Botryosphaeriaceae
Mating Type Genes and Surrounding Genes
To determine the presence of mating type genes in the
Botryosphaeriaceae fungal genome, the mating type genes of
Diplodia sapinea (D. sapinea) and some neighboring genes
(KF551229 and KF551228) (Bihon et al., 2012a) were used
as templates to search homologous genes from the putative
Botryosphaeriaceae fungal genes that has been generated in this
study, using the partial alignment mode in BLASTx (Camacho
et al., 2009). The mating type genes obtained were then inputted
into the NCBI’s conserved domain database (Marchler-Bauer
et al., 2015) to determine their functional domains.

Comparison of the Arrangement of Mating Type Loci
To compare the arrangement of mating type genes and their
surrounding genes in the Botryosphaeriaceae fungal genome, a
BLASTn alignment was conducted and then EasyFig version 2.2.2
(Sullivan et al., 2011) was used for collinearity analysis, with the
E value threshold set to 1e−4.

Phylogenetic Comparison and Ancestral State
Reconstruction
To study the mating strategies of Botryosphaeriaceae fungi,
ML evolutionary trees of 24 Botryosphaeriaceae fungi were
constructed with single-copy genes (using the same method
described in section: Comparison of the Arrangement of Mating
Type Loci). Briefly, OrthoFinder v2.3.11 (Emms and Kelly,
2015) was used to cluster gene families and extract single copy
orthogroups. Each orthogroup was aligned and concatenated
with MAFFT v7.427 (Katoh et al., 2002). Gblock v0.91b
(Castresana, 2000) was used for filtering, and finally, RAxML
v.8.2.2 (Stamatakis, 2014) was used to build an ML tree with the
LG + I + G + F model. Mesquite v3.613 and the Mk1 likelihood
model were used to reconstruct the evolutionary process of
homothallism (hom) and heterothallism (het).

Changes in Genes Related to the Pathogenicity of
Botryosphaeriaceae Fungi
The production of phytotoxic compounds in pathogenic
fungi, such as secondary metabolite, secreted proteins,
and carbohydrate-active enzymes, is one of the important
infective weapons (Amselem et al., 2011). The genomes of
Botryosphaeriaceae were searched for genes encoding the
phytotoxic compounds and then the number difference of
these genes was statistically analyzed as previously described
(Wang et al., 2018).

Specifically, 23 Botryosphaeriaceae fungi (7 genera) and 10
other representative fungi were included to analyze changes
in genes related to the pathogenicity in Botryosphaeriaceae.
The 10 representative fungi contained 1 biotrophic fungus
(Puccinia graminis), 2 necrotrophic fungi (Valsa mali and
Pyrenophora triticirepentis), 2 saprophytic fungi (Neurospora
crassa and Rhizopus oryzae), 3 hemibiotrophic fungi (Pyricularia
oryzae, Colletotrichum higginsianum, and Zymoseptoria tritici),
1 symbiotic fungus (Laccaria bicolor), and 1 endophytic fungus
(Peltaster fructicola).

RESULTS

Genome Sequencing, Assemby, and
Annotation
In this study, 167 genomes of Dothideomycetes, including 160
Botryosphaeriaceae (19 species), were sequenced, assembled,
and annotated (Supplementary Table 1). All genomes were
sequenced at average coverage 166± 48 x. The average assembled
genome lengths of 167 Dothideomycetes ranged between 28.85
and 61.78 Mb, which were consistent with the sizes estimated by

3http://www.mesquiteproject.org/
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k-mer counting approach. The contig N50 values of assembled
genomes varied from 41.81 to 779.02 kb with a mean of 241.77
kb. The repeat contents of assembled genomes varied from 0.95
to 10.98% with a mean of 5.18%. All assembled genomes have
a high completeness with an average of 94.8 ± 4.3%, and the
similar result was also found in genome annotations (average of
98.0± 2.9%).

Classification Based on Whole-Genome
Data
To better understand the evolutionary characteristics of
Botryosphaeriaceae, we used 167 newly sequenced in this
study and 112 genomes available in public database to
construct a whole-genome phylogenetic tree using 480
single-copy gene families. The phylogenetic tree was clearly
divided into 2 clades, corresponding to 2 subclasses, namely
Pleosporomycetidae and Dothideomycetidae (Supplementary
Figure 1). A comprehensive phylogenetic analysis revealed
that the members of Botryosphaeriaceae that belonged to
Botryosphaeriales were added to Pleosporomycetidae (Figure 1
and Supplementary Table 2).

Saprophytic Fungi Have a Larger
Genome Size Than Phytopathogenic
Fungi
The genome sizes of Dothideomycetes ranged from 17 (Piedraia
hortae) to 177 Mbp (Cenococcum geophilum), and 7,896–
34,881 protein-coding genes were detected (Supplementary
Figures 2, 3 and Supplementary Table 1). Compared with
non-pathogenic fungi, pathogenic fungi usually have a smaller
genome (Supplementary Figure 2). The genome size of
Botryosphaeriaceae is in the range of 28.85 (Aureobasidium
pullulans) −61.78 Mbp (Dothiorella sarmentorum) (47.19 Mbp
on average), and 11,505–16,851 proteion-coding genes were
predicted (13,765 genes in average).

Saprophytic Fungi Are the Possible
Evolutionary Ancestors of
Botryosphaeriaceae Fungi
To infer the ecological characteristics of ancestors of
Botryosphaeriaceae fungi, we analyzed their lifestyle evolution
process at the class level. The results showed that the ancestral
lifestyle was likely to be the saprophytic type (Figure 2),
which is also supported by the maximum likelihood analysis
(Supplementary Figure 4 and Supplementary Table 3). During
the evolution of Dothideomycetes fungi, at least 6 transitions
from non-phytopathogenic (NPP) to phytopathogenic (PP) were
detected, including 4 major transitions, which are presented at the
MRCA node of Mycosphaerellaceae (Dothideomycetidae) (Node
225: NPP = 0.1868, PP = 0.8132), Venturia (Pleosporomycetidae)
(Node 189: NPP = 0.0039, PP = 0.9961) and Botryosphaeriales
(Node 20: NPP = 0.0984, PP = 0.9016), along with the branching
point of Setomelanomma-Bipolaris (Node 98: NPP = 0.0074,
PP = 0.9926). In addition, the Botryosphaeriaceae fungi have
undergone at least 3 transitions from saprophytic to pathogenic
fungi, including Node 176 (NPP = 0.9859, PP = 0.0141), Node

FIGURE 1 | Whole-genome-based phylogenetic tree of 271 species from
Dothideomycetes and 8 outgroups. All bootstrap values are 100% except for
those shown. The orders of Dothideomycetes were well classified and were
displayed by different colors. The two circles left of species names standed for
lifestyle classification according to organism data and FunGuild, respectively.

180 (NPP = 0.9992, PP = 0.0008) and Node 246 (NPP = 0.9101,
PP = 0.0899) (Supplementary Table 3).

Differences in the Gene Families of Plant
Pathogenic and Saprophytic Fungi
To investigate the differences between plant pathogenic
and saprophytic fungi from the perspective of gene family
contractions and expansions, we used Fisher’s exact test to
perform these analyses on gene families. Differences in 78 Pfam
and 58 GO annotations were found between saprophytic and
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FIGURE 2 | Reconstruction of ancestral lifestyle character state of Dothideomycetes using Mesquite based on parsimony model as saprobe. Major lifestyle shifts
were marked by six red star symbols.

plant pathogenic fungi. In the saprophytic fungi, 42 Pfam and 35
GO terms showed more than 20% of expansion, and 31 Pfam and
14 GO terms displayed more than 20% of contraction. In plant
pathogenic fungi, 32 Pfam and 17 GO terms showed greater than
20% of expansion, and 35 Pfam and 21 terms displayed more
than 20% of contraction. Compared with saprophytic fungi, the
plant pathogenic fungi contained more gene families that showed
contraction. Compared with saprophytic fungi, 94 Pfam and
67 GO terms of Botryosphaeriaceae fungi showed greater than
20% of expansion, while 52 Pfam and 44 GO terms displayed
contractions (> 20%) (Supplementary Table 4).

Mating Strategies of Botryosphaeriaceae
Fungi
Mating Type Genes
To determine the mating type genes, MAT1-1 and MAT1-
2 of 24 fungi (7 genera and 19 species) were analyzed
in the Botryosphaeriaceae family. The results showed that
the Botryosphaeria, Neofusicoccum, and Dothiorella genomes
harbored both MAT1-1 and MAT1-2, indicating that they
were homothallic. Diplodia, Macrophomina, and Neoscytalidium
genomes harbored either MAT1-1 or MAT1-2, indicating that
they were heterothallic fungi. Lasiodiplodia fungi had various
mating strategies, including homothallism (L. gonubiensis) and
heterothallism (Lasiodiplodia citricola, L. pseudotheobromae, and
L. theobromae) (Supplementary Table 5). In addition, the protein
domains of MAT1-1-1 and MAT1-2-1 were highly conservative.
All the MAT1-1-1 proteins contain MATalpha domains, and
all the MAT1-2-1 proteins contain MAT_HMG-box domains
(Supplementary Table 6). Compared with the neighboring
genes, the nucleic acid sequences of the mating type genes were
poorly conserved (Supplementary Table 7), while the length of

the coding sequence and the position and size of the intron were
largely conservative.

Arrangement of Mating Loci
Arrangement analysis of mating loci showed that there were
three types of arrangements at the mating type determining loci
of Botryosphaeriaceae (Figure 3). In most Botryosphaeriaceae
genomes (e.g., Diplodia sapinea), the MAT1 gene was primarily
located between a collinear region that contains 4 protein-
coding genes and 1 putative integral membrane (PIM) protein
(Figure 3). The PIM contains pleckstrin homology domains
and DUF2404. The four genes in the collinear region encode,
in order, a DNA lyase (APN2), cytochrome c oxidase subunit
VIa (CoxVIa), anaphase-promoting complex subunit 5 (APC5),
and complex I intermediate-associated protein 30 (CIA30).
According to the positional relation between the MAT1 and
APN2 genes (the MAT1 gene was located at the proximal end
of APN2), the second type of arrangement was observed in
Botryosphaeria, L. gonubiensis (Lasiodiplodia), M. phaseolina
(Macrophomina), and N. dimidiatum (Neoscytalidium). For
example, the MAT1 gene of M. phaseolina and B. dothidea was
located upstream of the APN2 gene, while in L. gonubiensis and
N. dimidiatum, the MAT1 gene was located downstream of the
APN2 gene, and the four genes in the collinear region were
arranged in reverse order. However, the opposite arrangement
was observed in the two strains of B. kuwatsukai-the MAT1
gene of the PG2 strain was located downstream of the APN2
gene, while LW030101 was located upstream. A similar type
of reversed arrangement as the one found for B. kuwatsukai
was also identified in two B. dothidea strains. The third type of
arrangement was primarily observed for Neofusicoccum species
in which the two subtypes of MAT1, MAT1-1, and MAT1-2,

Frontiers in Microbiology | www.frontiersin.org 5 February 2022 | Volume 13 | Article 800981

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-800981 February 22, 2022 Time: 11:31 # 6

Yu et al. Comparative Genomics of Botryosphaeriaceae

FIGURE 3 | Pairwise mating type and surrounding genes comparison between species of Botryosphaeriaceae. Genes (color coded arrows) were on genomic
sequences (horizontal lines). Organization of genes were indicated by gray box. Abbreviations of genes: putative integral membrane protein containing DUF2404
domain (DUF2404), DNA lyase (APN2), cytochrome C oxidase subunit Via (Cox), anaphase-promoting complex subunit 5 (APC5) and Complex I
intermediate-associated protein 30 (CIA30).

were not located in conjunction; they were either located both
distantly from the collinear region or at different chromosomes
(or scaffolds) (Figure 3).

Reconstruction of the Ancestral State of the Mating
Strategy
To understand the evolutionary characteristics of the mating
type of Botryosphaeriaceae, we selected 24 representative
Botryosphaeriaceae strains to reconstruct the evolutionary
process of homothallism and heterothallism mating strategies
in Botryosphaeriaceae (Supplementary Figure 5). Our analysis
showed that het mating was likely to be the ancestral type
(Node 2, het = 0.6198, hom = 0.3802) (Supplementary Figure 5
and Supplementary Table 8). During the course of evolution,
Botryosphaeriaceae fungi have undergone at least 2 major
transitions to their hom strategy. The first was located at the
branching point of Lasiodiplodia theobromae and L. citricola

(Node 14: het = 0.8291, hom = 0.1709), and the other transition
was primarily observed at the branching point of Neofusicoccum
and Dothiorella (Node 26: het = 0.4344, hom = 0.5656)
(Supplementary Figure 5 and Supplementary Table 8).

Changes in Genes Related to the Pathogenicity of
Botryosphaeriaceae
Secondary Metabolism
To find the key enzymes involved in the synthesis of
secondary metabolites in Botryosphaeriaceae fungi, we used Pfam
annotations to find 3 types of genes that encode these key
enzymes, such as polyketide synthase (PKS), non-ribosomal
peptide synthetase (NRPS), and dimethylallyl tryptophane
synthase (DMATS). The PKS genes of Botryosphaeriaceae fungi
differed significantly from each other (p = 2.0 × 10−16)
(Figure 4A). Among all the species, the Macrophomina fungi
contained the largest number of PKS genes (31 on average),
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while the Dothiorella fungi contained the least number (8
on average) (Supplementary Table 9). The genes related
to secondary metabolites in fungi also included those that
encode cytochrome P450 enzymes, regulatory factors, and
transporters. Cytochromes P450 can catalyze the transformation
of hydrophobic intermediates in the primary and secondary
metabolic pathways and plays an important role in fungi.
Compared with other fungi, Botryosphaeriaceae fungi contained
the largest number of genes that encode cytochromes P450 (133-
267). Among all the species, Neofusicoccum fungi contained
the highest number of cytochromes P450 (267), followed by
Botryosphaeria (n = 251) (Figure 4B). The ATP-binding cassette
(ABC) or major facilitator superfamily (MFS) gene families played
important roles in the transport of secondary metabolites. The
numbers of ABC or MFS in Botryosphaeriaceae fungi were higher
than those of other species (ABC: 268-353; MFS: 16-62). Among
all the species, Botryosphaeria fungi contained the largest number
of MFS (n = 62), while Neoscytalidium dimidiatum fungi contain
the least amount (n = 16) (Figure 4B).

Secreted Proteins
Pathogens can secrete a battery of proteins, which are deployed
to the host-pathogen interface during infection, and these
secreted proteins played important roles in fungal pathogenicity
(O’Connell et al., 2012; Fernandes et al., 2014; Félix et al.,
2016). In this study, we predicted the secreted proteins of
Botryosphaeriaceae (Figure 5). The number of secreted proteins
in Botryosphaeria (the B. dothidea fungi contain 1,034, and the
B. kuwatsukai fungi contain 939) was not significantly different
from Macrophomina (n = 1,118), and the B. kuwatsukai fungi
seemed to secrete less proteins. The number of proteins secreted
by the Neofusicoccum fungi varied greatly (922–1,028). Among
all the species, the N. parvum fungi contained the largest
number (n = 1,028), and N. cordaticola fungi contained the least
(n = 922). Compared with other fungal genera, the Diplodia
genus contained fewer secreted proteins (671–866) (Figure 5 and
Supplementary Table 10).

The transfer of secreted effector proteins to host plant
cells was the key to pathogenesis of many plant pathogenic
microorganisms. Secreted proteins less than 200 amino acids
in length and rich in cysteine were considered as candidate
secreted effectors (Wang et al., 2018). The Botryosphaeriaceae
family contained two genera Macrophomina and Botryosphaeria
that may release a large number of secreted proteins, and the
number of small, secreted proteins of these two genera was also
higher than that of other genera. For example, M. phaseolina
(261), B. dothidea (253), and B. kuwatsukai (230) displayed
significant expansions of gene families. Small secretory proteins
rich in cysteine were the most abundant in Botryosphaeria
fungi and the least in Diplodia fungi (79-113) (Figure 5 and
Supplementary Table 10). In Botryosphaeria, both B. dothidea
and B. kuwatsukai contained 154 small secretory proteins rich
in cysteine, and the Pfam annotations of them included 19
and 21 known functional domains, respectively (Supplementary
Table 11). By comparing the Pfam annotations of B. dothidea
and B. kuwatsukai secretory proteins, we found that ribonuclease,
the cerato-platanin family, and cysteine-rich secretory protein

(CAP) family were only present in B. kuwatsukai, while the cell
wall integrity and stress response component (WSC) domain,
a putative carbohydrate binding domain was only present in
B. dothidea (Supplementary Table 11).

Pathogenic and saprophytic fungi can secrete peptidases
into their surroundings to degrade a variety of host-related
proteases (Wang et al., 2018). This degradation mechanism
has potential benefits in eliminating the activity of antifungal
host proteins and providing nutrients. Compared with other
fungi, Botryosphaeriaceae fungi contained a higher number of
secretory peptidases. Among all the species, the M. phaseolina
(Macrophomina) fungi contained the largest number of secretory
peptidases (n = 298), followed by B. dothidea (n = 264) and
B. kuwatsukai (n = 235), but both were similar to the semi-
biotrophic phytopathogenic pathogens C. higginsianum (n = 233)
and P. oryzae (n = 240). Diplodia fungi contain the lowest number
of secreted proteins (n = 192; p = 0.8 × 10−3) (Figure 5 and
Supplementary Table 10).

Carbohydrate Active Enzymes
The ability to degrade complex carbohydrates in plants is
an important aspect of the lifestyle of phytopathogenic fungi
(Wang et al., 2018). Compared with other species, the fungi
in Botryosphaeriaceae family contained a higher number of
carbohydrate active enzyme-related gene families, such as
genes that encode glycoside hydrolases (GHs), polysaccharide
lyases (PLs), carbohydrate esterases (CEs), auxiliary activities
(AAs), and carbohydrate binding modules (CBMs). Some
representative species include N. parvum (753), B. dothidea
(750), N. kwambonambiense (724), L. theobromae (719), N. ribis
(716), N. umdonicola (716), and N. cordaticola (709). Within the
Botryosphaeriaceae family, N. parvum has the largest number of
carbohydrate active enzyme-related gene families (753), followed
by B. dothidea (750), and B. kuwatsukai (675). Most Diplodia
fungi contain fewer carbohydrate activity enzyme-related gene
families, such as D. scrobiculata (522), D. corticola (548),
D. mutila (577), and D. sapinea (556). However, for some species,
such as D. seriata (662), there was a small increase in the number
(Figure 6A and Supplementary Table 12).

The plant cell wall is a complex network structure composed
of different polysaccharides, including cellulose, hemicellulose,
pectin, and lignin (Terrett and Dupree, 2019). Proteins encoded
by fungal carbohydrate active genes and related auxiliary genes
can degrade plant cell walls into simple monomers that are
absorbed as the carbon source to provide energy for fungi (Islam
et al., 2012; Wang et al., 2018). Compared with other fungi, those
of Botryosphaeriaceae contain expanded gene families involved
in the degradation of lignin, cellulose, hemicellulose, and pectin.
For example, the gene family involved in the degradation of
lignin (107 genes in average) was significantly larger than that
in other species (54 genes in average; p = 2.0 × 10−4, t-test).
The number of gene families involved in the degradation of
hemicellulose and pectin also expanded significantly, with 67
vs. 34 (p = 2.0 × 10−3) and 70 vs. 32 (p = 2.0 × 10−3),
respectively. Among the Botryosphaeriaceae fungi, compared
with other genera, it was found that Neofusicoccum fungi contain
the largest number of gene families involved in the degradation of
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FIGURE 4 | Comparing backbone and related genes of secondary metabolism among Botryosphaeriaceae fungi and other 10 fungal species. (A) Key gene family of
secondary metabolism. In each column, Z-score was used to describe the trend of over-represented (+ 4–0) and down-represented (0 to −4) gene family. (B) Gene
family number comparison of MFS_1, ABC_tran and CYPs among Botryosphaeriaceae fungi and other 10 fungal species.

plant cell walls (287–329), followed by Botryosphaeria (219–314)
and Macrophomina (291–306), while Diplodia fungi contain the
least number of gene families (215–259) (Figures 6B,C and
Supplementary Table 13).

DISCUSSION

In this study, we conducted a large-scale whole-genome
sequencing of 167 Dothideomycetes fungi, including 19 species,
and comprehensively analyzed evolutionary traits, mating
strategies and changes in pathogenic genes in Dothideomycetes
fungi. Our results can advance our understanding of the
evolutionary history of Botryosphaeriaceae fungi.

Our results also confirmed that the 167 Dothideomycetes
fungi can be divided into two subclasses, Pleosporomycetidae
and Dothideomycetidae, and Botryosphaeriaceae belongs to
Pleosporomycetidae, indicating that it is accurate to classify fungi
using phylogenies based on phylogenomics (Haridas et al., 2020).
Our results inferred the ancestral lifestyle of Botryosphaeriaceae
fungus as saprobe, and these fungi have undergone at least three
transitions from saprophytic to phytopathogenic states. This
result is consistent with Schoch et al. (2009). They inferred that
the Dothideomycetes fungi have experienced multiple transitions
from saprophytic pathogens to lichens to phytopathogens, along
with multiple transitions from terrestrial to aquatic lifestyles
(Schoch et al., 2009). In addition, a larger genome size and a
higher number of protein-coding genes are usually associated
with saprophytic fungi compared with phytopathogenic fungi.
This result is consistent with the findings of Schuelke et al.
(2017). They found that in the Geosmithia genus, compared with

non-pathogenic fungi, the pathogenic fungi in this family have
smaller genomes (Schuelke et al., 2017).

Previous studies have shown that phytopathogenic fungi
have a smaller genome and contain fewer protein-coding genes
compared with saprophytic fungi, which is related to the
expansion and contraction of gene families (Ohm et al., 2012;
Haridas et al., 2018). In this study, many gene families of
phytopathogenic fungi showed contractions, primarily including
genes which contain the Pfam domain tetratricopeptide repeat
(TPR). TPR can interact with a variety of proteins, such
as the anaphase-promoting complex, NADPH oxidases, and
HSP90-binding proteins (Das et al., 1998; Kaneko et al., 2006;
Kondo et al., 2010). The TPR protein is also part of the plant
hormone signaling pathways (Schapire et al., 2006). The family
enrichment results found that multiple members of the TRP
family proteins (TPR 1, 3, 8, 10, 11, 12, 16, and 19) contracted
in phytopathogenic fungi. This contraction may be due to a
reduction of signal related TPR proteins in pathogenic fungi.
This is because during the process of pathogenic fungal infection,
fungal signal related TPR proteins will be affected by plant
hormone signals (Haridas et al., 2020). Some other Pfam domains
also contracted significantly in phytopathogenic fungi, including
PF17111 (the fungal N-terminal domain of STAND proteins),
PF05729 (the NACHT domain), and PF14479 (involved in prion
inhibition and propagation). These domains are in heterokaryons
and play an important role in incompatibility (Paoletti and
Saupe, 2009; Greenwald et al., 2010; Daskalov et al., 2012). The
contraction of Pfam domains associated with incompatibility in
the heterokaryons suggests that other strategies to reduce the
level of incompatibility in heterokaryons also exist to improve
the adaptability of pathogenic fungi (Ishikawa et al., 2012).
Simultaneously, compared with saprophytic fungi, many GO
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FIGURE 5 | Comparison of secreted proteins among Botryosphaeriaceae fungi and other 10 fungal species.

terms are contracted in phytopathogenic fungi, including protein
kinases (GO: 0004672), transcription factors (GO: 0003700),
zinc ion binding (GO: 0008270), and regulation of nitrogen
utilization (GO: 0006808). Given the complexity of amino
acid biosynthetic pathways and energy requirements, fungi
rely on the absorption of plant amino acids to conserve
their own energy. This could be one of the reasons for the
contraction of GO terms in plant pathogens (Staats et al., 2013;
Mur et al., 2017).

Botryosphaeriaceae fungi display both types of mating
strategies, homothallism and heterothallism, which are
determined by the single locus MAT1 (Mur et al., 2017). In
this study, the mating type genes of 24 Botryosphaeriaceae fungal
isolates (19 species) were analyzed, and we found that these
genes were not highly conserved in terms of their nucleotide
and amino acid sequences. However, for two subtype genes, two
domains, MATalpha_HMGbox (MAT1-1-1) and MATA_HMG-
box (MAT1-2-1), are more conservative. This is consistent
with the fact that the mating type genes of fungi have almost
no differences within a species, but they are highly divergent

between species (Turgeon, 1998). In many ascomycete fungi, it is
a conservative trend that the MATalpha and MATA_HMG-box
regions contain introns (Arie et al., 2000; Paoletti et al., 2005;
Duong et al., 2013; de miccolis et al., 2016). In D. sapinea and
D. seriata, the introns in the MATA_HMG-box region of the
MAT1-2-1 gene were lost, but the amino acid sequences that
flank the lost intron site remain intact (Nagel et al., 2018). This
phenomenon is consistent with the intron loss model derived
from Poly-A primed mRNA (Sharpton et al., 2008). In this
study, with the exception of Neofusicoccum, the arrangement
of MAT1-1 and MAT1-2 genes is highly conserved in six other
genera. They all are located between a collinear region that
contains four protein-coding genes and one PIM protein, which
is the same arrangement as found in most Phyllostictaceae fungi
(Bihon et al., 2014; Wang et al., 2016). The arrangement of
mating type genes of Neofusicoccum fungi is exceptional. The
locations of the two subtypes of mating type genes are not in
conjunction; they are either both located distantly from the
collinear region or at different chromosomes (or scaffolds)
(Lopes et al., 2017). Similarly, this discontinuous arrangement
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FIGURE 6 | Comparing CAZy among Botryosphaeriaceae fungi and other 10 fungal species. (A) Six CAZy classes: CBMs, Carbohydrate-Binding Modules; PLs,
Polysaccharide Lyases; GTs, Glycosyl Transferases; CEs, Carbohydrate Esterases; AAs, Auxiliary Activities; GHs, Glycoside Hydrolases. (B) Distribution of CAZy
related to cellulose, hemicellulose and lignin degradation. (C) Comparison of selected enzymes involved in PCW (plant cell wall) degradation among
Botryosphaeriaceae fungi and other 10 fungal species. In heatmaps, Z-score were used to describe over-represented (+ 4–0) and down-represented (0 to −4) gene
family.

of mating type genes also exists in Aspergillus nidulans (Galagan
et al., 2005), Curvularia cymbopogonis (Galagan et al., 2005), and
Neosartorya fischeri (Rydholm et al., 2007).

The mating type gene MAT1 has two subtypes—MAT1-1 and
MAT1-2. When two subtypes are both harbored in the genome,
the mating strategy is hom, and if only one is present, it is
het (Idnurm, 2011). The repetitive sequence-mediated deletion
of one or more mating type genes can cause non-directional
changes in mating types, such as the transition from self-
fertility to self-sterility (Wilken et al., 2014; Xu et al., 2016; Yun
et al., 2017). Such repetitive sequences were not observed in
this study. Therefore, Botryosphaeriaceae fungi are unlikely to
undergo a non-directional change regarding mating types (Nagel
et al., 2018). In addition, to further understand the evolutionary
characteristics of the fungal mating type in Botryosphaeriaceae,
we reconstructed the ancestral state of the Botryosphaeriaceae
fungal mating type and found that the het mating strategy is the
ancestral type. Moreover, the fungi in this family experienced a

number of transitions to the homothallism strategy, a shift that is
common in ascomycete fungi (Inderbitzin et al., 2005; Yokoyama
et al., 2006; Nygren et al., 2011; Gioti et al., 2012).

In this study, many gene families of the Botryosphaeriaceae
fungi have shown significant expansions and contractions,
and this change is conducive to the adaptation of fungi to
the living environment (Alkan et al., 2013). These contracted
gene families include genes that encode secondary metabolite
synthases, secreted proteins, and carbohydrate active enzymes.
In the family of genes that encode secondary metabolite
synthases, NPRS and PKS gene clusters are responsible for the
synthesis of toxic peptides and the production of naphthalenone
pentaketides, respectively, in Botryosphaeriaceae fungi
(D. seriata, L. theobromae and N. parvum) and other pathogenic
fungi (A. fumigatus, Diaporthe ampelina, Phaeomoniella
chlamydospora, and Togninia minima) (Andolfi et al., 2011;
Paolinelli-Alfonso et al., 2016). Although the gene clusters of
secondary metabolites are not regulated during infection, a
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large number of products of these gene clusters, which are
significantly expanded in the genome, may be involved in the
induction of disease symptoms and host adaptation (Yan et al.,
2018). Cytochrome P450 is a superfamily of monooxygenases.
In addition to participating in the post-synthesis modification
of a variety of metabolites, it can also promote the adaptation of
fungi to specific ecological niches by altering potentially harmful
chemicals in the environment (Siewers et al., 2005). Here, we
found the expansion of this gene family, which can explain the
wide host range of Botryosphaeriaceae fungi. This is because these
genes are also associated with some physiological characters;
thus, their expansions are likely to promote pathogenic evolution
(Nierman et al., 2005). In this study, expansions are obvious for
the genes that encode ABC transporters in Botryosphaeriaceae
fungi, indicating that these fungi have evolved stronger virulence
and capacity against plant defense compounds (Han et al., 2001;
Luini et al., 2010). Sugar synergistic transporters belong to
the MFS family, and they play important roles in fungal spore
formation, intercellular communication, and pathogenicity
(Gaur et al., 2008). In the Botryosphaeriaceae fungi, we found
that the sugar synergistic transporter gene family showed
different degrees of expansion, which probably makes it more
adaptive to different host environments (e.g., different pH
values), and more resistant when interacting with various plant
pathogens (Zhang et al., 2012; Yin et al., 2015).

Previous studies have showed that secreted proteins play
important roles in the infection process of pathogenic fungi
(Cobos et al., 2010; O’Connell et al., 2012; Fernandes et al.,
2014; Félix et al., 2016, 2019). In this study, the secretory
protein gene families of Botryosphaeriaceae fungi have expanded
to different degrees, but there are large differences between
different genera, which may be related to the different
infection ranges of Botryosphaeriaceae fungi (Wang et al.,
2018). In addition, the gene families of carbohydrate active
enzymes in Botryosphaeriaceae fungi also showed different
degrees of expansion. Among these families, the glycoside
hydrolase family GH33 is composed of sialidase, which
can hydrolyze the glycosidic bonds of terminal sialic acid
residues in oligosaccharides. Sialidase can function as a
pathogenic factor, facilitating the adaption to the host by
evading host recognition or inhibiting host defense responses
(Alviano et al., 2004). The cell wall of most dicotyledonous
plants is composed of approximately 35% pectin. Pectin-
degrading enzymes contribute to the degradation of the cell
wall. This local degradation of the cell wall is necessary
for fungi to enter the plant cytoplasm and replicate in
the host tissue (ten Have et al., 1998). Similar to the
highly pathogenic Colletotrichum higginsianum, Neofusicoccum,
and Botryosphaeria both possess a larger number of genes
encoding pectin-degrading enzymes, which may explain the
difference in pathogenicity between Botryosphaeriaceae fungi
(Wang et al., 2018). Many genes encoding cellulase (AA9
and GH12) and hemicellulase (GH31 and GH43) have been
significantly expanded in Neofusicoccum and Botryosphaeria
fungi. These expansions may explain the rapid infection
and colonization of Botryosphaeriaceae fungi in woody plants
(Yan et al., 2018).

CONCLUSION

In conclusion, we constructed a phylogenetic tree using
whole-genome data and clarified the taxonomic position of
Botryosphaeriaceae in Dothideomycetes. Heterothallism is the
ancestral mating type of Botryosphaeriaceae fungi, and these
fungi have undergone at least 3 transitions from heterothallism to
homothallism. The host range of Botryosphaeriaceae infection is
closely related to the changes in the number of pathogenic genes.
Our results provide important insights into the evolutionary
history, mating strategies and pathogenicity-related genes
variation in Botryosphaeriaceae.
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