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Abstract: The stability, electronic structure, electric transport, thermal transport and thermoelectric
properties of the monolayer Hf2Br4 are predicted by using first principle calculations combined with
Boltzmann transport theory. The dynamic stability of the monolayer Hf2Br4 is verified by phonon
band dispersion, and the thermal stability is revealed by ab initio molecular dynamics simulations.
The electronic structure calculation indicates that the monolayer Hf2Br4 is an indirect band gap
semiconductor with a band gap of 1.31 eV. The lattice thermal conductivity of the monolayer Hf2Br4

is investigated and analyzed on phonon mode level. The calculation results of the electric transport
explore the excellent electric transport properties of the monolayer Hf2Br4. The thermoelectric trans-
port properties as a function of carrier concentration at three different temperatures are calculated.
The study indicates that the monolayer Hf2Br4 can be an alternative, stable two-dimensional material
with potential application in the thermoelectric field.

Keywords: monolayer Hf2Br4; thermal transport; thermoelectric; first-principles calculations

1. Introduction

Due to the increasing demand for efficient and clean energy, thermoelectric (TE)
materials that can be used in renewable energy installations have attracted extensive
attention. According to the Seebeck effect, TE materials can be applied where temperature
gradient converts to electrical power and vice versa [1,2]. The conversion efficiency of TE
materials is determined by the dimensionless figure of merit, namely the ZT value. The ZT
value at a certain temperature T is determined as: ZT = S2σT/k. In the equation, S, σ and
k correspond to the Seebeck coefficient, electrical conductivity and thermal conductivity,
respectively. Thermal conductivity includes electron (ke) and lattice thermal conductivity
(kl). The ke is related to σ, the relation between them can be described by the Wiedemann–
Franz law: ke = LσT, in which L is the Lorentz constant. S and σ are coupled by the
carrier concentration (n). The thermoelectric figure of merit ZT value can be improved
by establishing a combination of enhanced power factor (PF = S2σ) and low thermal
conductivity k. Due to the interdependence of these three inherent parameters (S, σ, ke),
optimizing these three parameters to achieve high ZT has become a key challenge.

Interestingly, the reduction in the dimensionality has the potential to break afore-
mentioned restrictions to enhance ZT value due to the quantum confinement effect [3–5].
On the one hand, the quantum confinement effect can improve the density of electronic
states (DOS) near the Fermi level and provide a way to decouple σ from S, resulting in
an increased power factor [6–8]. The epitaxial CaSi2, for example, developed on Si (111)
substrates exhibits not only high σ compared to metal but also an extremely large S [9].
On the other hand, nanostructing can significantly reduce the lattice thermal conductiv-
ity [10,11]. The high-density interfaces provided in nanostructures allow phonons to scatter
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more efficiently than electrons over an average large free path, resulting in reduced lattice
thermal conductivity and maintaining electron transport and electron mobility [12–16].
Thanks to the quantum confinement effect, many studies have found that two-dimensional
materials can provide higher TE performance than their bulk counterparts. For example,
the PF of SnSeS monolayer is significantly improved several times higher than the bulk
analog [17]. Under a moderate hole concentration, the ZT value of the Sb2Si2Te6 monolayer
reaches 9.62 at 700 K, which is nearly nine times that of the bulk structure [18]. Gupta
et al. [19] theoretically predicted that the maximum ZT value of SnS monolayer is 1.36 at
room temperature, which is almost 33 times higher than the ZT of its bulk form.

Recently, Sevil et al. [20] revealed that monolayer Hf2Br4 is a promising TE material
through high-throughput calculation method due to the high electronic fitness function
(EFF). However, the electronic and phonon transport mechanism of the monolayer Hf2Br4
is still puzzling. In this paper, we systematically study the electronic, phonon transport
and TE properties of the monolayer Hf2Br4 with the help of the first principles combined
with Boltzmann transport theory.

2. Computational Details

All first principal calculations are performed with the help of the Vienna Ab initio
Simulation Package (VASP) code [21]. First, we performed the structural optimization using
the Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional with the projected
augmented wave (PAW) method [22]. The spin–orbit coupling (SOC) is used for the
electronic band structure calculations. The cut-off energy for the plane wave basis was
set to 500 eV. 15 × 15 × 1 k-meshes in the first Brillouin zone was used. The convergence
criteria for energy and force were, respectively, set as 1 × 10−4 eV and 1 × 10−4 eV/Å.
An A~20Å vacuum was applied perpendicular to the layer plane to avoid inaccuracies
through interaction with the monolayer. After structural optimization, we performed
the electronic band structure calculation, taking into account the Hartree–Fock exchange
hybrid functional HSE06 [23]. From the calculated electronic band structure, electronic
transport properties were extracted based on the Boltzmann transport theory by employing
the BoltzTraP2 code [24], in which relaxation time τ is taken as a constant. The denser
k-point sampling (31 × 31 × 1) was used in solving the transport equation. To estimate
the relaxation time τ, we calculated the carrier mobility µ near the Fermi level using the
deformation potential (DP) theory [25–27] through the formula:

µ =
2e}3C

3kBTm∗2E2
1

, (1)

where e, }, kB and T are the electron charge, reduced Planck constant, Boltzmann constant
and temperature, respectively. The elastic modulus C, effective mass m* and DP constant
E1 can be given from the following forms:

C =
1
S0

[
∂2E/∂δ2

]
, (2)

m∗ = }2/
(

∂2ε/∂k2
)

, (3)

E1 = dEedge/dδ, (4)

where E is the total energy applied uniaxial strain δ. The uniaxial strain δ is defined as
δa/a0 (∆a is the variation of the lattice parameter, a0 is the relaxed lattice parameter), and
S0 is the area of the optimized surface. ε and k are the band energy and electron wave
vector, respectively. Eedge denotes the energy of the band edge. The relationship between τ

and µ is related by τ = µm∗
e .
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The lattice thermal conductivity kl is calculated based on the Boltzmann transport
equation integrated in ShengBTE code [28] with the second- and third-order interatomic
force constants (IFCS) as:

kαβ
l =

1
kBT2ΩN ∑

λ

f0( f0 + 1)(}ωλ)
2vα

λvβ
λτ0

λ, (5)

in which α and β are the Cartesian components of three Cartesian axes (x, y, or z). ωλ, vλ

and τ0
λ are the frequency, group velocity and lifetime of phonon mode λ, respectively. Ω, N

and f0 are the volume of the unit cell, the number of phonon vectors and the Bose–Einstein
distribution function, respectively. The boundary scattering is ignored in the calculation.
The second-order IFCS were calculated by using the Phonopy code [29] with 7 × 4 × 1
supercells, including 168 atoms. The third-order IFCS were obtained with the help of
Thirdorder.py script by constructing a 5 × 3 × 1 supercell with 14th nearest neighbor. Q-
grid mesh was set to 40× 40× 1 to obtain convergent, accurate lattice thermal conductivity.

3. Results and Discussions
3.1. Stability and Electronic Structure

Figure 1 shows the optimized structure of the monolayer Hf2Br4. The monolayer
Hf2Br4 is a monoclinic structure with P21/m space group, Hf2+ and six nearest neighbors
Br1− form octahedral structure. There are six atoms in the unit cell, including two Hf2+

and four Br1−. The out-plane is along the c axis. From Figure 1b it can be seen that the
monolayer Hf2Br4 is composed of three atom layers. The Hf2+ layer is sandwiched between
two Br1- layers. The optimized lattice constants are a = 3.43 Å and b = 6.41 Å, which are
consistent with the previous results (a = 3.43 Å, b = 6.40 Å) obtained by using the first
principle PBE functional [20].
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branch has no imaginary vibrational frequencies, so we can infer that the monolayer 

Figure 1. Top (a) and side (b) views of the 6 × 4 × 1 supercell structure for the monolayer Hf2Br4.
The unit cell is delimited by solid line.

First, we investigated the dynamical and thermal stability of monolayer Hf2Br4.
Figure 2a shows phonon dispersion curves obtained from harmonic force constants. Since
there are six atoms in the unit cell, there are eighteen phonon modes in phonon dispersion
curves. The three acoustic modes include two linear modes (transversal acoustics (TA) and
longitudinal acoustic (LA)) in-plane vibrations and one flexural mode (ZA) for out-of-plane
vibrations, the other fifteen phonon modes are optical modes. The lowest and highest
optical branch frequencies are 1.79 THz and 6.49 THz, respectively. High frequency optical
modes are dominated by Br atoms, Hf and Br atoms contribute equally to the low frequency
optical and acoustic modes together. The low kl is expected with the large mass difference
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for Hf and Br atoms [11]. In addition, we noticed that the phonon branch has no imaginary
vibrational frequencies, so we can infer that the monolayer Hf2Br4 is dynamically stable.
Moreover, ab initio molecular dynamics (AIMD) simulations of the NPT ensemble with
a fixed particle number, pressure and temperature are performed to examine the thermal
stability of the monolayer Hf2Br4 based on the 7 × 4 × 1 supercell. The fluctuation of total
energy and the evolution of the structure of the simulation process at 300, 500 and 700 K
are shown in Figure 2b. As shown in Figure 2b, the monolayer Hf2Br4 structure remains
crystalline from 300 to 700 K, indicating the thermal stability of the monolayer Hf2Br4 at
the three temperatures. The total energy change per atom is less than 0.5 eV, which is in the
acceptable range in such AIMD simulations [30,31].
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respect to time in AIMD and equilibrium structures at 300, 500 and 700 K (b).

The electronic band structure of the monolayer Hf2Br4 is shown in Figure 3a. The
monolayer Hf2Br4 is semiconductor with a band gap of 0.86 eV based on the PBE result,
which is consistent with the previous report [20]. To accurately evaluate the band gap,
the HSE06 functional was used. We found that the HSE06 functional did not change the
characteristics of the indirect band gap; however, it gave rise to an increase in the band
gap to 1.31 eV. The valence band maximum (VBM) resides between the S−Y path and
the conduction band minimum (CBM) is located in Γ−X path. We found that there was
a second maximum within 0.1 eV of VBM and CBM along the Γ−X path and S−Y path,
respectively, which was in the favor of band degeneracy and led to higher effective density
of states (DOS) near VBM and CBM as shown in Figure 3b. We noticed that the CBM had a
much higher dispersion than the VBM, indicating that the electron along the a-axis had
small effective mass, which was beneficial to electron mobility but was not good for the
Seebeck coefficient. The partial DOS (PDOS) of the Hf and Br atoms are shown in Figure 3b.
Both the VBM and CBM near the Fermi level were mainly contributed by the d orbital
of Hf atoms. The high and steep DOS that occurred near VBM was good for the Seebeck
coefficient [32]; therefore, we can assume that the p-type monolayer Hf2Br4 has superior
Seebeck coefficient. A similar phenomenon has been reported in some typical TE materials,
such as PbSe [33], BiCuSeO [34] and CaMgSi [35]. The band decomposition charge densities
of VBM and CBM with a 0.001 isosurface level are shown in Figure 3c,d. At the VBM, the
charge density was localized around Hf and Br atoms, and the charge density of Hf atoms
was connected in the a-axis. At the CBM, the charge density was localized around the Br
atom at the same isosurface level and formed charge channels in the a-axis. The results
demonstrate that the conductive pathway of the p-type and n-type monolayer Hf2Br4 are
mainly determined by the Hf atoms. The charge channels in the a-axis indicate that the
electrical conductivity along the a-axis is most likely larger than that along b-axis for both
n-type and p-type monolayer Hf2Br4.
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3.2. Thermal Transport Properties

The lattice thermal conductivity (kl) is critical to estimate thermoelectric properties.
The calculated kl along the a-axis and b-axis versus the temperature (T) for the monolayer
Hf2Br4 are given in Figure 4a. The kl decreases with the increase in T and demonstrates
typical 1/T behavior. The kl shows anisotropic features along a different direction. The kl
along the a-axis is larger than that along the b-axis at all temperatures. For example, the kl
is 10.91 W/mK and 6.47 W/mK along the a-axis and b-axis at 300 K, respectively. The kl
of monolayer Hf2Br4 is lower than that of the reported analog monolayer Hf2Cl4 [36]. To
further explore the physical insights of the thermal transport for the monolayer Hf2Br4, a
further mode level analysis was performed. The kl of the monolayer Hf2Br4 was further
decomposed into different phonon modes. The contributions from the acoustic and optical
phonon modes along the a-axis and b-axis at room temperature to the corresponding total
kl of the monolayer Hf2Br4 are shown in Figure 4b. It can be seen that kl is dominated by
three acoustic phonon modes. Although the contribution of optical phonon modes is minor,
it cannot be ignored, especially along the a-axis. The contribution of 15 optical modes to
the total kl along the a-axis and b-axis are 14.9% and 7.2%, respectively. Among the three
acoustic modes, the ZA mode contributions to the total kl along the a-axis and b-axis are
similar. In order to provide more information about the mechanism of phonon thermal
transport, the group velocities (v) and relaxation time (τ) as a function of frequency are
illustrated in Figure 4c–e. From the view of the frequency dependence of group velocity, the
group velocity of LA mode is larger than that of ZA and TA modes in a-axis and b-axis. In
addition, the optical modes along the a-axis show greater group velocity than that along the
b-axis. The different group velocities and contributions of phonon models on the a-axis and
b-axis led to the anisotropy of thermal conductivity. It is obvious that the low-frequency
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acoustic modes show longer phonon relaxation times than those of optical modes. Most
phonon relaxation times of acoustic modes are in the order of a few to ten picoseconds.
Specially, the relaxation times of the acoustic modes with long wavelength are more than
100 picoseconds. The longer relaxation times of acoustic modes account for the dominant
role in lattice thermal conductivity. The cumulative kl with respect to the phonon mean free
path (MFP) of the monolayer Hf2Br4 at 300 K is plotted in Figure 4f to discuss the size effect
on the phonon transport. We can see that the phonon MFP of monolayer Hf2Br4 ranges
from a few nanometers to nearly 1000 manometers. The phonons with low MFP contribute
significantly to the total thermal conductivity. We find that phonons with MFP below
100 nm contribute 63% and 47% to the total kl along the a-axis and b-axis, respectively.
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3.3. Electronic Transport Properties

The Seebeck coefficients of p- and n-type monolayers Hf2Br4 along the a-axis and
b-axis with carrier concentration dependence at 300, 500 and 700 K are shown in Figure 5a,b.
For a specific temperature, the absolute value of the Seebeck coefficient (|S|) decreases with
the carrier concentration from 1× 1011 to 1× 1014 cm−2 along the a-axis and b-axis for both
the p- and n-types. In addition, at a constant carrier concentration, the |S| increases with
increasing temperature from 300 K to 700 K along the a-axis and b-axis for both the p- and
n-types. The |S| is proportional to the temperature but inversely proportional to the carrier
concentration, which can be easily understood from |S| ∝ Tn−2/3 [37]. We find that the |S|
of p-type the monolayer Hf2Br4 is superior to that of n-type at the given temperature and
carrier concentration, which can be predicted under the following complied equation [38]:

|S| = kB
e

[
ln
(

N
n

)
+ 2.5− r

]
, (6)

where N, n, r, kB and e are effective densities of states near the Fermi level, carrier
concentration, scattering parameter, Boltzmann’s constant and electron charge, respectively.
The larger slope of the effective state density in VBM, as shown in Figure 3b, results in a
larger Seebeck coefficient in the p-type monolayer Hf2Br4. Moreover, the Seebeck coefficient
exhibits anisotropy along the a-axis and b-axis for both p- and n-types. For example, at
700 K, 1 × 1011 cm−2, the |S| of the n-type monolayer Hf2Br4 are 718 µV/K and 626 µV/K
along the a-axis and b-axis, respectively.
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Based on Boltzmann transport equation, the electrical conductivity to relaxation time
ratio (σ/τ) is obtained. Generally, the relaxation time (τ) at energy E and scattering
parameter (r) is related by power function τ(E) = τ0(E− E0)

r, in which E0 and τ0 are the
ground state energy and the corresponding scattering constant [32]. However, various
scatters, such as acoustic and optical phonons, interfaces and other carriers, make the
relaxation time difficult to determine. In this work, the relaxation time is uncovered based
on the DP theory. This approximation method has been widely used to predict the τ for
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monolayer materials [39–41]. The calculated deformation potential constant E1, elastic
constant C and effective mass m* and the corresponding τ at 300 K for the monolayer
Hf2Br4 are listed in Table 1. With the help of the calculated relaxation time, the electrical
conductivity of the p- and n-types of monolayer Hf2Br4 along the a-axis and b-axis as a
function of carrier concentration at 300, 500 and 700 K is shown in Figure 5c,d. It can be
noticed that in the carrier concentration range of 1 × 1011 cm−2 to 1 × 1014 cm−2, at a given
temperature, the higher the carrier concentration, the higher the electrical conductivity,
while the electrical conductivity has the opposite variation with temperature at a given
carrier concentration. The electrical conductivity is proportional to carrier concentration
and carrier mobility, as explained by the formula: σ = neµ, in which n and µ are the carrier
concentration and the carrier mobility, respectively. As the temperature increases, the
scattering of carriers increases, which leads to a decrease in carrier mobility. In addition,
we find that at a constant temperature and carrier concentration, the electrical conductivity
is anisotropic and the electrical conductivity along the a-axis is greater than that along the
b-axis no matter for the p-type or n-type monolayer Hf2Br4. As can be seen from Table 1,
the effective mass along the a-axis is much smaller than that along the b-axis, which leads
to easier mobility of carriers along the a-axis. On the other hand, charge channels formed in
the a-axis are also conducive to carrier mobility, such as the analysis of band decomposition
charge density in Figure 3c,d.

Table 1. The calculated deformation potential constant E1, elastic constant C and effective mass m*
(me is the electronic mass) for Hf2Br4. The relaxation time τ at 300 K is listed together.

Carrier Type E1 (eV) C (Jm−2) m* (me) τ (fs)

a-axis p-type 1.79 81.80 0.79 260.88
n-type 1.54 81.80 0.22 1265.62

b-axis p-type 0.56 66.89 1.94 238.63
n-type 1.08 66.89 1.61 1069.50

3.4. Thermoelectric Properties

Combining the properties of electron and phonon transport, the figure of merit ZT of
the monolayer Hf2Br4 is predicted. The figure of merit ZT of the monolayer Hf2Br4 as a
function of carrier concentration at 300, 500 and 700 K is shown in Figure 6.
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From Figure 6, we can see that the monolayer Hf2Br4 presents an extraordinary
thermoelectric performance along the a-axis because of the excellent electrical conductivity
along the a-axis. At 700 K, the maximum ZT values along the a-axis for the p-type and
n-type doping are 3.16 and 6.88 at the optimized carrier concentrations of 7.26 × 1012 cm−2

and 1.17 × 1012 cm−2, respectively. At 700 K, along b-axis, the ZT values for the p-
type and n-type doping reach peaks at carrier concentrations of 1.82 × 1015 cm−2 and
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2.74 × 1014 cm−2, and the corresponding ZT value are 0.75 and 0.30, respectively. These
results indicate that the monolayer Hf2Br4 is a potential thermoelectric material and doping
is an effective method to improve the thermoelectric performance.

4. Conclusions

In this paper, we systematically calculated the electronic and thermoelectric properties
of monolayer Hf2Br4 using first principles combined with the Boltzmann transport theory.
The stability of the monolayer Hf2Br4 was verified by the phonon dispersion spectrum and
AIMD simulations. The calculation of the electronic structure revealed that the monolayer
Hf2Br4 is a semiconductor with an indirect band gap of 1.31 eV and the d orbital of
Hf atom is the main contributor for VBM and CBM near the Fermi level. The thermal
transport properties calculation showed that the lattice thermal conductivity is dominated
by three acoustic phonon modes and exhibits anisotropy caused by the difference in
group velocities of low frequency acoustic phonon modes and optical phonon modes. The
calculation results of electric transport demonstrate that the monolayer Hf2Br4 can provide
a platform on which relatively high conductivity can coexist with a high Seebeck coefficient.
The optimized value of the figure of merit ZT along the a-axis under reasonable carrier
concentration at 700 K is 3.16 (6.88) for p-type (n-type) doping. In general, the study shows
that the monolayer Hf2Br4 can be an alternative stable two-dimensional material with
excellent thermoelectric properties.
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