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Multi-hop path reasoning over knowledge base aims at finding answer entities for an input question by walking along a path of
triples from graph structure data, which is a crucial branch in the knowledge base question answering (KBQA) research field.
Previous studies rely on deep neural networks to simulate the way humans solve multi-hop questions, which do not consider the
latent relation information contained in connected edges, and lack of measuring the correlation between specific relations and the
input question. To address these challenges, we propose an edge-aware graph neural network for multi-hop path reasoning task.
First, a query node is directly added to the candidate subgraph retrieved from the knowledge base, which constructs what we term
a query graph. *is graph construction strategy makes it possible to enhance the information flow between the question and the
nodes for the subsequent message passing steps. Second, question-related information contained in the relations is added to the
entity node representations during graph updating; meanwhile, the relation representations are updated. Finally, the attention
mechanism is used to weight the contribution from neighbor nodes so that only the information of neighbor nodes related to the
query can be injected into new node representations. Experimental results on MetaQA and PathQuestion-Large (PQL)
benchmarks demonstrate that the proposed model achieves higher Hit@1 and F1 scores than the baseline methods by a large
margin. Moreover, ablation studies show that both the graph construction and the graph update algorithm contribute to
performance improvement.

1. Introduction

Knowledge base question answering (KBQA) is a task to
figure out the entities as answers for an input question from
a given knowledge base (KB) and has attracted many re-
searchers to work on it [1–10]. It is a challenging academic
task, especially when answering multi-hop questions. As
shown in Figure 1, a 3-hop complex question example is
given. *e topic entity of the question, “What languages are
the movies that share directors with Dick Tracy in?”, is Dick
Tracy, and the multi-hop triplet path \{(Dick Tracy, direc-
ted_by, Warren Beatty), (Warren Beatty, directed, Reds),
(Reds, in_language, Russian)\} needs to be extracted from the

KB to find the answer Russian. Since the intermediate entity
in multi-hop path reasoning is not unique, there may be
multiple correct answers to the input question. For example,
if the green node Heaven Can Wait in Figure 1 has the
relation in_languagewith the entity English, the question will
have two answers, English and Russian. Both precision and
recall metrics are important for this type of multi-hop
questions.

Early studies on multi-hop questions mainly focus on
methods based on semantic parsing [11].*e intuitive idea is
to convert a question into the corresponding structured
query (e.g., in SPARQL) to extract the resulting entity from a
KB. Although these methods prove effectiveness, their
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processing steps and conversion process are relatively
complex and meanwhile may involve expert knowledge or
heuristic rules. Considering that answering multi-hop
questions requires searching for reasoning paths, starting
from the entity mentioned in question, and consisting of
both the relations at each hop and intermediate entities,
recent studies [12–14] have focused on the power of graph
neural networks (GNNs) to solve the above limitations.*ey
often model the question directly to get a candidate entity
graph, and then leverage graph neural network-based in-
formation propagation methods to update the node rep-
resentations in the graph, which are used to choose the
answer entities. However, the current GNN-based methods
and multi-hop path reasoning over knowledge base tasks are
not compatible enough.

For answering a multi-hop question, people usually start
from the topic entity mentioned in the question and search
for the corresponding relation path in turn until the answer
entity to the question is reached. Because GNN retains a state
that can represent information from its neighborhood with
arbitrary depth, the GNN-based information propagation
process can simulate this kind of human problem-solving
idea. In one hop message passing, the information of
neighboring nodes is passed to the current node. After

multiple propagation, nodes outside of multiple hops will
obtain the information of the reasoning path starting from
the topic entity. If this path and the question are highly
matched, the possibility that this node refers to the answer is
very high. Based on this assumption, we believe that the
node representation after message passing contains the
pivotal information needed to answer the question.
*erefore, improvements are made on the basis of GNN
network to adapt it to the multi-hop path reasoning over
knowledge base task. First, the information contained in the
predicate is essential, which determines the degree of
matching with the question. However, previous GNN-based
models [14–16] mostly consider how to propagate infor-
mation between entities, while predicate information is
more used as the weight of entity information in the
propagation, ignoring their semantic information. To solve
the above issues, the predicate information on the edges of
the graph needs to be used reasonably and the predicate
representation needs to be updated during message passing.
Second, the way that the question is updated is also essential,
which relates to the interactive information with the can-
didate entity graph. *e previous methods [2, 12–14] either
fix the question representation or update it with the rep-
resentation of all nodes in the graph. To solve the issues,
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Figure 1: A concrete example of multi-hop path reasoning over the knowledge base. Given a “what type” question, we aim to derive the
answer (black red oval box) by following the corresponding multi-hop triplet path (red font) starting from the topic entity (yellow oval box)
in the graph.
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further increasing the information interaction between the
question and the entity nodes, improvements are made on
the way to construct the graph. *e question text is added to
the entity graph as a node. Because the question contains the
mention of the topic entity, the question node is directly
connected to the topic entity node in the graph. In this way,
during the graph update process, not only the information
contained in the question is fused into the entity node
representation but also the question node representation is
also updated. To confirm the observations, we conducted
experiments with our proposed model on two datasets,
MetaQA [17] and PathQuestion-Large (PQL) [18], and the
experimental results reached the state-of-the-art level. In
particular, the F1 score has been significantly improved (the
F1 score of our model is 10.7% and 28.6% higher than
baselines on the MetaQA 2-Hop and 3-Hop, respectively),
which shows that the proposed method improves Hit@1
without sacrificing the recall.

*e main contributions of our paper can be summarized
as follows: 1) We propose an edge-aware graph neural
network to simultaneously update the representation of both
the nodes and the predicate edges, better measuring the
relevance of the question and relations for multi-hop path
reasoning. 2) We construct a query graph, treat the question
as a node, and connect it to the topic entity, which allows the
question information to flow to candidate entities along the
propagation path during updating the graph. 3) We conduct
experiments on two widely used multi-hop KBQA datasets,
MetaQA and PQL, to prove our theory and effectiveness of
the proposed model.

2. Related Work

Multi-hop path reasoning over knowledge base aims at
finding answer entities for an input question by walking
along a path of triples from graph structure data, which is
directly related to the existing KBQA research field. Besides,
the method presented in our paper is similar to previous
studies using GNN for question answering.

2.1. Knowledge Base Question Answering. Embedding based
KBQAmodels are mainly divided into a single-hop task and
multi-hop task. *e single-hop KBQA models [19–23]
predict the answer by judging the similarity between the
question and relations in candidate triples. For example,
Zhao et al. [20] proposed a joint scoring conventional neural
network model that leverages subject-predicate dependency.
Moreover, they used a novel well-order loss function to
consider the different subject and predicate contributions to
answer prediction. Zhou et al. [21] proposed a parameter-
shared deep fused model that integrates subject detection
and question-predicate matching in a unified framework.
Wang et al. [23] used a multi-task learning framework to
train a unified model, which shared a BERT encoder across
all KBQA sub-tasks and define task-specific layers on top of
the shared layer to reduce the cost.

Multi-hop KBQA tasks often adopt methods based on
memory networks [24, 25], semantic parsing [26–28], or

reinforcement learning [29–32]. For example, Xu et al. [25]
improved traditional key-value memory networks to answer
complex questions by designing a new query updating
strategy to mask previously addressed memory information
from the query representations, and they introduced a novel
STOP strategy to read a flexible number of triples from
memory slots. Maheshwari et al. [27] treated question an-
swering as a problem of semantic query graph generation
and re-ranking. *ey proposed a self-attention based slot
matching model that exploits the inherent structure of the
query graphs to learn how to rank core chain candidates.
Hua et al. [31] took a meta-reinforcement learning approach
to adapt the meta-learned programmer to new questions
based on the most similar questions retrieved. To effectively
create the support sets, they proposed an unsupervised
retriever to find the questions that are structurally and se-
mantically similar to the new questions from the training
dataset. In addition, there are some other KBQA methods
[33, 34]. For example, He et al. [34] proposed a novel
teacher-student approach, in which the student network
aimed to find the correct answer to the query, while the
teacher network tried to learn intermediate supervision
signals for improving the reasoning capacity of the student
network. However, these methods lack of considering graph
structure information contained in the KB. Recent studies
[2, 13, 14] have introduced graph neural networks into
multi-hop KBQA tasks, which is an efficient way to leverage
graph structure information to represent complex rela-
tionships among entities. GNN-based methods will be in-
troduced in detail in the following section.

2.2. Graph Neural Network Based Question Answering.
Recent studies on multi-hop question answering attempt to
build graphs based on entities and conduct reasoning over
the constructed graph using graph neural networks [35–38],
which are introduced to modify propagation limitation in
long-distance relation. GNN-based question answering
consists of many popular research directions, including
reading comprehension, multiple-choice question answer-
ing, open domain question answering, and KBQA.

2.2.1. Multi-Hop Reading Comprehension. GNN-based
multi-hop reading comprehension approaches aggregate
scattered pieces of evidence across documents into a graph
and then employ GNN-based message passing algorithms to
performmulti-step reasoning.*is work proposed by [39] is
the first attempt to explore how GNN can work in the
context of multi-document reading comprehension. *ey
constructed an entity graph, where nodes are entity men-
tions from supporting documents and edges encode rela-
tions between different mentions (e.g., within- and cross-
document coreference), and then adapted a graph con-
volutional network (GCN) to answer questions by updating
node representations based on neighborhood features. *e
subsequent research work based on GNN can be roughly
divided into two directions. One direction is to calculate the
graph node representation [40–42]. For example, Cao et al.
[40] applied bi-directional attention between an entity graph
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and input query after GCN reasoning over the graph to
formulate a query-aware node representation, which could
derive the mutual information between the query and en-
tities for final prediction. Tang et al. [41] proposed a Gated-
RGCN to utilize the attention and question-aware gating
mechanism to regulate the usefulness of information
propagating across documents and add question informa-
tion during reasoning. *e other direction is the graph
construction [43–46]. For example, Tu et al. [43] constructed
a heterogeneous graph, which contained different types of
nodes (not just entity nodes) representing different granu-
larity levels of information. Fang et al. [44] constructed a
hierarchical graph to connect clues from different sources.

2.2.2. Question Answering over Knowledge Base. *e re-
search direction, commonsense question answering [15, 16],
also uses the external KB as one information source to
answer questions. For example, Feng et al. [16] equipped
pre-trained languagemodels with amulti-hop graph relation
network, which inherits the interpretability of path-based
models and the scalability of GNNs. Yasunaga et al. [15]
designed a joint graph and proposed the node relevance
scoring function to estimate the importance of KB nodes
related to the question context. However, commonsense
question answering, also called multiple-choice question
answering, only needs to choose one answer from a fixed
number of candidate options, which is equivalent to a
simplified version of the KBQA task where any entity in the
KB may be the specified answer. Moreover, several work
[12, 47, 48] studied question answering over the combina-
tion of a large-scale KB and entity-linked text task, called
open domain question answering. For example, Sun et al.
[12] proposed a novel heterogeneous update rule based on
GCN to aggregate evidence across different information
sources. And they proposed an integrated framework called
PullNet in follow-up published work [48], which used an
iterative process to construct a question-specific subgraph
containing information relevant to the question. However,
these models pay more attention to the problem of het-
erogeneous information fusion.

GNN-based KBQA approaches [2, 13, 14, 49] are most
closely related to our method. *e work proposed by [49]
is the first attempt to apply GNNs to KBQA. *ey pro-
posed to use the GNN to encode the graph structure of the
semantic parse. Wang et al. [14] introduced a novel model
based on GNNs to capture long-distance node informa-
tion. Han et al. [2] proposed a directed hypergraph con-
volutional network to handle multi-hop KBQA task, which
leverages hyperedges to connect more than two nodes
more than pairwise connection. Moreover, they designed a
dynamic relation strategy for dynamically updating rela-
tion states and paying attention to different relations at
different hops during the reasoning process. Different
from these models, our paper focuses on the message flow
and the interaction between the query with the candidate
graph. We not only construct a query graph to allow a two-
way interaction of question information and candidate
entity information but also design an edge-aware message

passing algorithm for fusing relation information into the
entity representation to facilitate the final matching of
questions and candidates.

3. Task definition

LetK � V,E,R{ } denote a knowledge base, whereV is the
set of entities,R is the set of relations, andE is the set of triples
in the KB. A triple t ∈ E is denoted as t � (s, r, o), where
s, o ∈ V are entities and r ∈R is the relation between head
entity s and tail entity o. Given a multi-hop path question
Q � (w1, w2, . . . , wn), where wj denotes the jth word and n is
the length of the question word sequence. *e question
contains only one topic entity s1 ∈ V, which can be annotated
by some existing entity linkers, and its answer can be found by
walking down a triplet path t1, t2, . . . . . . , tL􏼈 􏼉⊆E, where tl

denotes the l-hop triple answering the question Q. *e first
hop triple t1 � (s1, r1, o1) starts from the topic entity of Q, and
the last hop triple tL � (sL, rL, oL) ends with the answer entity.
Note that ol−1 in (l − 1)-hop triple and sl in l-hop triple are the
same entity.*e task is to find a triple path fromE and extract
its end entity as the reasoning answer.

4. Method

As shown in Figure 2, to reason over a given query context
using specific knowledge from a KB, the edge-aware GNN
model consists of four main components. First, retrieve the
subgraph Gc corresponding to the given question from the
KB, and construct the query graph Gq by connecting the
query node to the topic entities in Gc. Second, encode the
query graph Gq, where nodes and edges are initialized as
corresponding embeddings. *ird, update the query graph
Gq by using GNN-based information propagation for
multiple rounds. Finally, predict the answer based on the
relevance scores of both the final query node and candidate
entity node representations. *e details of each phase are
described in the following sections.

4.1. Graph Construction. Given a question Q, the topic entity
s1 can be identified by any entity linker. *en, a subgraph Gc

can be retrieved from the KB by querying N-hop entities
around the topic entity s1, which contains answer entities. All
entity nodes in the subgraph are candidate entities Cq􏽮 􏽯.
Traditional GNN-based methods directly perform message
propagation on the retrieved subgraph Gc. To strengthen
information flowing between the question and entity nodes in
the following information propagation, a new query node q

representing the question context is introduced into the above
subgraph, where q is connected to the topic entity s1 using a
new predicate type rq. Note that the predicate type represents
the relationship between the query context and the relevant
entities in Gc. Such a newly obtained graph containing the
query and candidate nodes is termed as query graph Gq.

4.2. Graph Encoder. *e graph encoder layer initializes all
graph nodes representing entities, and graph edges repre-
senting predicates to vector representation. *e node
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embedding for q is initialized by using a long short-term
memory network (LSTM) to encode the query context
eq � LSTM(w1, w2, . . . , wn), where eq ∈ Rd is the last state of
LSTM output and d is the hidden state size. Specifically, a
LSTM has several cell layers to makememories, and each cell
layer involves the forget, input, and output gates. Let fj, ij,
and oj denote the jth cell layer outputs of forget, input, and
output gates. *e following formula elaborates the technical
details of the jth cell layer:

fj � σ Wfwj + Vfsj−1 + bf􏼐 􏼑,

ij � σ Wiwj + Visj−1 + bi􏼐 􏼑,

oj � σ Wowj + Vosj−1 + bo􏼐 􏼑,

cj � fj ⊗ cj−1 + ij ⊗ tan h Wcwj + Vchj−1 + bc􏼐 􏼑,

sj � oj ⊗ tan h cj􏼐 􏼑,

(1)

where cj is the cell state for long-term memory, sj is the
intermediate state for short-term memory, W and V with
different subscripts are the weight matrices, and b with

different subscripts is bias vectors. In addition, σ() is a
Sigmoid function, tan h() is a Tanh function, and ⊗ denotes
the element-wise multiplication. *e value of intermediate
state of the last cell layer, sn, is the query node embedding
eq.

Other nodes and edges on Gq are initialized by using pre-
trained word vectors or random initialized vectors. Let em

represent the entity vector for entity node m in Gc, and xr

represent the predicate vector for predicate edge r in Gq. *e
nodes and edges in the graph are stored in the entity matrix
E � e1, . . . , ene

􏽮 􏽯 and fact matrix R � x1, . . . , xnr
􏽮 􏽯, respec-

tively, where E ∈ Rne∗d, R ∈ Rnr∗d, ne is the number of entity
nodes in the graph Gc, nr is the number of triples in the
graph Gq, and d is the embedding size that is equal to the
hidden state size of the LSTM.

4.3. Multi-Hop Graph Update. *e basic recipe for graph-
propagation based models is to update node representations
via iterative message passing between neighbors on the
graph. *is phase is called message passing (namely,

Graph Construction

Relevant score

Answer Prediction

Time

Multi-hop
Graph Update

Graph Encoder

The film written by Peter Viertel
were in which languages ? 

Knowledge base
retrieval

has_genre

written_by in_language
Saboteur

Thriller

Decision
Before Dawn 1951Peter 

Viertel

German

written_by release_year

Query 
Node

The film written by
Peter Viertel were in
which languages 

has_genre

written_by in_language
Saboteur

Thriller

Decision 
Before Dawn 1951Peter 

Viertel

German

written_by
release_year

Gc

Gq
Question

The film written by Peter Viertel were in which languages

LSTM

0-hop

L-hop

(L-1)-hop

Topic Entity

Figure 2: Overview of our approach. Given a question, we retrieve relevant entities from a KB to obtain candidate graph, connect the
question with the retrieved graph to form a query graph (§4.1), initialize both the node and edge representation on the graph (§4.2), update
graph nodes and edges (§4.3), and predict the answer (§4.4).
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information propagation) that runs for L time steps (namely,
L hops). *e general formulas of node update are defined as
follows:

h
(l)
m � χ h

(l−1)
m , 􏽘

r

􏽘
k∈Nr(m)

ψ h
(l−1)
k , xr􏼐 􏼑⎛⎝ ⎞⎠, (2)

where l ∈ 1, . . . , L{ } is the hop number, Nr(m) denotes all
the entity neighbors of the current node m along the in-
coming edges of relation r, χ is an updating function, and ψ
represents a message function. In (2), the updating function
and message function can be any reasonable model or al-
gorithm, which can be designed according to different
targets. *ese two function designed in our model will be
described in detail in the following section.

During the graph updating process, our edge-aware
GNN model has conducted three strategies to enhance the
path reasoning performance. First, every time node repre-
sentations are updated, only if the information of neighbor
nodes related to the query is calculated. Second, in order to
get the node representations matching the input query, the
edge information needs to be incorporated once the node is
updated. *ird, since relation information and query in-
formation are equally important, in addition to entity node
representations, both query node and edge representations
also need to be updated once an update operation is trig-
gered. In conclusion, every time the graph is updated, there
are three aspects that need to be updated: the relation edges
R, the entity nodes E, and the query node eq in the graph Gq.
*e detailed process of lth message passing is described in
Figure 3. In addition, the entire message passing process is
described in algorithm 1.

4.3.1. Entity Nodes Update. To shorten the semantic gap
between entities and the natural language question, we
concatenate each node representation em, node m ∈ Gc, with
the question node embedding eq, which is defined as
h0

m � [em; eq]. Every time an entity node representation is
updated, some new information needs to be added on the
basis of the original entity embedding. *is information is
aggregated from the entity neighbors related to the query of
the current node. In addition, our model borrows the core
idea of graph attention networks [35], learns the relative
weights between two connected nodes through the attention
mechanism, which makes the information added from
different neighbors have different weights. *e difference is
that in order to better adapt to the multi-hop path reasoning
task, using the similarity between the relation and the
question to calculate weight, instead of using the informa-
tion of two adjacent nodes. *us, in the l-hop graph
updating stage, the representation h(l)

m ∈ Rd of each node
m ∈ Gc can be updated by

h
(l)
m � FFN h

(l−1)
m , 􏽘

r

􏽘
k∈Nr(m)

αmk
r ϕr h

(l−1)
k􏼐 􏼑⎛⎝ ⎞⎠ + h

(l−1)
m , (3)

where FFN() represents a single-layer feed-forward net-
work, ϕr() denotes the relation r specific message trans-
formation function, and αmk

r is an attention weight that
contains messages from node k to m connected with relation
r.

Specifically, the attention weight αmk
r is the relevance

probability of the query and predicate embeddings,

αmk
r � softmax x

(l−1)
r􏼐􏼐 􏼑

T
h

(l−1)
q 􏼑, (4)
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where hq is the query node representation (described in
equation (8) (Feq6)) and softmax() is the softmax nor-
malization over all outgoing edges from node k. From both
(3) and (4), it is observed that the current node’s updated
information comes more from these nodes connecting to the
edges that are more relevant to that query.

As Gq is a multi-relational graph, the message passed
from a source node to the target node should capture their
relationship. *us, the message transformation function
ϕr() calculates the information transferred from neighbor
node k to m, which contains information of the edge be-
tween two nodes by introducing the relation embedding xr,

ϕr h
(l−1)
k􏼐 􏼑 � M

(l−1)
k FFN x

(l−1)
r , h

(l−1)
k􏼐 􏼑, (5)

where M
(l−1)
k is a directed propagation matrix inspired from

[12]. Combining (3) and (5), we can see that the edge in-
formation is fused into entity representation. Specifically, the
directed propagation matrix uses the relevance of the query
and predicates to control information flow direction,

M
(0)
m �

1, if m � q,

0, otherwise,
􏼨 (6)

M
(l)
m � (1 − λ)M

(l−1)
m + λ 􏽘

r

􏽘
k∈Nr(m)

αmk
r M

(l−1)
k , (7)

where (6) means that propagation starts from the query
node. It can be observed from both (6) and (7) that M can be
regard as a weight factor that controls information flow
along the edge related to the query.

4.3.2. Query Node Update. *e initial representation of the
query node is denoted as h(0)

q , h(0)
q � [eq; eq], similar to the

other node initial representation in the graph Gq. In l-layers,
considering that the query node is directly connected to the
topic entity node, the query representation also adds mes-
sages from the topic entity after using (3) to update with
other entity nodes simultaneously,

h
(l)
q � FFN h

(l)
q , h

(l)
s1

􏼐 􏼑 + h
(l−1)
q , (8)

where hs1
is the topic entity representation.

4.3.3. Predicate Edges Update. To obtain question-aware re-
lation representation, during the l-layer graph updating process,
the predicate vector connecting node m and k is updated by

x
(l)
r � FFN x

(l−1)
r , αmk

r h
(l)
q􏼐 􏼑 + x

(l−1)
r , (9)

where αmk
r , the similarity between the relation r and question

Q, has been calculated by using (4). Residual connections are
used when updating each node and edge because it can stitch
together features at different levels to increase feature di-
versity and speed up training.

4.4. Answer Prediction and Training. After L-hop infor-
mation propagation, we have final query representation
h(L)

q and entity representation h(L)
m for entity m. *e

probability of this entity being the answer is calculated by
the relevance score of the query and the entity
representations,

pm � σ h
(L)
q􏼐􏼐 􏼑

T
h

(L)
m 􏼑. (10)

Locating the answers among the candidate entities in the
query graph can be regarded as a node classification task,
judging whether an entity node is the answer entity or not.
*us, the training process uses binary cross-entropy loss
over above probabilities, which is defined as

L(θ) � − 􏽘

ne

m�1
ymlog􏼂 pm( 􏼁 + 1 − ym( 􏼁log 1 − pm( 􏼁􏼃, (11)

where θ represents the model parameters and ym is the
golden probability distribution over the entity.

At the testing stage, the entity with the highest score on
the query graph is selected as the answer to calculate the
Hit@1 metric. In addition, if the difference between the
scores of other entities and the highest score does not exceed
the threshold 0.1, these entities are also used as the answer
selected by the model to calculate the F1 score.

4.5. Computation Complexity. We analyze the time and
space complexity of our method and compare with prior
works, GRAFT-Net [12], MHGRN [16], and QA-GNN [15]
in Table 1. As we handle edges of different relation types
using different edge embeddings instead of designing in-
dependent graph networks for each relation as in MHGRN,
the time complexity of our method is constant with respect
to the number of relations and linear with respect to the
number of nodes. In addition, our model achieves the same
space complexity as other models.

5. Experiments

5.1. Datasets. We used two benchmark datasets to evaluate
our proposed edge-aware GNN model: MetaQA and PQL.
*e statistics of these datasets are described in Table 2.

MetaQA is a large-scale multi-answer dataset for KBQA
in the movie domain. It contains three versions of ques-
tions, namely, Vanilla, NTM, and Audio, and each version
consists of 1-hop questions, 2-hop questions, and 3-hop
questions. *e data form is a question-answer pair, namely,
each question is followed by a list of answer entities. *e
dataset also provides a background KB, which contains
40128 entities and 9 relations. To make a fair comparison
with previous work, we use the Vanilla version and query
the given KB to predict answer for three sets of different
hops.

PQL is a single-answer multi-hop KBQA dataset, which
is a more challenging version in PathQuestion. *e dataset
consists of 2-Hop (PQL-2H) questions and 3-Hop (PQL-
3H) questions, which contains 1594 and 1031 data samples,
respectively. *e data form is a question labeled with the
golden reasoning path starting from the topic entity to the
answer entity. It also provides corresponding background
KB, which contains 5035 entities and 364 relations. *e

Computational Intelligence and Neuroscience 7



original dataset does not have a standard training set, test set,
and dev set, we divide them at a ratio of 8 :1 :1 to make fair
comparisons.

5.2. Implementation Details

5.2.1. Experimental Settings. We run the experiments on a
V100GPUwith 16Gmemory.*e batch size is set to 32. All the
embeddings are initialized randomly.*e hidden dimension of
the LSTM is 300.*e hidden dimension of all GNN layers is set
to 300. *e layer number is 4 for all GNNs in 2-hop settings
and 5 in 3-hop settings. *e dropout rate is set to 0.2. *e
Adam optimizer [50] is used with the learning rate of 0.001.

5.2.2. Data Pre-Processing. First, entity linking is per-
formed to get the topic entity of a question. For entity
linking, we use simple surface level matching. *en, query

the background KB to obtain entities and predicates within
n hops for a n-hop question and obtain a question-related
subgraph. For the PQL dataset, all entities and predicates
within n hops for a n-hop question are kept to construct
the subgraph. For the MetaQA dataset, the maximum
number of fact triples retrieved for a question is very large.
To fit into GPU memory for gradient-based learning, the
size of the retrieved subgraph is limited. We randomly
remove some non-answer entities and predicates from the
obtained n-hop subgraph. *e statistics of the final

Input: Query graph Gq � Vq,Eq,Rq􏽮 􏽯; hop number L; initialized query embedding eq; initialized entity embedding
em,∀m ∈Vq􏽮 􏽯; initialized predicate embedding xr,∀r ∈Rq􏽮 􏽯; neighborhood function N( ); feed- forward network FFN( )

Output: Vector representations zm for all m ∈Vq

(1) x(0)
r ←xr,∀r ∈Rq

(2) h(0)
m ←[em; eq],∀m ∈Vq

(3) for m ∈ Vq do \(⊳\) initializing the directed propagation matrix
(4) If m � q then
(5) M(0)

m ←1
(6) else
(7) M(0)

m ←0
(8) end if
(9) end for
(10) For l←1 to L do \(⊳\) starting message passing
(11) for m ∈ Vq do
(12) for k ∈N(m) do
(13) αmk

r � softmax((x(l−1)
r )Th(l−1)

q ), r: k←m

(14) ϕr(h
(l−1)
k ) � M

(l−1)
k FFN(x(l−1)

r , h
(l−1)
k )

(15) end for

(16) h(l)
m � FFN(h(l−1)

m , 􏽐
r

􏽐
k∈Nr(m)

αmk
r ϕr(h

(l−1)
k ) + h(l−1)

m

(17) M(l)
m � (1 − λ)M(l−1)

m + λ􏽐
r

􏽐
k∈Nr(m)

αmk
r M

(l−1)
k

(18) end for
(19) for r ∈Rq do
(20) x(l)

r � FFN(x(l−1)
r , αmk

r h(l)
q ) + x(l−1)

r

(21) end for
(22) h(l)

q � FFN(h(l)
q , h(l)

s1
) + h(l−1)

q \(⊳\) s1 represents the topic entity
(23) end for
(24) zm←h(L)

m ,∀m ∈Vq

ALGORITHM 1: Multi-hop edge-aware message passing algorithm.

Table 1: Computation complexity of different L-hop question
answering models on a graph G � V,E,R{ }.

Model Time Space
L-hop GRAFT-Net O(|R‖V|L) O(|R‖V|L)

L-hop MHGRN O(|R|2|V|2L) O(|R‖V|L)

L-hop QA-GNN O(|V|2L) O(|R‖V|L)

L-hop ours O(|R‖V|L) O(|R‖V|L)

Table 2: *e statistics of the datasets.

Datasets Train Valid Test Entities Relations

MetaQA
1-Hop 96106 9992 9947

40128 92-Hop 118980 14872 14872
3-Hop 114196 14274 14274

PQL 2-Hop 1274 160 160 5035 3643-Hop 925 103 103

Table 3: *e statistics of the subgraph input to the model on PQL.

PQL 2-hop PQL 3-hop
Train test dev Train test dev

max facts 416 416 184 1704 1508 250
max entities 204 204 92 852 755 125
avg. Entities 19.77 18.01 19.61 36.30 27.06 17.97
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subgraph input to the model are shown in Tables 3 and 4,
respectively.

5.3. Baselines. We compare our model with the following
baselines:

KV-MemNN: It was proposed by the authors of [51],
which is an end-to-end memory network reasoning on the
key-value structured memory storing KB facts. *is model
learns to use keys storing the subject and predicate to address
relevant memories with respect to the question, whose
corresponding values storing the object are subsequently
returned.

IRN: It was proposed by the authors of [18], which is
an interpretable hop-by-hop reasoning network. In each
hop of reasoning, the model dynamically predicts a re-
lation according to the corresponding part of the input
question, and updates the state of both the reasoning
process and the question representation utilizing the
predicted relation.

VRN: It was proposed by the authors of [17], which is an
end-to-end variational reasoning network to recognize the
topic entity of the input question and learn multi-hop
reasoning simultaneously in a unified probabilistic frame-
work. In terms of logic reasoning task, the model uses a
propagation-like deep learning architecture over the KB.

GRAFT-Net: It was proposed by the authors of [12], which
is a graph convolution based neural network performing
question answering over the combination of a KB and entity-
linked text.*emodel uses a novel update rule to operate over
heterogeneous graphs and a directed propagation method to
constrain the reasoning starting from the topic entity.

SGReader: It was proposed by the authors of [47], which
combines the unstructured text and KB triples to predict
answers, where the SGReader employs graph attention
networks to accumulate information for each entity in the
question-related subgraph and the KAReader utilizes a
gating mechanism to selectively incorporate the learned
entity information into encoding the question and texts.

2HR-DR: It was proposed by the authors of [2], which is
a directed hypergraph convolutional network-based model.
*e model learns the relation representation by connected
entity features, allocates the weight dynamically for different
relations, and then updates the entity representation based
on dynamic relation weights.

GlobalGraph: It was proposed by the authors of [14],
which is a GNN-based model capturing long-distance node
relations by modeling the relation features of each node and
further judging the feature similarity.

For KV-MenNN, GraftNet, and SGreader, the experiment
results on MetaQA and PQL datasets are provided by [14].

5.4.MainResultsandAnalysis. Following the work proposed
by Wang et al. [14], we employ the Hits@1 and F1 score to
measure the performance of the models for the MetaQA
dataset, and adopt Hits@1 for evaluating the PQL dataset.

Table 5 demonstrates the performance of the baseline
methods and our model on the MetaQA dataset. Our model

Table 4: *e statistics of the subgraph input to the model on MetaQA.

MetaQA 1-hop MetaQA 2-hop MetaQA 3-hop
Train test dev Train test dev Train test dev

max facts 230 204 204 780 754 776 742 732 728
max entities 102 102 102 253 195 245 264 264 266
avg. Entities 9.26 9.31 9.15 32.19 32.07 32.52 137.93 136.96 137.64

Table 5: Experimental results on the MetaQA dataset.

Model
MetaQA 1-hop MetaQA 2-hop MetaQA 3-hop
Hits@1 F1 Hits@1 F1 Hits@1 F1

KV-MemNN 0.958 — 0.760 — 0.489 —
VRN 0.975 — 0.899 — 0.625 —
SGReader 0.967 0.960 0.807 0.798 0.610 0.580
GRAFT-Net 0.974 0.910 0.948 0.727 0.778 0.561
2HR-DR 0.988 0.973 0.937 0.814 — —
GlobalGraph 0.990 0.976 0.955 0.830 0.814 0.624
Ours 0.972 0.985 0.968 0.937 0.963 0.910

*e best results are indicated in bold values.

Table 7: Ablation experiments of our model on the PQL dataset.

Model PQL 2-hop PQL 3-hop
Hits@1 Hits@1

Ours 0.856 0.931

w/o predicate edges update 0.813
(−4.3%)

0.850
(−8.1%)

w/o query node update 0.825
(−3.1%)

0.890
(−4.1%)

w/o interaction between query and
predicates

0.800
(−5.6%)

0.879
(−5.2%)

w/o query node 0.838
(−1.8%)

0.906
(−2.5%)

Table 6: Experimental results on the PQL dataset.

Model PQL 2-hop PQL 3-hop
Hits@1 Hits@1

KV-MemNN 0.622 0.674
IRN 0.725 0.710
SGReader 0.719 0.893
GRAFT-Net 0.707 0.913
2HR-DR 0.755 0.921
GlobalGraph 0.760 0.941
Ours 0.856( ± 0.050) 0.931( ± 0.019)

*e best results are indicated in bold values.
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outperforms all baselines on the MetaQA 2-Hop and MetaQA
3-Hop dataset, improving Hits@1/F1 by 1.3%/10.7% and
14.9%/28.6%, respectively. In addition, for MetaQA 1-Hop, we
obtain competitive Hits@1 and improve F1 from 97.6% to
98.5%.*is reason for the relatively lowHits@1 onMetaQA 1-
Hop is that models like GlobalGraph use the PageRank al-
gorithm to pre-prune some candidate entities, but our model
does not use any prior knowledge in data pre-processing. In
general, our model makes a great improvement on the F1
score, which means our model achieves a higher recall while
ensuring precision. *is is because relation information is
added to the message passing process so that the model gives
similar scores to the entity nodes that arrive on the same
relation path, thereby identifying a series of answer entities and
improving the recall rate. Besides, our model performs better
on multi-hop questions than 1-hop questions because of the
reasoning advantage of graph propagation in dealing with
multi-hop questions.

As shown in Table 6, our method achieves the best
Hits@1 compared with the baseline models on the PQL 2-
Hop dataset, which remains a great improvement, 9.6%
higher than the second best model. It also obtains a good
result on PQL-3H, 1.0% higher than the third best one
and 1.0% lower than the best one. Note that the original
PQL dataset does not provide a standardized training,
test, and dev set; therefore, the way that the dataset is
divided greatly affects the experimental results. Because
the data in this dataset has many duplicates, if the test set
contains data that is similar to the train set, the experi-
mental result will be very high. *us, we have adopted five
division methods to avoid similar data in the test set and
the train set as much as possible. *e experiments are
repeated 5 times, and the average value and fluctuation
range in the table were obtained. Combined with the
fluctuation range, our experimental results are still quite
competitive.

Table 8: Case studies from the PQL 3-Hop dataset, comparing prediction results by our total model (ours), w/o predicate edges update (w/o
PU), w/o query node update (w/o QU), w/o interaction between query and predicates (w/o Intr), and w/o query node (w/o QN).

Question (golden reasoning path) Ours w/o PU w/o Qu w/o intr w/o Qn
What is the notable types of release of Free’s
release? (Free, music_release,Free,
music_release,Free, notable_types, Consumer
product)

Consumer
product (√) Free (×) Free (×) Free (×) Free (×)

What is the author of tracks of Reminiscense’s
track list? (Reminiscense,
music_tracklist,Evolution,
music_tracks,Evolution, book_author, Charles
Darwin)

Charles
Darwin (√) Evolution (×)

Musical Album
(×)

Evolution (×)
Charles Darwin

(√)

What is the artist of releases of new Orlean’s
releases? (New Orlean, music_releases, New
Orlean, music_releases, New Orlean,
music_artist, Idris Muhammad)

Idris
Muhammad

(√)

Web
development

(×)

Idris
Muhammad

(√)

Web
development

(×)

Idris Muhammad
(√)

What is the place of birth of people born here of
*omas Joseph Drury’s place of birth? (*omas
Joseph Drury, place_of_birth,Ballymote,
people_born_here, *omas Joseph Drury,
place_of_birth,Ballymote)

Ballymote (√) Ballymote (√) *omas Joseph
Drury (×)

Ballymote (√) Brother Walfrid
(×)

What is the release type of recording of Cold
War’s recording? (Cold War,music_recording,
Cold War,music_recording, Cold War,
release_type,EP)

EP (√) EP (√) EP (√) Cold War (×) EP (√)

6

5

4

3

2

1

0.88 0.9 0.92 0.94 0.96 0.98
Hits@1

#Reasoning Hops

0.9712

0.9714

0.9707

0.9723

0.9686

0.9078

Figure 4: Effect of (L) in the edge-aware GNN. We show Hits@1 on MetaQA 1-Hop with respect to hops.

10 Computational Intelligence and Neuroscience



5.5. Performance Analysis

5.5.1. Ablation Study on Model Components. We conduct
ablation experiments to evaluate the performance of dif-
ferent components in our model, and the experimental
results illustrate the effectiveness of these components.
Note that w/o predicate edges update does not consider
updating the predicate information represented by the
edges in the query graph, which only performs nodes
update. w/o query node update does not consider updating
query node representation. w/o interaction between query
and predicates removes similarity between query and
predicates as the propagation weight and performs in-
formation propagation based on the neighbors of nodes.
*e w/o query node does not consider constructing the
query graph but uses the candidate entity graph. As shown
in Table 7, we can find that our overall model achieves the
best performance. Without these components, the per-
formance of the model has declined, which demonstrates
the effectiveness of the design of graph construction and
update in our model. Specially, by comparing w/o inter-
action between query and predicates and w/o predicate
edges update, the results illustrate the significance of re-
lation information, which could guide the model to choose
the best matching path with the question hop by hop.
Table 8 shows some case studies to analyze our model’s
behavior. Using our full model can better answer a major
category of questions, that is, questions that contain loops,
which means there are repeated triples in the reasoning
path, such as the first and third examples. In addition,
through these examples, it can be observed that the rea-
soning path related to the question cannot be obtained
without predicate updating or interaction components,
confirming the importance of relation information.

5.5.2. Impact of Number of Hops (L). We investigate the
impact of hyperparameter L for the edge-aware GNN with
experiments onMetaQA 1-Hop (Figure 4).*e increase of L

continues to bring benefits until L � 3. Performance begins
to drop when L> 3, which might be attributed to the noise
caused by longer relation paths in the knowledge base.
However, deep hops will not greatly affect the experimental
effectiveness. We believe that this is because the addition of
the query node enables the question information to be better
integrated into other entity nodes and relation edges,
thereby reducing the introduction of irrelevant information
in the process of deep message passing.

6. Conclusion and Future Work

Multi-hop path reasoning over knowledge base aims to find
the answer entities in graphical data that contains rich re-
lation information among entities. In this paper, we pro-
posed an edge-aware GNN model to deal with this kind of
graph. Our model first adopts a special graph construction
way to enable smooth information interaction between the
question and the candidates. *en, it updates the vector
representation of each element in the graph by introducing

question-related relation information. Finally, the edge-
aware GNN model predicts the answers by calculating the
correlation between the question and node entities. Ex-
periments on the MetaQA and PQL benchmarks demon-
strate that the proposed model achieves better Hit@1 and F1
scores than the state-of-the-art models by a large margin.
Furthermore, both the constructed query graph and the
graph update algorithm contribute to the performance
improvement.

*is work opens several interesting directions for future
research. First, the proposed GNN-based model can be well
applied to single or multi-hop questions. We can further
explore the application of GNN in reasoning questions with
constraints such as aggregation and comparison in the
following work. In addition, this paper focuses on answering
questions that contain only one topic entity. If there are
multiple topic entities in the question or the topic entity is
not clear, we will treat this fuzzy phenomenon as future
work.

Data Availability

*e data used to support the findings of this study are
available at https://github.com/zmtkeke/IRN and https://
goo.gl/f3AmcY.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is study was supported by the Strategic Priority Research
Program of the Chinese Academy of Sciences (no.
Y835120378).

References

[1] Y. Lan, S. Wang, and J. Jiang, “Knowledge base question
answering with a matching-aggregation model and question-
specific contextual relations,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 27, no. 10,
pp. 1629–1638, 2019.

[2] J. Han, B. Cheng, and X.Wang, “Two-phase hypergraph based
reasoning with dynamic relations for multi-hop KBQA,” in
Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2020, C. Bessiere, Ed., pp.
3615–3621, Yokohama, Japan, July 2020.

[3] S. Zhu, X. Cheng, and S. Su, “Knowledge-based question
answering by tree-to-sequence learning,” Neurocomputing,
vol. 372, pp. 64–72, 2020.

[4] W. Wu, Z. Zhu, G. Zhang, S. Kang, and P. Liu, “A reasoning
enhance network for muti-relation question answering,”
Applied Intelligence, vol. 51, no. 7, pp. 4515–4524, 2021.

[5] M. Shi, “Knowledge graph question and answer system for
mechanical intelligent manufacturing based on deep learn-
ing,”Mathematical Problems in Engineering, vol. 2021, Article
ID 6627114, 8 pages, 2021.

[6] C. Qiu, G. Zhou, Z. Cai, and A. Sogaard, “A global–local
attentive relation detection model for knowledge-based
question answering,” IEEE Transactions on Artificial Intelli-
gence, vol. 2, no. 2, pp. 200–212, 2021.

Computational Intelligence and Neuroscience 11

https://github.com/zmtkeke/IRN%20and%20https://goo.gl/f3AmcY
https://github.com/zmtkeke/IRN%20and%20https://goo.gl/f3AmcY


[7] L. Zhang, C. Lin, D. Zhou, Y. He, and M. Zhang, “A bayesian
end-to-end model with estimated uncertainties for simple
question answering over knowledge bases,” Computer Speech
& Language, vol. 66, Article ID 101167, 2021.

[8] X. Wang, S. Zhao, B. Cheng, Y. Yin, and H. Yang, “Explore
modeling relation information and direction information in
kbqa,” Neurocomputing, vol. 471, pp. 139–148, 2022.

[9] Z. Hao, J. Chen, W. Wen, B. Wu, and R. Cai, “Motif-based
memory networks for complex-factoid question answering,”
Neurocomputing, vol. 485, pp. 12–21, 2022.
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