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Objective: The present study analyzed the influence of co-transferring embryos with high 
and low cloning efficiencies produced via somatic cell nuclear transfer (SCNT) on pregnancy 
outcomes in dogs.
Methods: Cloned dogs were produced by SCNT using donor cells derived from a Tibetan 
Mastiff (TM) and Toy Poodle (TP). The in vivo developmental capacity of cloned embryos 
was evaluated. The pregnancy and parturition rates were determined following single transfer 
of 284 fused oocytes into 21 surrogates and co-transfer of 47 fused oocytes into four 
surrogates. 
Results: When cloned embryos produced using a single type of donor cell were transferred 
into surrogates, the pregnancy and live birth rates were significantly higher following transfer 
of embryos produced using TP donor cells than following transfer of embryos produced 
using TM donor cells. Next, pregnancy and live birth rates were compared following single 
and co-transfer of these cloned embryos. The pregnancy and live birth rates were similar 
upon co-transfer of embryos and single transfer of embryos produced using TP donor cells 
but were significantly lower upon single transfer of embryos produced using TM donor 
cells. Furthermore, the parturition rate for TM dogs and the percentage of these dogs that 
remained alive until weaning was significantly higher upon co-transfer than upon single 
transfer of embryos. However, there was no difference between the two embryo transfer 
methods for TP dogs. The mean birth weight of cloned TM dogs was significantly higher 
upon single transfer than upon co-transfer of embryos. However, the body weight of TM 
dogs did not significantly differ between the two embryo transfer methods after day 5. 
Conclusion: For cloned embryos with a lower developmental competence, the parturition 
rate and percentage of dogs that remain alive until weaning are increased when they are 
co-transferred with cloned embryos with a greater developmental competence.

Keywords: Co-transfer; Dog; Pregnancy Outcome; Single Transfer; Somatic Cell Nuclear 
Transfer 

INTRODUCTION 

After the first cloned dog was produced by somatic cell nuclear transfer (SCNT) using 
oocytes retrieved by flushing, several studies reported cloning of dogs [1,2]. For a long 
time, dogs have maintained a close relationship with humans as companion animals and 
shared living environments. Consequently, dogs of various breeds and ages have been 
cloned for commercial purposes. Furthermore, dogs have similar physiological character-
istics as humans, and it has been reported that more than 370 genes shared between dogs 
and humans are closely related to the mechanisms of human diseases [2]. Accordingly, 
several studies have used dogs to model various human diseases including diabetes and 
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Alzheimer’s disease [3,4].
  Dogs have unique reproductive characteristics compared 
with other mammals. They are non-seasonal and monoestrus 
animals, and their estrus interval is longer than that of other 
animals [5]. It has also been reported that oocytes ovulate in 
the metaphase I stage and mature into the metaphase II stage 
in the fallopian tube, and that there is heterogeneity in oocyte 
maturation in dogs [6]. These characteristics hamper clon-
ing of dogs and thus studies of dog cloning are limited.
  In vivo matured oocytes are crucial for dog cloning. In vitro 
maturation (IVM) and in vitro culture (IVC) protocols are 
well-established for animals such as cattle and pigs because a 
sufficient number of oocytes can be obtained from slaugh-
terhouses [1,7]. However, oocytes of dogs are not readily 
available, and IVM and IVC of these oocytes are poorly studied 
and lack efficiency [8]. Therefore, dogs have been cloned by 
surgically transferring fused embryos, rather than blasto-
cysts, which is generally performed to clone other mammals 
[1-4]. Studies concerning superovulation of oocyte donors, 
synchronization of surrogates, and techniques for retrieval 
and transfer of oocytes have been conducted to enhance the 
efficiency of cloned dog production [9-13]. In this study, a 
technique was evaluated to enhance the pregnancy and par-
turition rates upon transfer of cloned embryos with a low 
developmental capacity. 
  Several studies reported that the development and preg-
nancy efficiency of cloned embryos differ using cells from 
different donors [14,15]. The cloning efficiency is influenced 
by donor cell characteristics including cell passage, the cell 
cycle, and donor cell type. Among those factors, variation in 
the genetic features of cells from different donors is a crucial 
factor that affects pregnancy outcomes [14]. However, no 
study has investigated pregnancy and live birth rates upon 
co-transfer of embryos with different cloning efficiencies 
generated using different donor cells. Upon co-transfer of 
poor- and good-quality embryos, the former do not inter-
fere with implantation of the latter [16]. Additionally, it was 
reported that the pregnancy and live birth rates do not differ 
following co-transfer of good- and poor-quality embryos 
and transfer of good-quality embryos alone at the cleavage 
stage [17,18]. The present study evaluated the impact of co-
transfer of embryos generated using different donor cells 
and with different cloning efficiencies into homogenous sur-
rogates on pregnancy outcomes.

MATERIALS AND METHODS 

Animals
All animal experiments were performed according to the 
animal study guidelines approved by the ethics committee of 
the Abu Dhabi Biotech Research Foundation, Korea (Permit 
no. C-2013-01). In total, 64 oocyte donors and 25 surrogates 

were used. Female mixed breed dogs aged 3 to 5 years (body 
weight, 20 to 25 kg) were housed in indoor kennels (2.5×1.5 
m) on a 12 h/12 h light/dark cycle with natural light, fed 
standard commercial dog food once daily, and given water 
ad libitum.

Chemicals
All chemicals were purchased from Sigma (St. Louis, MO, 
USA), unless otherwise stated.

Collection of oocytes
The estrus of bitches was monitored weekly by observing 
vulvar bleeding to detect the onset of the heat period. A 
blood sample (2 mL) was collected every day at the same 
time by cephalic venipuncture, and serum progesterone levels 
were measured using an electrochemiluminescence immuno-
assay (Cobas e411; Roche Diagnostics, Mannheim, Germany) 
with intra- and inter-assay coefficients of variation <4%. 
Ovarian ultrasonography was performed twice daily when 
serum progesterone levels exceeded 2 ng/mL. Ovulation was 
further verified by the rupture of follicles detected by trans-
abdominal ultrasonography [8].

Establishment of donor cells
All donor cells were established using a previously described 
protocol with minor modifications [8]. They were established 
from Tibetan Mastiff (TM) and Toy Poodle (TP) dogs with 
different fur colors and body sizes to clearly confirm the origin 
of the puppies. In brief, samples were obtained from the in-
guinal portions of the skin of a 5-year-old female TM and 
TP under light sedation using Zoletil 50 (Virbac, Carros, 
France). Sections of the subcutaneous tissues were washed 
twice with phosphate-buffered saline (Invitrogen, Carlsbad, 
CA, USA) and minced with a surgical blade on a culture 
dish (Becton Dickinson, Franklin Lincoln, NJ, USA). The 
minced tissues were dissociated with 0.25% trypsin-ethyl-
enediaminetetraacetic acid solution (Invitrogen, USA) for 3 
min. Trypsinized cells were washed twice by centrifugation 
at 300×g for 5 min and seeded onto 100 mm plastic culture 
dishes. Cells were subsequently cultured in 60 mm plastic 
culture dishes in the presence of fetal bovine serum (FBS; In-
vitrogen, USA), 1 mM sodium pyruvate, 1% (v/v) non-essential 
amino acids (Invitrogen, USA), and 1% antibiotic-antimy-
cotic solution (Thermo Fisher Scientific, Waltham, MA, USA) 
at 37°C in a humidified atmosphere of 5% CO2 and 95% air. 
When cells became confluent, they were collected by tryp-
sinization and frozen in Dulbecco’s modified eagle’s medium 
supplemented with 20% FBS and 10% dimethyl sulfoxide.

Somatic cell nuclear transfer
SCNT was performed as described previously with minor 
modifications [8]. In brief, metaphase II oocytes were stripped 
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from cumulus cells and enucleated by squeezing out the first 
polar body and the metaphase II plate in a small amount of 
surrounding cytoplasm using a glass pipette. All oocytes were 
pre-stained with 5 mg/mL bisbenzimide (Hoechst 33342). A 
trypsinized fibroblast with a smooth surface was transferred 
into the perivitelline space of an enucleated oocyte using a 
fine glass pipette. The couplets were equilibrated with 0.26 M 
mannitol solution containing 0.5 mM 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid, 0.1 mM CaCl2, and MgSO4 
for 4 min, and then fused with two direct current pulses of 1.75 
to 1.85 kV/cm for 15 μs using a BTX Electro-Cell Manipulator 
2001 (BTX, San Diego, CA, USA).

Embryo transfer
After fusion and activation, reconstructed embryos were 
loaded into a Tomcat catheter (Sherwood Medical, St. Louis, 
MO, USA) with 2 to 4 μL transfer medium and gently trans-
ferred into the distal two-thirds position of the oviduct without 
insufflating air. Anesthesia was induced with a mixture of 
xylazine hydrochloride (Bayer Korea, Ansan, Korea; 1 mg/kg 
body weight) ketamine HCl (YuHan Corporation, Seoul, 
KR; 4 mg/kg body weight) and maintained with isoflurane 
inhalational. The ovary with the greater amount of corpus 
luteum was approached via ventral laparotomy. The fat layer 
covering the ovary was gently grasped with forceps and sus-
pended with a suture to exteriorize the end of the oviduct 
with fimbriae. The same number of embryos was transferred 
upon single transfer and co-transfer. For co-transfer, the 
same number of cloned embryos produced using each type 
of donor cell was transferred.

Pregnancy diagnosis and measurement of body weight
Pregnancy was diagnosed as described previously with mi-
nor modifications [19]. Briefly, one veterinarian confirmed 
the pregnancy using real-time ultrasonography at 30 days 
after embryo transfer. Two-dimensional, gray-scale, real-
time ultrasound images were produced using mechanical 
and phased-array sectors from a curved-linear transducer 
with a frequency of 3.5 MHz (Samsung Medison, Seoul, Ko-
rea). When no fetal heartbeat was observed, the fetus was 

obtained via an elective cesarean section to determine which 
type of donor cell it was established from. In the last week of 
pregnancy, the surrogate’s rectal temperature was monitored 
once or twice daily, and vulva discharge and other signs of 
impending parturition (anorexia, nesting, and lactation) 
were examined. The body weights of dogs were recorded for 
40 days after birth. To prevent physiological changes affect-
ing the body weights of dogs, they were measured at the 
same time (10:00 am) each day before feeding.

Statistical analysis
Data were analyzed using SPSS for Windows (version 15; 
SPSS Inc., Chicago, IL, USA). Graphs were generated using 
GraphPad Prism (version 4.0). The fusion rate and average 
number of transferred embryos were compared between the 
groups using Tukey’s multiple range test. The birth weights 
and weight changes of cloned dogs were assessed using the 
independent T-test. The pregnancy rate was compared be-
tween the groups using Pearson’s Chi-square test and Fisher’s 
exact test. Data are represented as mean±standard deviation. 
A p value less than 0.05 was considered significant.

RESULTS

Comparison of the fusion rate and perinatal and pre-
weaning development of cloned embryos generated 
using different donor cells
The present study compared co-transfer and single transfer 
of cloned embryos with different cloning efficiencies gener-
ated using different donor cells. Embryos were cloned using 
donor nuclei obtained from cells derived from skin of a TM 
and TP, which were called the TM and TP groups, respec-
tively. Data about nuclear transfer, embryo transfer, and 
pregnancy outcomes upon single transfer of these cloned 
embryos are presented in Tables 1 and 2. The fusion rate was 
significantly higher in the TP group than in the TM group 
(Table 1). The pregnancy and live birth rates were signifi-
cantly higher in the TP group than in the TM group (Table 
2). Furthermore, the percentage of dogs that remained alive 
until weaning was significantly higher in the TP group than 

Table 1. Effect of the type of donor cells used for SCNT on the fusion rate

Transfer method

Nuclear transfer

Donor cell No. of dogs from which 
oocytes were retrieved 

No. of oocytes

Retrieved Reconstructed Fused and transferred (%)1)

Single transfer TM 45 520 460 215 (46.74 ± 11.08)a

TP 9 130 110 69 (62.73 ± 8.46)b

Co-transfer TM 5 48 36 17 (47.22 ± 3.52)a

TP 5 50 42 30 (71.43 ± 5.27)b

SCNT, somatic cell nuclear transfer; TM, Tibetan Mastiff; TP, Toy Poodle.
1) The fusion rate was calculated as the percentage of reconstructed oocytes that underwent fusion.
a,b Different superscript letters within the same transfer method represent significance (p < 0.05). 
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in the TM group (Table 2). The number of embryos trans-
ferred into surrogates did not significantly differ between the 
two groups (Table 2). A representative photograph of cloned 
dogs and representative ultrasonography images of TM and 
TP puppies are shown in Figure 1.

Comparison of perinatal and pre-weaning 
development following single transfer and co-transfer 
of embryos 
The pregnancy and live birth rates and percentage of dogs 
that remained alive until weaning are summarized in Table 2 
and Figure 2. Each of these variables was significantly higher 
following co-transfer of embryos than following single transfer 
of embryos generated using TM donor cells (Table 2). Fur-
thermore, the parturition rate and percentage of dogs that 
remained alive until weaning in the TM group, in which the 
cloning efficiency was low, were significantly increased by 
co-transfer of embryos (Figure 2). In the TP group, the par-
turition rate and percentage of dogs that remained alive until 
weaning did not significantly differ between the two embryo 
transfer methods (Figure 2). The percentage of dogs with 
abnormalities did not differ between the two embryo trans-
fer methods; however, no abnormalities were observed after 
co-transfer of embryos (Table 2). The number of transferred 
embryos did not differ upon single transfer and co-transfer 
(Table 2).

Comparison of birth and body weights of dogs 
following single transfer and co-transfer of embryos
We measured the birth weights of cloned dogs and their 

Table 2. Effect of the type of donor cells and transfer method on perinatal development and parturition

Transfer  
 method

Embryo transfer Parturition

Donor 
cell

No. of 
transferred 

embryos
No. of 

surrogates

Average number 
of transferred 
embryos per 

surrogate

No. of pregnancies (%)1) No. of live births (%)2)

At mid-term At term At mid-term At term Abnormal Alive until 
weaning

Single transfer TM 215 16 13.43 ± 1.59 5 (31.30) 3 (18.75)a 5 (2.33)a 3 (1.40)a 2 (0.93) 2 (0.93)a

TP 69 5 13.80 ± 0.84 4 (80.00) 4 (80.00)b 6 (8.70)b 6 (8.70)b 1 (1.45) 6 (8.70)b

Co-transfer TM/TP 47 4 11.75 ± 0.50 2 (50.00) 2 (50.00)b 4 (8.51)ab 4 (8.51)b 0 (0.00) 4 (8.51)b

TM, Tibetan Mastiff; TP, Toy Poodle.
1) The pregnancy rate was calculated as the percentage of surrogates that became pregnant.
2) The live birth rate was calculated as the percentage of transferred embryos that developed into puppies that were alive at birth.
a,b Different superscript letters represent significance (p < 0.05).

Figure 1. Representative ultrasonography images and a representative photograph of cloned dogs. Ultrasonography images of (A) twin fetuses 
following single transfer of embryos generated using TP donor cells, (B) a singleton fetus following single transfer of embryos generated using 
TM donor cells, and (C) twin fetuses following co-transfer of embryos generated using TP and TM donor cells on day 30. (D) A photograph of 
cloned puppies born following co-transfer of embryos generated using TP and TM donor cells. TP, Toy Poodle; TM, Tibetan Mastiff.
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Figure 2. Parturition and abnormality rates and percentages of dogs 
that remained alive until weaning following single and co-transfer of 
cloned embryos generated using TM and TP donor cells. An asterisk 
represents a significant (p<0.05) difference. TM, Tibetan Mastiff; TP, 
Toy Poodle.
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body weights over time (Figure 3). The body weights of TM 
dogs significantly differed between the two embryo transfer 
methods from day 0 to day 5, but not at later time points. 
The birth weights of TP dogs and their body weights over 
time did not significantly differ between the two embryo 
transfer methods.

DISCUSSION 

In the present study, we performed SCNT using two types of 
donor cells, transferred the resultant embryos into surrogates 
separately or simultaneously, and determined the pregnancy 
and parturition rates and percentage of dogs that remained 
alive until weaning. Embryos were transferred immediately 
after fusion and activation. Homogenous surrogates received 
similar numbers of cloned embryos upon single transfer and 
co-transfer. This study compared the outcomes following 
single transfer and co-transfer of embryos generated using 
two types of donor cells and with different cloning efficien-
cies for the first time.
  It has been reported that the donor cell used as the oocyte 
nucleus in SCNT affects embryo development and pregnancy 
outcomes [14,20]. Several studies have investigated the de-
velopment of SCNT embryos to improve the cloning efficiency 
[21,22]. However, no study has analyzed in vitro develop-
ment of SCNT embryos dogs. Furthermore, it is technically 
difficult to recover embryos from fallopian tubes after trans-
fer and artificial insemination at the pre-implantation stage 
[1]. Therefore, research about implantation and pregnancy 
after embryo transfer in dogs is limited. Owing to the unique 
reproductive characteristics of dogs, many studies have inves-
tigated the physiological characteristics of suitable surrogates, 
synchronization, and number and quality of embryos trans-
ferred into surrogates [12,23]. However, the low cloning 
efficiency achieved using cells derived from some donors 
hampers dog cloning. The present study sought to over-
come this problem for large-scale cloning. The fusion rates 

and pregnancy and live birth rates following embryo transfer 
were determined. These rates significantly differed between 
cloned embryos produced using two types of donor cells.
  Co-transfer of parthenogenotes and fertilized embryos 
with a high developmental capacity enhances the in vivo de-
velopmental capacity in recipients [24,25]. This demonstrates 
that there is a synergistic effect between embryos upon im-
plantation. In pig and mouse, co-transfer of SCNT embryos 
and parthenogenetic embryos helps to initiate and maintain 
a pregnancy [24,25]. Several studies have evaluated the in-
fluence of embryo co-transfer into surrogates. Upon co-transfer 
of fertilized embryos with different cloning efficiencies, em-
bryos with a low cloning efficiency exhibit higher implantation 
and pregnancy rates than upon single transfer, while embryos 
with a high cloning efficiency exhibit similar implantation 
and pregnancy rates as upon single transfer [16]. In humans, 
embryos produced from cryopreserved and fresh oocytes 
were co-transferred into recipients [26]. The implantation 
and pregnancy rates were higher upon co-transfer than upon 
single transfer of embryos produced from cryopreserved 
oocytes [26]. Our results are consistent with these previous 
reports. In the present study, the parturition rate and percentage 
of dogs that remained alive until weaning were significantly 
higher when embryos with a low cloning efficiency were co-
transferred with embryos with a high cloning efficiency than 
when the former embryos were transferred alone (Figure 2). 
Meanwhile, the parturition rate and percentage of dogs that 
remained alive until weaning were similar upon co-transfer 
and single transfer of embryos with a high cloning efficiency 
(Figure 2). In SCNT, abnormal reprogramming of the donor 
nucleus by oocyte cytoplasm induces alterations of epigenetic 
modifications of key regulatory genes required for normal 
fetal and placental development [27]. Overall, our results 
showed that co-transfer of embryos with low and high clon-
ing efficiencies might affect in vivo reprogramming of cloned 
embryos and improve parturition rates. 
  Abnormal reprogramming and DNA methylation follow-

Figure 3. Birth weights and body weight changes over time of dogs born following single and co-transfer of embryos generated using TM and TP 
donor cells. (A) The birth weight of TM puppies was significantly lower (p<0.05) following co-transfer than following single transfer of embryos. (B 
and C) The body weight of cloned TM dogs was significantly (p<0.05) higher following single transfer than following co-transfer of embryos until 
the fifth day after birth. An asterisk (*) represents a significant (p<0.05) difference. TM, Tibetan Mastiff; TP, Toy Poodle.
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ing SCNT can cause abortion, stillbirth, and death after birth 
[27]. Furthermore, cloned animals have a longer gestation 
period than non-cloned animal and exhibit abnormalities 
such as rapid fetal weight gain at the end of pregnancy, dyspnea, 
hyper-muscular dystrophy, and large size [19,28]. However, 
several studies reported that cloned animals have similar 
growth curves and health statuses as non-cloned animals 
[29,30]. Therefore, we evaluated birth weights, body weight 
changes over time, and abnormality rates of cloned dogs 
born after co-transfer and single transfer of embryos. Ab-
normalities such as abortion and hyper-muscular hypertrophy 
were observed following single transfer, but not co-transfer, 
of embryos. The birth weights of TM dogs were significantly 
lower after co-transfer than after single transfer of embryos, 
but their body weights did not differ between the two em-
bryo transfer methods after 5 days. A previous study reported 
that birth weight is lower following a multiple pregnancy 
than following a single pregnancy [19]. Consistently, the 
body weight of TM dogs was lower after co-transfer than after 
single transfer of embryos from day 0 to day 5 (Figure 3). How-
ever, the body weights of these dogs did not significantly 
differ between the two embryo transfer methods after day 5 
and their growth curves were normal (Figure 3). 
  In conclusion, the pregnancy and live birth rates and per-
centage of dogs that remained alive until weaning significantly 
differed following transfer of embryos generated using two 
types of donor cells. The parturition rate and percentage of 
dogs that remained alive until weaning were significantly 
higher when embryos generated using TM donor cells, which 
had a low cloning efficiency, and TP donor cells, which had 
a high cloning efficiency, were co-transferred into surrogates 
than when the former embryos were transferred alone. The 
cloned dogs had similar weight change curves until weaning. 
Although further studies of embryo reprogramming and 
DNA methylation during in vivo development are essential, 
we argue that pregnancy outcomes are better upon co-transfer 
of SCNT embryos with high and low cloning efficiencies than 
upon transfer of the latter embryos alone.
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