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A B S T R A C T   

Previous reports have revealed that the abnormal expression of the cell division cycle-associated 
gene family (CDCAs) is closely associated with some human cancers. However, the precise 
functional roles and mechanisms of CDCAs in kidney renal papillary cell carcinoma (KIRP) remain 
unclear. In this study, RNA sequencing data from the Cancer Genome Atlas database and 
Genotype-Tissue Expression databases were utilized to perform the expression, correlation, sur-
vival, mutation, functional enrichment analysis, and immunoinfiltration analyses of CDCAs in 
KIRP. We found that the expression levels of CDCA genes were significantly increased in KIRP 
across multiple databases, as confirmed by immunohistochemistry and quantitative reverse 
transcription PCR (RT-qPCR). Moreover, increased expression of CDCA genes is significantly 
associated with poor prognosis. Univariate and multivariate Cox regression analyses demon-
strated that pathologic T and N staging, NUF2, CDCA2, CDCA3, CDCA5, CBX2, CDCA7, and 
CDCA8 were independent prognostic factors for patients with KIRP. Utilizing these nine variables, 
we developed a nomogram prognostic model. Furthermore, the results of GO and KEGG func-
tional enrichment analyses suggested that CDCA genes were associated with nuclear division, 
mitotic nuclear division, and chromosome segregation and were involved in the cell cycle, p53 
signaling pathway, and cellular senescence. We found that the expression of NUF2, CDCA2, 
CDCA5, and CBX2 was closely associated with the expression of lymphocytes, immunostimulatory 
molecules, immunoinhibitory molecules, and chemokines. In summary, NUF2, CDCA2, CDCA3, 
CDCA5, CBX2, CDCA7, and CDCA8 are potential biomarkers for KIRP diagnosis and prognosis.  

Abbreviations: AUC, area under curve; BP, biological processes; CC, cellular components; CDCAs, cell division cycle-associated genes; CI, credible 
interval; FPR, false positive rate; GTEx, Genotype-Tissue Expression; GO, gene ontology; HR, hazard ratio; IHC, Immunohistochemistry; KIRP, 
Kidney renal papillary cell carcinoma; KEGG, kyoto encyclopedia of genes and genomes; MF, molecular function; MSI, microsatellite instability; OS, 
overall survival; PPI, protein-protein interaction; ROC, receiver-operating characteristic; TCGA, The Cancer Genome Atlas; TPM, transcripts per 
million; TMB, tumor mutational burden; TPR, true positive rate. 

* Corresponding author. Xiamen Fifth Hospital, 101 Ming’an Rd, Xiamen, Fujian, 361101, China. 
E-mail address: jializhan2265@163.com (J. Zhan).   

1 These authors have contributed equally to this work and are the co-first authors. 

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e33045 
Received 30 March 2024; Received in revised form 29 May 2024; Accepted 13 June 2024   

mailto:jializhan2265@163.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e33045
https://doi.org/10.1016/j.heliyon.2024.e33045
https://doi.org/10.1016/j.heliyon.2024.e33045
http://creativecommons.org/licenses/by-nc/4.0/


Heliyon 10 (2024) e33045

2

1. Introduction 

Kidney renal papillary cell carcinoma (KIRP) is a highly heterogeneous type of renal cell carcinoma and the second most frequent 
pathological type. It accounts for approximately 15–20 % of all kidney malignancies and exhibits low malignancy and relatively good 
prognosis [1]. Currently, KIRP is often detected during physical examinations due to the absence of clinical symptoms. Nephrectomy 
and nephron-sparing surgery are common therapeutic modalities for patients with KIRP without metastasis. Molecular targeted 
therapy and chemoradiotherapy have limited benefits in treating advanced metastatic KIRP [2,3]. However, the lack of accurate 
therapeutic targets, prognostic biomarkers, and limited preclinical models have hindered the development of effective therapies for 
KIRP [4]. Therefore, there is a need to identify effective and reliable biomarkers that can help improve the efficacy of KIRP treatment 
and the survival rate. 

The cell division cycle-associated gene family (CDCAs) comprises of eight members: CDCA1 (also known NUF2), CDCA2, CDCA3, 
CDCA4, CDCA5, CDCA6 (also known CBX2), CDCA7, and CDCA8. Cell division is of great importance to various biological activities 
[5], and CDCA gene family are crucial regulators in the process of cell division and proliferation. Previous studies have demonstrated 
that any disorder in cell division can lead to cancer onset and progression [6,7]. Furthermore, previous reports have suggested that the 
aberrant expression of CDCAs is strongly correlated with some human cancers, including ovarian cancer [8], hepatocellular carcinoma 
[9], prostate cancer [10], nasopharyngeal carcinoma [11], breast cancer [12], pancreatic adenocarcinoma [13], stomach carcinoma 
[14], hypopharyngeal squamous cell carcinoma [15], and non-small cell lung cancer [16]. Notably, few studies have described the 
relationship between certain members of the CDCA family and the immune microenvironment. For instance, it has been reported that 
the upregulation of CDCA8 is closely correlated with decreased infiltration of CD8+ T cells and increased infiltration of CD4+ Th1 cells 
[11]. High CDCA7 expression may be relevant to mast cell infiltration during inflammation [14]. 

To date, few studies have investigated the association between the abnormal expression of CDCA gene family members and KIRP. 
For instance, researchers have found that the SK-RC-39 cell line is more sensitive to sunitinib after CDCA3 knockout [17]. However, the 
precise functional roles and mechanisms of CDCAs in KIRP remain unclear. This study aimed to explore the expression and mutations 
in CDCA genes and their correlation with immune infiltration in KIRP. 

2. Materials and methods 

2.1. Data collection and processing 

The analytical process used in this study is shown in sFig. 1. The expression profiles of CDCA genes and clinical data were obtained 
from various databases, including The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/) [18], Genotype-Tissue 
Expression (GTEx, https://gtexportal.org/) [19], and ArrayExpress (https://www.ebi.ac.uk/arrayexpress) [20]. TCGA-KIRP data 
comprised 289 KIRP and 32 normal specimens, and GTEx data included 28 normal samples. The cBioPortal (http://www.cbioportal. 
org/) database [21] was used to collect data on mutations, copy-number alterations (CNA), methylation, and clinical information on 
CDCAs. KIRP immunity data related to CDCA genes expression were obtained from the TISIDB database (http://cis.hku.hk/TISIDB/) 
[22]. 

2.2. Expression analysis of CDCAs in KIRP 

The TCGA and GTEx databases were used to explore the mRNA levels of CDCA genes in KIRP and normal renal tissues. The 
"ggplot2" package of R software (version 3.6.3, http://r-project.org) was used for differential expression analysis. The Wilcoxon rank- 
sum test was conducted to compare the tumor and normal groups. Statistical significance was established as P < 0.05. Microarray data 
on CDCA genes were available in the ArrayExpress database. The thresholds were set as follows: log2 fold change ≥1 and adjusted P <
0.05. The receiver-operating characteristic (ROC) curve and the area under the curve (AUC) were employed to assess the diagnostic 
value of the CDCA genes. The AUCs were as follows: AUC (0.5–0 0.7), low accuracy; AUC (0.7–0 0.9), moderate accuracy; and AUC 
(0.9–1.0), high accuracy. 

2.3. Correlation analysis of CDCAs and clinicopathological parameters 

The GEPIA 2 database (http://gepia2.cancer-pku.cn/#index) [23] was used to determine the correlation between cancer stage and 
CDCA genes expression. TCGA-KIRP data were used to analyze the relationship between CDCA genes expression in KIRP tissues and 
their clinicopathological features, such as pathological T, N, and M staging, and gender. Boxplots drawn using the R package ggplot2 
were used to visualize the above associations. The Kruskal–Wallis test was applied for multiple group comparisons. Pr (>F) < 0.05 and 
P < 0.05 indicated statistical significance. 

2.4. Survival analysis and subgroup survival analysis 

The survival data of patients with TCGA-KIRP were analyzed to investigate the effect of CDCA genes expression on overall survival 
(OS) [24]. Additionally, subgroup survival analysis was conducted based on different clinicopathological characteristics such as age 
(≤60 years), pathological T3 stage, and pathological stage III to identify any potential survival advantage in these subgroups. 
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Furthermore, we performed univariate and multivariate Cox regression analysis of the TCGA-KIRP data using the "survival" and 
"survminer" R packages. The median expression value of these genes was used as the cutoff threshold for the survival analysis. The 
results of the survival analysis were visualized using forest plots generated by the "ggplot2" R package and Kaplan–Meier (KM) curves. 
P < 0.05 was considered statistically significant. 

2.5. Identification of CDCA genes and construction of a prediction model for prognosis 

Based on the results of univariate Cox regression analysis, candidate genes for further investigation were selected from the CDCA 
gene family, that exhibited a significant correlation with survival status. Then, the LASSO-Cox regression method generated by the 
"glmnet" R package was used to screen the appropriate variables and construct the prediction model. The risk score was obtained for 
each patient using the following formula: Risk score =

∑n
i=1 coefficient(i) × expressionvalue(i), where n is the number of genes. 

Subsequently, the median score was used as a cutoff value to classify patients with KIRP into low- and high-risk groups. Kaplan–Meier 
analysis was used to compare the survival times between the two risk groups. A time-dependent ROC curve was also conducted with 
the aid of "survival," "survminer," and "timeROC" R packages to evaluate the discriminative ability of the prediction model. 

2.6. Independent prognostic evaluation of CDCA genes and construction of nomogram 

Clinical data, including pathological T and pathological N staging, of patients in TCGA-KIRP database were extracted. These 
variables, along with CDCA genes expression, were subjected to univariate and multivariate Cox regression analyses. To facilitate 
visualization and potential clinical application in predicting the prognosis of KIRP patients, a nomogram based on independent 
variables was constructed using the "rms" R package. The performance of the nomogram was assessed using a calibration curve 
analysis. 

2.7. Genetic alterations and co-expression analysis 

In this study, we obtained the KIRP dataset (TCGA, Firehose Legacy) comprising 280 complete samples from 293 patients using the 
cBioPortal database. The dataset was subjected to multiple analyses, including the generation of a gene mutation map, expression 
heatmap, methylation heatmap, copy number alterations, and co-expression map of the CDCA genes. A Z-score threshold of ±1.5 was 
set during the above analysis. The Spearman correlation coefficient was used for co-expression analysis. The significance threshold was 
set at P < 0.05. 

2.8. Protein-protein interaction (PPI) network construction and functional enrichment analysis 

The PPI network between the eight proteins of the CDCA genes and their 80 frequently neighboring proteins was established using 
the STRING tool (https://string-db.org/) [25]. PPI pairs with a combined score >0.4 were selected for analysis. Hub genes within the 
PPI network were identified using the "CytoHubba" plugin of Cytoscape software (version 3.9.1, https://cytoscape.org). Additionally, 
the MCODE components of the PPI network were analyzed using Metascape (https://metascape.org) [26]. Subsequently, the function 
of the CDCAs was examined using gene ontology (GO) enrichment analysis at three levels: biology process (BP), molecular function 
(MF), and cellular component (CC). The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway analysis. The 
enriched terms resulting from both GO and KEGG analyses, which were conducted using the DAVID platform (https://david.ncifcrf. 
gov/) [27], were visualized using the "clusterprofiler" R package. 

2.9. Immune-related analysis 

A 100 % stacked bar chart of immune cell-type fractions (Cibersort LM22) in the KIRP was acquired from The Cancer Immunome 
Atlas database (https://www.tcia.at/home) [28]. The TISIDB database was used to investigate the correlation between CDCAs 
expression and the immune microenvironment, including tumor-infiltrating lymphocytes (TILs), immunostimulators, immunoinhi-
bitors, and chemokines. Additionally, correlation analysis between CDCA genes expression and tumor mutational burden (TMB), 
microsatellite instability (MSI), and immune checkpoints was performed using TCGA-KIRP data. The Spearman correlation coefficient 
was utilized for correlation analysis. Statistical significance and positive correlation were defined as P < 0.05 and |R| >0.20, 
respectively. Statistical differences between two groups were compared using the Wilcoxon rank-sum test. 

2.10. Immunohistochemistry (IHC) 

KIRP tissue microarrays (Tissue Microarray OD-CT-UrKid03-003 and Tissue Microarray HKidC080PT01) were procured from 
Shanghai Outdo Biotech Company (Shanghai, China) and comprised of 20 paired KIRP tissue and adjacent non-tumorous tissue 
samples. The tissue microarrays were subjected to IHC using the UltraSensitive™ S–P. First, the tissue samples were dewaxed, followed 
by antigen retrieval and treatment with 3 % hydrogen peroxide to inactivate endogenous peroxidases. Next, the tissue samples were 
non-specifically blocked with skim milk for 20 min. Finally, the tissue slides were separately incubated overnight at 4 ◦C with anti-
bodies targeting NUF2 (1:500, Abcam), CDCA2 (1:500, Abcam), CDCA3 (1:200, Proteintech), CDCA4 (1:200, Proteintech), CDCA5 (1; 
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500, Abcam), CBX2 (1:500, Abcam), CDCA7 (1:200, Affinity), and CDCA8 (1:200, Abcam). After washing, the slides were stained using 
a diaminobenzidine (DAB) detection kit (Gene Tech, China) and counterstained with hematoxylin. All the tissue specimens were 
scored independently by two experienced pathologists. The staining index was computed using the following formula: staining index 
= staining intensity score × proportion score of stained tumor cells. Staining intensity was graded on a scale of 0–3, with 0 indicating 
no staining, 1 indicating weak staining (light yellow), 2 indicating moderate staining (yellow-brown), and 3 indicating strong staining 
(brown). The proportion of positive tumor cells was scored on a scale of 0–4, with 0 indicating no positive tumor cells, 1 indicating 
<25 % positive tumor cells, 2 indicating 26%–49 % positive tumor cells, 3 indicating 50%–74 % positive tumor cells, and 4 indicating 
≥75 % positive tumor cells. 

2.11. Cell culture and RT-qPCR 

The human renal proximal tubule epithelial (HK-2) cell line and KIRP (Caki-2) cell line were obtained from Procell Life Scien-
ce&Technology Co., Ltd (Wuhan, China). The SK-RC-39 (KIRP) cell line was obtained from Shanghai Fuyu Biotechnology Co., Ltd 
(Shanghai, China). HK2 cells were cultured in DMEM/F12 (1:1) medium. The Caki-2 cells were cultured in McCoy’s 5A medium. SK- 
RC-39 cells were cultured in RPMI 1640 medium. All Cell lines were cultured at 37 ◦C in a humidified atmosphere containing 5 % CO2. 

Total RNA was isolated from cultured cells using TRIzol reagent (Thermo Fisher Scientific, USA) and converted into cDNAs using a 
PrimeScript One Step RT-PCR Kit (TaKaRa, Japan), according to the manufacturer’s guidelines. The cDNA template was further 
amplified by RT-qPCR using a SYBR Premix Dimer Eraser kit (TaKaRa, Japan). All CDCA genes expression data were normalized to 
GAPDH expression. Relative quantification was performed using the 2− ΔΔCt method. Primers used for RT-qPCR are listed in sTab. 1. 

2.12. Statistical analyses 

All statistical analyses and visualization in this study were performed using R software (version 3.6.3) and Graphpad Prim software 
(version 9.0.2). Data are displayed as mean ± standard deviation (SD) for each group. An unpaired t-test and Wilcoxon rank-sum test 

Fig. 1. CDCA genes expression in KIRP and diagnostic ROC analysis. (A) Transcriptional levels of CDCA genes in a dataset derived from the TCGA. 
(B) Transcriptional levels of CDCA genes in a dataset derived from the TCGA + GTEx. (C) Transcriptional levels of CDCA genes were available in the 
ArrayExpress. (D) ROC curve for CDCA genes using the TCGA dataset. (E) ROC curve for CDCA genes using the TCGA + GTEx dataset. (*P < 0.05 
and ***P < 0.001 indicated statistical significance). 
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Fig. 2. The survival analysis and subgroup survival analysis for CDCA genes in patients with KIRP. (A, B) The Kaplan–Meier curves and forest plot 
for CDCA genes in KIRP. (C, D) The Kaplan–Meier curves and forest plot for CDCA genes in patients with KIRP younger than 60 years. (E, F) The 
Kaplan–Meier curves and forest plot for CDCA genes in patients with KIRP with pathological T3 stage. (G, H) The Kaplan–Meier curves and forest 
plot for CDCA genes in patients with KIRP with pathological stage III. (P < 0.05 indicated statistical significance. HR: hazard ratio. CI: cred-
ible interval). 
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tested the significance of the difference between the two groups. One-way analyses of variance (ANOVAs) and the Kruskal-Wallis test 
were used to test for differences in means among three or more groups. The log-rank test was used to perform the Kaplan–Meier 
survival analysis. Pearson correlation analysis was utilized to calculate correlation coefficients. Z-scores represented standard de-
viations from the median across samples. A p-value of <0.05 (two-tailed) was considered statistically significant. 

3. Results 

3.1. CDCA genes were overexpressed in KIRP and correlated with clinicopathological parameters 

As shown in Fig. 1A and B, we first analyzed the transcriptional levels of CDCA genes using the TCGA-KIRP and TCGA normal +
GTEx normal datasets. The results revealed that the expression levels of all CDCA members were significantly elevated in KIRP 
compared to those in normal renal tissues. Additionally, experimental data from the ArrayExpress database also further confirmed that 
the transcriptional levels of CDCA genes were overexpressed in KIRP (Fig. 1C). Furthermore, we assessed the diagnostic accuracy of 
CDCA genes for KIRP using diagnostic ROC analysis. The results of ROC analysis based on TCGA dataset showed that NUF2 (AUC =
0.851), CDCA2 (AUC = 0.763), CDCA3 (AUC = 0.904), CDCA4 (AUC = 0.722), CDCA5 (AUC = 0.829), CBX2 (AUC = 0.729), CDCA7 
(AUC = 0.833), and CDCA8 (AUC = 0.858) demonstrated good diagnostic performance in distinguishing KIRP patients from healthy 
controls (Fig. 1D). Similarly, in the TCGA + GTEx dataset, the results of ROC analysis suggested that NUF2 (AUC = 0.797), CDCA2 
(AUC = 0.792), CDCA3 (AUC = 0.808), CDCA4 (AUC = 0.838), CDCA5 (AUC = 0.818), CDCA7 (AUC = 0.778), and CDCA8 (AUC =
0.837) showed a clear distinction between KIRP patients and healthy controls (Fig. 1E). 

To further evaluate the role of CDCA genes in KIRP, the correlations between CDCA genes expression and clinicopathological 
parameters were assessed using TCGA-KIRP dataset. As shown in sFig. 2A, the expression of CDCA genes was significantly related to 
cancer staging (all Pr (>F) < 0.05). Additionally, in sFig. 2B and C, the transcriptional levels of NUF2 and CDCA2/3/4/5/7/8 were 
significantly associated with pathological T and N staging (all P < 0.05). Similarly, as shown in sFig. 2D, NUF2 and CDCA2/3/4/5/8 
mRNA levels were significantly relevant to pathological M staging (all P < 0.05). The expression levels of CDCA2/5/7/8 in female KIRP 
patients were meaningfully higher than those in male KIRP patients (all P < 0.05, sFig. 2E). 

3.2. Prognostic potential of CDCAs in KIRP patients 

Kaplan–Meier analyses were used to assess the prognostic value of CDCA genes expression in KIRP. As illustrated in Fig. 2A and B, 
high expression of CDCA genes was significantly correlated with worse OS (all P < 0.05). Meanwhile, subgroup survival analysis was 
conducted based on different clinicopathological features such as age (≤60 years), pathological T3 stage, and pathological stage III to 
identify any potential survival advantage in these subgroups. For age, higher expressions of NUF2, CBX2, and CDCA2/3/5/7/8 were 
meaningfully relevant to poorer OS in KIRP patients younger than 60 years (all P < 0.05; Fig. 2C and D). For pathological T staging, 
higher expressions of NUF2, CBX2, and CDCA2/3/5/8 were strongly associated with lower OS in KIRP patients with pathological T3 
stage (all P < 0.05; Fig. 2E and F). For pathological stages, higher expressions of NUF2 and CDCA2/3/5/8 were significantly correlated 
with worse OS in KIRP patients with pathological stage III (all P < 0.05; Fig. 2G and H). 

3.3. Construction and assessment of the CDCAs-related risk scoring model 

Clinical data and prognostic information of 289 patients with KIRP (sTab. 2) were acquired from TCGA for the Cox regression 
analysis. Based on univariate Cox regression analysis (sTab. 3), eight potential risk genes related to OS were screened out using the cut- 
off values of Cox P < 0.05 and HR > 1 (Fig. 3A). Subsequently, LASSO Cox regression analysis was performed to identify survival- 
associated predictive genes. Seven key genes were screened for developing a CDCAs-related risk scoring model based on the mini-
mal criteria of λ (Fig. 3B and C). To calculate the risk score for each sample, the following formula was utilized: Risk score = ([-1- 
16.2907130 × NUF2 expression value] + [− 5.372395 × CDCA2 expression value] + [− 6.922951 × CDCA4 expression value] +
[− 8.037803 × CDCA5 expression value] + [− 2.585058 × CBX2 expression value] + [− 7.693133 × CDCA7 expression value] +
[− 10.322759 × CDCA8 expression value]). Subsequently, a median risk score of 1.24 was used to divide KIRP patients into high- and 
low-risk groups (144 in the low-risk group and 145 in the high-risk group) (Fig. 3D). Patients in the high-risk group had considerably 
worse survival outcomes (HR = 2.25, Log-rank P = 0.008, Fig. 3E). Next, time-dependent ROC analysis was performed. The AUCs for 1- 
, 3-, and 5-year survival rates were 0.816, 0.811, and 0.722, respectively (Fig. 3F). Overall, the above findings suggested that the 
CDCAs-related risk scoring model had good predictive accuracy for the OS of patients with KIRP. 

Fig. 3. Construction and assessment of the CDCAs-related risk scoring model and nomogram in patients with KIRP. (A) Univariate cox regression 
analysis of OS for CDCA genes. (B) LASSO coefficient profiles of the seven candidate genes. (C) 10-fold cross validation for tuning parameter se-
lection in the LASSO regression. (D) The distribution of patient risk scores, survival status, and expression patterns of the CDCA genes for KIRP. (E) 
Kaplan-Meier survival analysis of OS for patients with KIRP in different risk groups. (F) Time-dependent ROC curves for 1-year, 3-year, and 5-year 
survival of patients with KIRP. (G) Multivariate cox regression analysis of OS for CDCA genes. (H) Nomogram for predicting 1-year, 3-year, and 5- 
year OS for patients with KIRP. (I–K) Calibration curves for 1-year, 3-year, and 5-year OS for patients with KIRP. (P < 0.05 indicated statistical 
significance. HR: hazard ratio. CI: credible interval. TPR: true positive rate. FPR: false positive rate). 
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Fig. 4. Gene biological functions and interactions of CDCA genes in patients with KIRP. (A) PPI network based on the eight CDCA proteins. (B) PPI 
network for CDCA proteins and the 80 most frequently neighboring proteins. (C) The hub genes identified with Cytoscape for CDCA genes and the 
80 most frequently neighboring genes. (D) Three most significant MCODE components form PPI network and function enrichment analysis of three 
MCODE components independently among CDCA genes and the 80 most frequently neighboring genes. (E, F) GO and KEGG functional enrichment 
analyses of CDCAs. 
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Fig. 5. The correlations between CDCA genes expression and immune molecules. (A) The proportions of different immune cell components in KIRP. 
(B, C) The heatmap and scatterplot displayed the correlations between CDCA genes expression and tumor-infiltrating lymphocytes (TILs). (D, E) The 
heatmap and scatterplot displayed the correlations between CDCA genes expression and immunostimulatory molecules. (F, G) The heatmap and 
scatterplot displayed the correlations between CDCA genes expression and immunoinhibitory molecules. (H, I) The heatmap and scatterplot dis-
played the correlations between CDCA genes expression and chemokines. (*P < 0.05, **P < 0.01, and ***P < 0.001 indicated statistical 
significance). 
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Fig. 6. Validation of CDCAs expression in KIRP tissues by IHC and RT-qPCR. (A) IHC images of CDCAs expression in KIRP. (B) Staining index of 
CDCAs in KIRP and normal kidney tissues. (C) Bar charts of mRNA level of CDCA genes between HK-2 and Caki-2 and SK-RC-39 cell lines. (*P <
0.05, **P < 0.01, and ***P < 0.001 indicated statistical significance). 
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3.4. Construction of a nomogram based on independent risk factors 

To identify potential predictors of OS in patients with KIRP, a multivariate Cox regression analysis of relevant clinicopathological 
characteristics and CDCA genes was conducted using TCGA-KIRP dataset (sTab. 4). As shown in Fig. 3G, pathological T and N staging, 
NUF2, CDCA2, CDCA3, CDCA5, CBX2, CDCA7, and CDCA8 were associated with poor OS, indicating that these predictors were in-
dependent risk factors for KIRP. A nomogram model was established to predict survival outcomes based on the independent risk factors 
mentioned above (Fig. 3H). The C-index of the nomogram model was 0.810 (0.766–0.855). Calibration curves were utilized to evaluate 
the nomogram concordance. The calibration plots of the nomogram model demonstrated favorable agreement with the ideal model for 
the 1-, 3-, and 5-year OS rates (Fig. 3I–K). 

3.5. Genomic alterations and co-expression analysis of CDCA genes in KIRP patients 

The cBioPortal platform was used to obtain information regarding genomic alterations in the CDCA genes. Among the TCGA-KIRP 
patients, approximately 7 % (19/280) exhibited alterations in CDCA genes, with amplifications and deep deletions being the most 
notable. NUF2, CDCA2, CDCA3, CDCA4, CDCA5, CBX2, CDCA7, and CDCA8 were altered in 1.1 %, 0.7 %, 0.4 %, 1.1 %, 0.4 %, 1.1 %, 
2.1 %, and 1.8 % of the 280 patients with KIRP , respectively (sFig. 3A). A summary of the genomic alterations in CDCAs in KIRP was 
shown in sFig. 3B. Similarly, the expression and methylation heatmaps exhibited the degree of mutations and abnormal methylation in 
CDCA genes (sFig. 3C and D). The mutation rate of CDCA7 in KIRP was the highest among all CDCA genes. CDCA3, CDCA5, and CDCA8 
exhibited high DNA methylation (HM450) levels. The chromosomal locations of the CDCA genes were are shown in sFig. 3E. 
Furthermore, it is possible that the mutation sites present in certain CDCA genes affect their posttranscriptional modifications (PTMs). 
These mutation sites included K409Q in NUF2, and Y73H and H279Y in CDCA8 (sFig. 3F). Moreover, co-expression analysis showed 
that CDCA gene family members were closely related (all Cor >0.3, all P < 0.001, sFig. 3G). 

3.6. PPI network construction, hub genes screening, and functional enrichment analysis 

To investigate the potential genes involved in CDCAs-mediated biological pathways in KIRP, a protein interaction network was 
constructed using the STRING database comprising eight CDCA proteins (Fig. 4A) and 80 frequently interacting neighboring proteins 
(Fig. 4B). Moreover, our findings, as illustrated in Fig. 4C, revealed that seven hub genes, namely KIFC1, MKI67, KIF4A, KIF11, PRC1, 
MYBL2, and CEP55, were closely associated with alterations in CDCA genes. Additionally, we identified the three most significant 
MCODE components from the PPI network between CDCA proteins and their 80 frequently neighboring proteins. We observed that 
biological functions, such as nuclear chromosome segregation, mitotic sister chromatid segregation, sister chromatid segregation, 
mitotic cell cycle process and impaired BRCA2 binding to PALB2, were significantly correlated with these MCODE components 
(Fig. 4D). Subsequently, we performed GO and KEGG functional enrichment analyses of the CDCA genes and their 80 neighboring 
genes using the DAVID tool. The results are presented in Fig. 4E and F, and sTab. 5. The biological processes involved in nuclear 
division, organelle fission, mitotic nuclear division, and chromosomal segregation were also significantly enriched (Fig. 4E). Cellular 
components analysis revealed that CDCA genes were predominantly located in the spindle, chromosome in centromeric region, 
condensed chromosome, kinetochore, and chromosomal region (Fig. 4E). Molecular function analysis indicated that the CDCA genes 
were associated with ATPase activity, microtubule motor activity, microtubule binding, motor activity, and tubulin binding (Fig. 4E). 
Furthermore, KEGG pathway enrichment analysis revealed that alterations in CDCA genes were significantly related to the cell cycle, 
p53 signaling pathway, cellular senescence, human T-cell leukemia virus 1 infection, oocyte meiosis, homologous recombination, and 
the Fanconi anemia pathway (Fig. 4F). Notably, the KEGG chord plot demonstrated that CDK1 and CCNB2 were closely related to five 
crucial KEGG pathways, indicating that CDK1 and CCNB2 may be critical genes in this process (Fig. 4F). 

3.7. Correlations between CDCA genes expression and immune molecules 

In Fig. 5A, the 100 % stacked bar chart indicates that M2 macrophages, resting memory CD4 T cells, resting mast cells, and gamma 
delta T cells are the four most predominant infiltrating immune cells in KIRP. Additionally, positive associations were observed be-
tween Act_CD4 and the expression of NUF2, CDCA2, CDCA5, CBX2, and CDCA8. Similarly, Th2 cells positively correlated with NUF2 
and CDCA7, whereas CDCA3 negatively correlated with iDC (Fig. 5B and C). As illustrated in Fig. 5D and E, among these immu-
nostimulatory molecules, TNFSF13 was negatively correlated with NUF2, CDCA2, CDCA5, and CBX2, whereas TNFRSF4 was posi-
tively related to CDCA3 and CBX2. Immunoinhibitory molecules also displayed positive associations, including between IDO1 and 
NUF2, CDCA2, CDCA5, and CDCA8, whereas CD274 was negatively correlated with CDCA3 (Fig. 5F and G). Furthermore, significant 
associations were observed between the expression of CDCA genes and chemokines (Fig. 5H and I). Negative correlations were found 
between CCL18 and NUF2, as well as between CCL28 and CDCA2, CDCA5, and CBX2. In contrast, positive correlations were detected 
between CBX2, CXCL10, and CXCL11 expressions. Based on the KIRP samples from TCGA database, we further investigated whether 
CDCAs expression was relevant to MSI, TMB, and immune checkpoints. These results suggest that CDCAs expression was not associated 
with MSI (all P > 0.05, sFig. 4A), and TMB (all P > 0.05, sFig. 4B). The immune checkpoint genes CTLA4, HAVCR2, PD-1, PDCD1LG2, 
and TIGIT were overexpressed in KIRP (all P < 0.05, sFig. 4C). Moreover, CDCA2 and CDCA4 were positively related to PD-1 
expression (all P < 0.05, sFig. 4D); and CBX2 was positively correlated with PD-L1 expression (P < 0.05, sFig. 4D). Collectively, 
these results indicate that CDCA2, CDCA4 and CBX2 are potential immune targets for anti-PD1/PDL1 therapy in KIRP. 
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3.8. Verification of the CDCAs expression in KIRP tissues by IHC and RT-qPCR 

Finally, IHC staining and RT-qPCR were conducted to validate the findings of the bioinformatics analyses. A summary of the 
features and staining indices of the 20 patients is shown in sTab. 6. As shown in Fig. 6A, the overexpressed CDCAs protein localized 
mainly in the nucleus. Besides, the staining patterns of CDCAs in tumor and normal tissues were observed, and the results indicated 
that the protein expression levels of CDCA genes were significantly higher in KIRP tissues than in normal renal tissues (all P < 0.05, 
Fig. 6B). Furthermore, the relative mRNA levels of CDCA genes in the KIRP cell lines Caki-2 and SK-RC-39 were higher than those in the 
normal kidney cell line HK-2 (all P < 0.05, Fig. 6C). These findings are consistent with the results obtained from the bioinformatics 
analysis of the RNA and protein levels. All in all, these data suggest that CDCA genes may function as oncogenes in KIRP. 

4. Discussion 

The incidence and mortality rates of kidney cancer increased worldwide [29]. KIRP, the second most prevalent subtype of renal cell 
carcinoma, is usually detected incidentally during routine physical examinations [30]. Recently, a substantial body of evidence has 
suggested that CDCA genes are correlated with cancer occurrence, progression, and prognosis [8,16]. However, there are currently few 
studies on their roles in KIRP. For instance, A study by Li et al. [31] revealed that CDCA3 expression is high and associated with poor 
prognosis in patients with KIRP. Liu et al. [32] indicated that SNHG6 might facilitate the progression of KIRP by regulating NUF2 and 
CDCA3. To date, the role of CDCAs in KIRP and whether CDCAs expression is correlated with the immune microenvironment in KIRP 
remains unclear. Therefore, it is important to investigate the role of CDCAs in KIRP. In this study, we performed comprehensive 
molecular analyses to explore the expressions, mutations, prognostic value, and biological function of CDCA genes and their corre-
lation with immune infiltration in KIRP using TCGA and GTEx datasets. 

To obtain a reliable conclusion, we first explored CDCAs-promoted KIRP progression in TCGA and GTEx databases and then 
validated this conclusion in our experiments. CDCAs mRNA expressions were higher in KIRP tissues than in normal renal tissues. 
Similarly, in cell experiments, the contents of CDCA genes were significantly higher in KIRP cell lines than in normal renal cells, which 
was further verified by IHC. Furthermore, the expression levels of CDCA genes correlated with cancer staging, pathological T, N, and M 
staging, and gender. The greatest advantage of these common clinicopathological parameters is their easy accessibility, which enables 
a more comprehensive and informed determination of patient prognosis. Although the prognostic value of CDCA genes has been 
investigated in ovarian [33], hepatocellular [9], nasopharyngeal [11], and gastric carcinomas [34], this study is the first to system-
atically explore their prognostic significance in KIRP. Kaplan–Meier analysis indicated that patients with KIRP with elevated CDCA 
genes expressions had undesirable OS, which was also exhibited in many clinical categories according to subgroup survival analyses. 
Multivariate Cox regression analysis indicated that NUF2, CDCA2, CDCA3, CDCA5, CBX2, CDCA7, and CDCA8 were independent risk 
factors for KIRP. A nomogram model with a C-index of 0.810 was developed to predict the survival outcomes of KIRP patients with 
CDCAs expression. Overall, these findings strongly supported the use of NUF2, CDCA2, CDCA3, CDCA5, CBX2, CDCA7, and CDCA8 as 
the biomarkers for diagnosis and prognosis of KIRP. Further experimental validation is required to confirm theses results. 

Several studies have established that the cell cycle plays a critical role in tumorigenesis and progression, significantly affecting cell 
proliferation and senescence [35,36]. Moreover, pathologies and cancers have been linked to abnormal nuclear division resulting from 
chromosome instability caused by the depletion of the biogenesis factor NOP53 [37]. The p53 signaling pathway has been demon-
strated to contribute significantly to the regulation of the cell cycle, metabolism, aging and development, reproduction, and sup-
pression of tumor expression, among other functions [38]. In this study, we verified that CDCA genes were associated with process of 
cell proliferation and involved in cell cycle, p53 signaling pathway and cellular senescence through GO and KEGG functional 
enrichment analyses. To sum up, our findings are consistent with previous reports indicating that CDCA genes can regulate cell cycle 
and nuclear division [39]. 

Previous studies have indicated a correlation between immune infiltration in the tumor microenvironment and the survival rates 
patients with cancer [40,41]. Specifically, the degree of immune infiltration has been found to be directly related to the prognosis of 
KIRP [42]. Moreover, previous studies have revealed that the expression of some CDCA gene family members is associated with 
immune infiltration in certain cancers. For instance, a report from Bai et al. [43] showed that CDCA3 is strongly correlated with poor 
prognosis and positively associated with the infiltration of CD8+ T cells and Tregs in renal cell carcinoma. In a study by Liu et al. [44], 
CDCA7 exhibited a significant correlation with immune infiltration, the tumor microenvironment, immune checkpoint molecules, and 
immune pathways in clear cell renal cell carcinoma (RCC). Similarly, our study found the four most predominant infiltrating immune 
cells, including M2 macrophages, resting memory CD4 T cells, resting mast cells, and Gamma delta T cells in KIRP. In addition, we 
found that NUF2 expression was closely associated with lymphocytes of Act_CD4 and Th2, immunostimulatory molecule of TNFSF13, 
immunoinhibitory molecule of IDO1, and the chemokine CCL18. CDCA2 and CDCA5 expression were discovered to be tightly related 
to the lymphocytes of Act_CD4, the immunostimulatory molecule TNFSF13, the immunoinhibitory molecule IDO1, and the chemokine 
CCL28. Moreover, we found a strong correlation between CBX2 expression and the lymphocytes of Act_CD4, immunostimulatory 
molecules TNFSF13 and TNFRSF4, and chemokines CXCL10 and CXCL11. TNFSF13 (also named as APRIL) is an immunostimulatory 
molecule, which has been found to be closely correlated with tumorigenesis and as a novel target for cancer immunotherapy [45]. 
According to previous studies, IDO1, an intracellular heme-containing metalloprotein, plays a crucial role in the production of a range 
of biologically active secondary metabolites via the KYN pathway [46]. Recently, IDO1 has emerged as a crucial and promising target 
for cancer immunotherapy, garnering significant attention [47]. These findings confirm our hypothesis and reveal the pivotal role of 
CDCAs in regulating tumor immunology. Furthermore, our study indicated that CDCA2, CDCA4 and CBX2 could be used as potential 
immune targets for anti-PD1/PDL1 therapy in KIRP. However, further clinical studies are required to validate the correlation between 
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CDCAs and immune infiltration in KIRP. 
This study had several limitations. First, we evaluated the prognostic value of CDCA genes and established a risk scoring model for 

patients with KIRP using data primarily sourced from TCGA and GTEx databases. Although the sequencing data from these databases 
were experimentally validated, further large-scale studies on patients with KIRP from other databases are required to confirm our 
findings. Second, this study only conducted IHC and RT-PCR experiments, and we did not perform further investigations in cell and 
animal models. Therefore, more specific downstream pathways of the CDCA genes and their biological mechanisms require further in- 
depth investigation, and will be explored in our future work. 

In conclusion, we conducted a comprehensive assessment of CDCA genes and found that NUF2, CDCA2, CDCA3, CDCA5, CBX2, 
CDCA7, and CDCA8 may serve as potential biomarkers for KIRP diagnosis and prognosis and that NUF2, CDCA2, CDCA5, and CBX2 are 
promising targets for KIRP immunotherapy. 
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