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Abstract

Background: A central aspect of development and disease is the control of cell proliferation through regulation of the
mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators
whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a
unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the
directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under
normal conditions, a feature reminiscent of cyclins.

Methodology/Principal Findings: In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1
through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and
restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19
periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating
the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway
using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased
the fraction of cells in S phase.

Conclusions/Significance: The results described here support a model of normal cell cycle progression in which, following
phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle
driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes,
bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the
G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional
mechanism to limit E2F activity.
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Introduction

A key step in cell cycle regulation is the control of the G1/S

transition. This event is tightly coupled to the transcriptional control of

genes involved in growth and DNA replication, which, in mammalian

cells, is primarily performed by the E2F family of transcription factors

[1,2,3,4]. The E2F proteins, E2F1-E2F8, form heterodimers with a

member of the DP protein family, DP1 or DP2. The transcriptional

activity of the resulting complex is largely conferred by the E2F

protein, with some members stimulating transcription (E2F1, E2F2

and E2F3a) while others inhibit it (E2F3b, E2F4, and E2F5). Some

E2F family members can bind the retinoblastoma (Rb) tumor

suppressor protein family, pRb, p130, and p107, and become

transcriptionally inactivated by this interaction [5,6]. Mitogenic

signals promote the sequential assembly and activation of cyclin D/

CDK4,6 and cyclin E/CDK2 in early and late G1, respectively,

resulting in the hyperphosphorylation of pRb and release of the E2F

transcription factors. In the case of E2F1, this event initiates the

transcription of genes required for the G1/S transition, such as cyclin

E, cyclin A, c-myc and DNA polymerase [7,8].

Interestingly, in contrast to these growth promoting functions,

E2F1 also has well-documented antiproliferative activities. E2F1

induces pro-apoptotic genes, such as caspase 3, 7, 9 and Apaf1

[9,10,11,12]. Furthermore, E2F1 directly induces the expression of

p14/p19ARF, resulting in p53 release from Mdm2 and its

subsequent activation [13,14,15]. Therefore, the proliferative

function of E2F1 appears to be counterbalanced by multiple

self-imposed safeguard mechanisms.
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Cyclin/CDK complexes are negatively regulated by small

polypeptides, the CDK inhibitors (CKIs) that, in mammalian cells,

fall into one of two distinct families. The INK4 family, p16INK4a,

p15INK4b, p18INK4c, and p19INK4d, specifically bind to and

inhibit CDK4 and CDK6 containing complexes. The Cip/Kip

family, p21Cip1, p27Kip1, and p57Kip2, act as negative

regulators of cyclin E/ and A/CDK2 and cyclin B/CDK1. They

also act as positive regulators of cyclin D/CDK4,6 complexes by

mediating their assembly early in G1 [16,17,18].

The four INK4 proteins share a similar structure and are

equally potent as CDK inhibitors. They are however differentially

expressed during mouse development, suggesting that they might

have cell lineage-specific or tissue-specific functions [19].

p18INK4c and p19INK4d (p18 and p19 for the remainder of

the manuscript) are expressed during embryonic development with

different tissue-specificity and remain expressed at high levels in

many adult tissues. In contrast, p16INK4a and p15INK4b only

become detectable postnatally, and their expression increases with

age [20,21,22]. Recent evidences support that, in addition to their

role as CDK inhibitors, the individual INK4 family members

would perform diverse and distinct cellular tasks. The identifica-

tion of the transcription factors that regulate the expression of the

INK4 genes will help understanding the physiological function(s)

of the individual INK4 proteins [23]. These regulatory mecha-

nisms, however, remain currently largely unexplored [24,25].

The ultimate goal of the mitotic cell cycle is to guarantee that

the two daughter cells inherit a complete and faithful copy of the

genome of the original cell. Two types of regulatory mechanisms

are critical for proper cell cycle progression. Cell cycle checkpoints

ensure that cells do not progress into the next phase until the

previous step is fully completed. Once the phase transition occurs,

cells must be kept from regressing. Therefore, although transitions

are triggered by transient signals, they are irreversible processes

and cells do not revert to an earlier state after the signal

disappears. The irreversibility of cell cycle transitions is commonly

attributed to the thermodynamic irreversibility of protein degra-

dation, as is the case for cyclins and other cell cycle factors [26].

However, theoretical models, supported by many experimental

observations, argue that feedback signals from reaction networks

must exist to account for the irreversibility of cell cycle transitions

[27,28,29].

Regarding the question raised above, p19 has a unique feature

that distinguishes it from the remaining INK4 and makes it a likely

candidate for contributing to the directionality of the cell cycle.

p19 protein levels accumulate periodically during the cell cycle

under normal conditions, a feature reminiscent of cyclins [30].

The cyclin D/CDK4,6 complexes perform a dual role in cell cycle

regulation, via their specific pRb-directed kinase activity, and as a

reservoir of the Cip/Kip proteins [17]. Therefore, the periodic

expression of p19 could significantly affect the extent of active

cyclin D-CDK4/6 complexes, and thus help ensure the physio-

logical length of G1 phase.

It has been reported that the ubiquitin-dependent proteasome-

mediated degradation of p19 might determine its periodic

expression during the cell cycle [31]. However, both p19 mRNA

and protein levels peak at the G1/S transition and decline again at

the beginning of the G2 phase, indicating the existence of

additional, transcriptional mechanisms of p19 regulation

[30,32,33]. Although p18 mRNA was also reported to be induced

by mitogens, only the kinetics of the p19 protein accumulation

seemed to correlate tightly with its mRNA expression.

Here, evidence is presented that E2F1 can induce the

expression of p19 through activation of the p19 promoter. Two

E2F1-binding elements were located and characterized within the

regions 2635/2628 and 2685/2678 from the translation

initiation site (TIS). Transactivation of the p19 promoter by

E2F1 was maximal only when both sites were present. Ablation of

this regulation reduced p19 levels and restricted its expression

during the cell cycle, reflecting the contribution of a transcriptional

effect of E2F1 on p19 periodicity. Conversely, nuclear accumu-

lation of E2F1 upregulated p19 and extended its temporal

expression during most of the cycle. Finally, specific blockage of

E2F1 binding to the p19 promoter caused a significant increase in

cell proliferation and an altered cell cycle phase distribution.

E2F1-mediated regulation of p19 expression thus constitutes a

negative feedback mechanism that limits CDK4,6 activity in late

G1/S contributing to the proper coordination of the cell cycle and

could represent and additional mechanism to control the

proliferative-promoting function of E2F1.

Results

E2F1, E2F2 and E2F3 induce p19 gene expression at the
transcriptional level

The periodic expression of p19 during the cell cycle suggested

that cell cycle-modulated transcription factors such as E2F family

members could be involved in its regulation. To test this

hypothesis, p19 expression levels were examined in BHK-21

fibroblasts transiently transfected with expression vectors encod-

ing the E2F1 to E2F6 proteins and the E2F coactivator DP1 to

ensure maximal E2F activity. Northern blot analysis showed that

overexpression of E2F1, E2F2 or E2F3 upregulated p19 mRNA

levels, whereas E2F4, E2F5 or E2F6 did not (Figure 1A).

Likewise, cyclin E, a well-known E2F target, was only induced

after E2F1, E2F2 or E2F3 transfection. These results are

consistent with the potent transactivation ability of this E2F

subclass [5]. Since E2F1 displayed the strongest stimulatory effect

on p19 expression, subsequent experiments focused on this E2F

family member. E2F1/DP1 overexpression caused a reproducible

increase in p19 protein levels in HEK-293 cells (Figure 1B). The

E2F1-mediated induction of p19 mRNA and protein was also

observed in human cell lines, namely WI-38 fibroblasts, SH-

SY5Y neuroblastoma and 293 embryonic kidney cells (data not

shown).

To further study the regulation of p19 by E2F1, stable clones of

BHK-21 cells were established which constitutively express an

estrogen receptor-E2F1 fusion protein (BHK-ER-E2F1). The ER-

E2F1 fusion protein is normally excluded from the nucleus and

therefore transcriptionally inactive. Upon tamoxifen (4-OHT)

addition, the protein rapidly enters the nucleus and induces E2F1

target genes [34,35]. E2F nuclear accumulation by 4-OHT

treatment resulted in a significant increase in p19 mRNA levels

(Figure 1C). In cells with activated E2F1 expression, the mRNA

levels of two E2F1 target genes, cyclin E and E2F1 itself, were also

upregulated (Figure 1C). Circular dumbbell decoy oligonucleo-

tides (DO) containing the E2F consensus sequence were used to

sequester cellular E2F-1 away from its target gene promoters [36].

p19 upregulation was significantly impaired in BHK-ER-E2F1

cells transfected with wild-type E2F DO but was unaffected in

those transfected with mutant E2F DO. Moreover, overexpression

of wild-type tumor suppressor pRb, but not a mutant defective in

E2F binding, partially blocked p19 mRNA induction as expected

due to the ability of pRb to inactivate E2F1 (Figure 1C). Thus,

E2F1 overexpression or nuclear accumulation stimulated p19

transcription, an effect that was prevented by two different

strategies that inhibit E2F activity.

To determine whether E2F1 regulates p19 expression at the

transcriptional level, run-on assays were performed. p19 tran-

p19 Induction by E2F1 Regulates Cell Proliferation
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scription showed a 1.6-fold increase in BHK-ER-E2F1 cells

treated with 4-OHT for 8 h compared to untreated cells. As

expected, the transcription of E2F targets cyclin E and PCNA was

comparably stimulated (Figure 2A).

A reporter was constructed containing 2307 bp derived from

the genomic region upstream of the p19 TIS and the resulting

plasmid p19CAT was transiently co-transfected into BHK-21 cells

with increasing amounts of E2F1 expression vector. E2F1 caused a

dose-dependent induction of p19 promoter activity (Figure 2B).

Similarly, 4-OHT treatment of p19CAT-transfected BHK-ER-

E2F1 cells resulted in a significant increase of CAT activity

(Figure 2C). These experiments were also performed in cells

growing in medium with 1% FBS to exclude any potential effects

from serum factors. Although higher reporter activities were

observed in cells grown in 10% FBS, E2F1 stimulated p19

transactivation in both serum conditions to a similar extent

(Figs. 2B and 2C). These results suggest that E2F1 alone is

sufficient to induce transcriptional activity of p19 promoter

without other serum requirements.

Consistent with the results obtained for p19 mRNA levels,

transfection with either E2F DO or wild-type pRb expression

vector, but not their mutated versions, prevented p19 promoter

activation by E2F in 4-OHT-treated cells (Figure 2D). Taken

together, these results suggest that E2F1 regulates p19 gene

expression.

p19 promoter contains two functional E2F-binding sites
Sequence analysis of the human p19 promoter revealed four

putative E2F1 binding sites, referred to as E2F-A to E2F-D. These

elements are located within the region 2400/2700 bp from TIS

and show various degrees of homology with the E2F consensus

sequence (59-TTT(C/G)(C/G)CGC-39) (Figure 3A). Interestingly,

the E2F-C site is not only a perfect match of the E2F consensus

sequence, but genomic sequence analysis revealed that it is also

perfectly conserved across a wide range of mammalian species

(Figure 3B). This suggests that this element is likely to play an

important role in the regulation of p19 expression.

To address the functionality of these sites EMSA was performed

using radiolabeled probes containing the sequences from the

putative regulatory elements. Probes E2F-C and -D were able to

form a protein-DNA complex similar to that seen using an E2F

consensus sequence (E2F CS) (Figure 4A). Moreover, unlabeled

oligonucleotides containing either E2F-C or -D, as well as E2F CS,

competed for binding to E2F proteins. In contrast, E2F-A and -B

probes failed to form any specific complexes with E2F and to

efficiently compete for binding (Figure 4A and data not shown).

These results suggest that E2F-C and E2F-D are E2F binding sites,

with the former having the highest affinity for the transcription

factor.

To examine the role of the E2F-C and -D sites on p19 promoter

activity, p19CAT-derived reporters were constructed in which the

Figure 1. p19INK4d is induced by E2F1, 2 and 3. A. BHK-21 cells were cotransfected with pCMV, E2Fs and DP1 expression vectors (0.5–2.5 mg)
and pBabe-Puro (0.5 mg), with total DNA amounts normalized with pCMV. Total RNA from puromycin-resistant cells was extracted and subjected to
northern blot analysis. B. HEK-293 cells were cotransfected with E2F1 and DP1 expression vectors (2 mg) and cell lysates (100 mg) were
immunoblotted. C. BHK-ER-E2F1 cells were transfected as indicated with pCMV, wild-type or mutant pRB expression vectors (2.5 mg) or wild-type or
mutant E2F DO (100 nM), and pBabe-Puro (0.5 mg). After 24 h, cells were treated with 4-OHT for another 24 h. Total RNA was extracted from
puromycin-resistant cells and subjected to northern blot analysis. Results showed in Figures are representative of at least two independent
experiments.
doi:10.1371/journal.pone.0021938.g001
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E2F-C and -D sequences were mutated alone or in combination.

Mutation of either element caused a reduction in p19 promoter

activation by E2F1 in BHK-ER-E2F1 cells treated with 4-OHT,

as compared to the wild-type reporter. Consistent with its highest

affinity, the contribution of the E2F-C site to the overall

transactivation of p19 by E2F was greater than that of the E2F-

D element (Figure 4B). Finally, the combined mutation of both

sites completely abolished the p19 promoter responsiveness to

E2F1. Thus, E2F-C and E2F-D are bona fide E2F response

elements that appear to be sufficient to account for the

transcriptional upregulation of the p19 promoter by E2F1.

p19 periodic expression in the cell cycle is dependent on
E2F

As previously reported for other cell types, p19 mRNA and

protein levels oscillate throughout the cell cycle in proliferating

normal diploid BHK-21 fibroblasts, with the highest levels

observed in late G1 and S phases (Figure 5A) [37]. The tight

correlation between its mRNA and protein levels suggests that

p19INK4d is a short-lived protein. The periodic oscillation of the

p19 protein during the cell cycle was indeed attributed to its short

half-life (2-2.5 h), caused by its ubiquitin-dependent proteasome-

mediated degradation [31,33]. Although the posttranslational

regulation of p19 has been studied in detail, the contribution of a

pretranslational mechanism in its periodic expression remains to

be explored. The cyclic variation of p19 mRNA levels indicates

that its synthesis or stability must be regulated in a cell cycle-

dependent manner.

To determine whether p19 mRNA periodicity is regulated at

the transcriptional level, the rate of transcription initiation of p19

and several genes involved in the G1/S transition was determined

by run-on assays in synchronized BHK-21 cells (Figure 5B). Cell

cycle progression was monitored by analysis of thymidine

incorporation (Figure 5A, bottom) and expression levels of known

Figure 2. E2F1 increases the transcriptional activity of p19INK4d. A. BHK-ER-E2F1 cells were treated with 4-OHT for 8 h and subjected to
nuclear run-on assay. Transcription rates of the indicated genes were normalized to that of b-tubulin. Results are representative of two independent
experiments. B–D. Indicated cells were cotransfected with p19CAT (4.4 mg) and pCEFL-b-galactosidase (5 mg) reporter plasmids. CAT activity was
determined 48 h after transfection and normalized to b-galactosidase activity. BHK-21 cells were transfected with reporter plasmids and 1 or 3 mg of
E2F1 expression vector and grown in medium containing 10% or 1% FBS (B). BHK-ER-E2F1 cells were transfected with reporter plasmids, grown in
medium containing 10% or 1% FBS, and treated with 4-OHT as indicated (C). BHK-ER-E2F1 were transfected with wild-type or mutant pRB expression
vectors (6 mg) or wild-type or mutant E2F DO (100 nM) for 24 h. Cells were transfected with reporter plasmids for another 24 h before 4-OHT
treatment (D). In panels B, C and D values are the average 6 SD of three independent experiments, each performed in triplicates.
doi:10.1371/journal.pone.0021938.g002
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cell cycle markers (data not shown). p19 transcription was

undetectable in starved, quiescent cells and cells entering G1

phase, then increased rapidly in late G1/S phases to finally decline

again as cells entered the following cycle. The relative abundance

of p19 mRNA determined by northern blot closely followed this

time-dependent pattern of transcription. These results argue that

the oscillatory behavior of p19 during the cell cycle is mostly due

to regulation of p19 transcription and not mRNA stability.

The cyclin D-dependent kinase CDK4 was detected in serum-

starved cells and throughout the ensuing cell cycle. By contrast,

cyclin D1 was barely detected in G0 cells but actively transcribed

during G1 phase in response to mitogen stimulation, consistent

with progressive cyclin D-dependent assembly and allosteric

activation of cyclin D1/CDK holoenzymes as cells approach the

G1/S boundary. Interestingly, the kinetics of p19 transcription

were similar to that of cyclin E. Cyclin E is an early E2F1-target

gene whose expression is essential to allow induction of several

E2F1-responsive genes that are required to drive cells through the

G1/S transition and initiate DNA replication.

The fact that E2F1 induced p19 expression and that p19 and

cyclin E showed similar transcription kinetics suggested that the

periodic expression of p19 during the cell cycle could be a

consequence of the increased E2F1 activity during late G1/S

phases. To examine this possibility, BHK-21 cells transfected with

E2F1 and DP1 expression vectors were arrested, by treatment with

specific inhibitors, at each phase of the cell cycle, as determined by

flow cytometric analysis (Figure 5C). Ectopic expression of E2F1

induced p19 levels in all cell cycle phases, including those in which

its expression is usually undetectable (Figure 5C). The correlation

between p19 transcription and free E2F1 levels, regardless of cell

cycle position, supports a role for E2F1 as the major regulator of

the oscillatory behavior of p19 throughout the cell cycle,

independently of other cell cycle-associated factors. However,

the contribution of a factor like E2F4 or E2F5 that, through the

same E2F1-binding sites, might repress p19 in situations of low or

absent E2F1 cannot be excluded. Finally, a wild-type E2F DO but

not a mutated version blocked p19 and cyclin E mRNA

upregulation in BHK-21 cells arrested by mimosine treatment at

the G1/S boundary, when E2F1 activity is elevated. The cell cycle

arrest by mimosine was assessed by thymidine incorporation

(Figure 5D). These results support a model in which p19

expression in G1/S is regulated by E2F1 transcriptional activity

and this mechanism is responsible for p19 periodicity during the

cell cycle.

E2F1 sequentially induces cyclin E and p19 during the
cell cycle

The kinetics of cyclin E and p19 mRNA expression during the

cell cycle were further explored using WI-38 cells arrested in early

G1 phase by serum deprivation for 24 h. When cells re-entered

the cell cycle synchronously by restimulation with serum,

transcription of cyclin E started at least two hours before p19

transcription was initiated (Figure 6A). Thus, during cell cycle

progression there is a temporal separation of the expression of

these two antagonistic genes.

A possible mechanism to explain the sequential transactivation

of cyclin E and p19 by the same transcription factor E2F1 would

be that the cyclin E and p19 E2F binding sites have different

affinities for the E2F1 protein. As its physiological levels

progressively increase in response to mitogenic signals, the

E2F1 protein would bind first to the cyclin E promoter and then

to elements in the p19 regulatory region. To determine the

relative affinities for E2F1 of the E2F sites from the cyclin E and

p19 promoters EMSA were performed. Supporting this hypoth-

esis, competition experiments using unlabeled oligonucleotides

containing the E2F binding sites from the cyclin E or the p19

promoters showed that the former has greater affinity for the

E2F1 protein (Figure 6B). In this situation, E2F1 overexpression

should saturate the E2F response elements in both gene

promoters and reduce the temporal separation in their expres-

sion. BHK-ER-E2F1 cells were then arrested by serum

Figure 3. An E2F responsive element from the human p19 promoter is conserved across a wide range of mammalian species.
A. Sequence of the human p19 promoter (2961/21 from p19 translation initiation site) with putative E2F binding sites indicated by boxes.
Deviations from the E2F consensus are shown by underlined letters. B. Sequence alignment of p19 promoter regions from different mammalian
species using the ClustalW software. Conserved residues are marked by asterisks and the box indicates the E2F-C site.
doi:10.1371/journal.pone.0021938.g003
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deprivation and nuclear translocation of ectopic E2F1 was

induced by 4-OHT treatment for 3 hours before cells were

allowed to re-enter the cell cycle. Cyclin E and p19, as well as

Mcm4, another E2F target gene, were induced earlier by

overexpressed E2F1 and with similar kinetics, compared to cells

with only endogenous E2F1 expression (Figure 6C) [38]. In

contrast, the expression of cyclin D1, an E2F-unresponsive gene,

remained unaffected by this treatment.

Collectively, these results suggest that E2F1 binds with higher

affinity to elements in the cyclin E promoter than to those in the

p19 promoter. This observation offers a potential mechanism to

explain temporal differences in the expression of both genes during

cell cycle progression. However, other possibilities cannot be

excluded such as the existence of multiple E2F binding sites or the

proximity of these sites to the transcription start point of the cyclin

E gene [39].

Periodic expression of p19 contributes to proper cell
cycle regulation

The results described above demonstrate that E2F1 regulates

p19 gene transcription and that the periodic expression of p19 is a

direct consequence of this regulation. Moreover, E2F1-mediated

induction of p19 occurs later than that of cyclin E, a canonical

proliferative event.

To gain insight into the physiological consequences of the E2F1

induction of p19, its binding to the p19 promoter was prevented

using triple-helix forming oligonucleotides (TFO). TFO were

designed to bind to purine/pyrimidine rich-sequences near the

E2F-C and -D sites and specifically interfere with E2F1 regulation

of p19 expression, affecting neither E2F1 intracellular levels nor its

transcriptional activity on other target gene promoters. To analyze

the efficiency and specificity of these TFO, HEK-293 cells were

Figure 4. The p19INK4d promoter contains functional E2F binding sites. A. EMSA was performed using oligonucleotides corresponding to
the E2F-C (top panel) or E2F-D (middle panel) sites or the E2F consensus sequence (E2F CS) (bottom panel) as radiolabeled probes. BHK-21 nuclear
extracts (N.E.) were incubated with probes alone or in the presence of 50-, 500-, or 1000-fold molar excess of each of the indicated unlabeled
competitors. Results are representative of at least two independent experiments. B. BHK-ER-E2F1 cells were cotransfected with 4.4 mg of the
indicated CAT reporters and 5 mg of pCEFL-b-galactosidase for 24 h. Cells were treated with 4-OHT as indicated. CAT activity was determined 48 h
after transfection and normalized to b-galactosidase activity. Values are the average 6 SD of two independent experiments, each performed in
quadruplicate.
doi:10.1371/journal.pone.0021938.g004
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Figure 5. p19 periodic expression during cell cycle is dependent on E2F1. A. BHK-21 cells were synchronized by serum deprivation. Total
RNA was extracted at the indicated times following serum restoration and subjected to northern blot analysis (top panel). Corresponding dishes were
subjected to immunoblotting (middle panel) and thymidine incorporation analysis (bottom panel). B. Synchronized BHK-21 cells were subjected to
nuclear run-on assay at the indicated times after cell cycle re-entry (top panel). Levels of p19 protein, mRNA and de novo mRNA synthesis are shown
(bottom panel). C. BHK-21 cells were treated to induce cell cycle arrest in different phases (for G0 arrest: 1% serum, for G1/S: 200 mM mimosine (mim),
for G2: 2.5 mM etoposide (eto) or 100 mM adriamycin (adr), for M: 0.1 mg/ml nocodazole (noc)) and cotransfected with expression vectors for E2F1
(2.75 mg), DP1 (2.5 mg) and pBabe-Puro (0.5 mg). Total RNA from puromycin-resistant cells was extracted and subjected to northern blot analysis (top
panel). Corresponding dishes were subjected to flow cytometry (bottom panel). D. BHK-21 cells were transfected with 100 nM wild-type or mutant
E2F DO as indicated for 18 h. Cells were then arrested in G1 phase by treatment with 200 mM mimosine for 36 h. Total RNA was extracted and
subjected to northern blot analysis (top panel). Corresponding dishes were subjected to thymidine incorporation assay (bottom panel). Values are the
average 6 SD of three independent experiments. Results showed in panels A, B, C, and D are representative of at least two independent
experiments.
doi:10.1371/journal.pone.0021938.g005
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transfected with an E2F1 expression vector together with one of

several TFO or an E2F DO for 24 h. Three different E2F TFO (a,

b, or e) but not a scrambled version reduced p19 induction in

response to E2F1 overexpression, whereas none of them affected

cyclin E or b-tubulin mRNA levels (Figure 7A). Only cells

transfected with E2F DO exhibited an impaired induction of both

p19 and cyclin E by E2F1. Similar results were observed at 96 h

after transfection (data not shown). A time course analysis of p19

expression in normal diploid human WI-38 fibroblasts transfected

with TFO showed that p19 mRNA expression was both

significantly reduced and delayed by E2F TFO b (Figure 7B).

TFO b however did not significantly affect cyclin E expression

levels or timing.

E2F TFOs were then used to address the physiological

relevance of p19 regulation by E2F1 during the cell cycle. Since

E2F1 expression has been shown to stimulate cell proliferation,

p19 upregulation might therefore function to limit the cell cycle

promoting effect of E2F1. To test this hypothesis, WI-38 cells were

transfected with TFO and cell proliferation was determined by

MTT assay. Cells in which E2F1-mediated upregulation of p19

was prevented by TFO showed a 20% increase in MTT activity 4

days after transfection, as compared to untransfected cells or cells

transfected with control oligonucleotides (Figure 7C). Flow

cytometric analysis showed an increase in the S phase population

and a concomitant reduction in the proportion of cells in G1 phase

in E2F TFO transfected cells. This observation indicates that

when E2F1 fails to induce p19, there is a reduction in the relative

duration of the G1 phase and/or an increase in that of the S phase

(Figure 7D and 6E). Taken together, these results strongly suggest

that p19 plays a role in limiting the cell cycle promoting activity of

E2F1, providing a fine-tuning mechanism for the kinetics of the

eukaryotic cell cycle.

Discussion

Although cell fate is highly influenced by environmental signals

during the early G1 phase, past the restriction point, when cells

commit to a new round of division, they will progress through the

cell cycle forwardly until mitosis is completed. Thus, cell cycle

progression requires an appropriate balance of positive and

negative regulatory factors, such as cyclins and CDKs, and CKIs,

respectively. These cell cycle regulators must ensure the comple-

Figure 6. E2F1 sequentially induces cyclin E and p19 during the cell cycle. A. WI-38 cells were synchronized by serum deprivation. Total
RNA was extracted at the indicated times following serum restoration and subjected to northern blot analysis. B. EMSA was performed using
oligonucleotides corresponding to the E2F-C site or the E2F consensus sequence (CS) as radiolabeled probes. WI-38 nuclear extracts (N.E.) were
incubated with probes alone or in the presence of 20-, 50-, 100-, 200-, or 500-fold molar excess of the indicated unlabeled competitors. Relative
quantification of DNA-protein complexes is shown (bottom panel). C and D. Synchronized BHK-ER-E2F1 cells were untreated (C) or treated with
4-OHT (D) for 3 h before cells were stimulated to re-enter the cycle. Total RNA was extracted at indicated time points and subjected to northern blot
analysis. Results are representative of at least two independent experiments.
doi:10.1371/journal.pone.0021938.g006
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Figure 7. Periodic expression of p19 contributes to proper cell cycle regulation. A. HEK-293 cells were transfected with E2F1 and DP1
expression plasmids and the indicated oligonucleotides (100 nM for DO and 500 nM for TFO) for 24 h. Total RNA was extracted and subjected to
northern blot analysis. B. WI-38 cells were transfected with control or E2F TFO b and synchronized by serum deprivation 24 h after transfection. Total
RNA was extracted at the indicated times following serum restoration and subjected to northern blot analysis. C. WI-38 cells were transfected with
the indicated TFO for the indicated days and thymidine incorporation was assayed at the indicated time points. Data was compared using Mann-
Whitney test (SPSS 11.5.1 LEADTOOLS). Asterisk indicates p,0.05. D. Corresponding dishes from day 4 were subjected to flow cytometry (top panel).
Results are quantitated in bar graph (bottom panel). In A, B, C and D panels results are representative of at least three independent experiments.
doi:10.1371/journal.pone.0021938.g007
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tion of each phase as well as the irreversibility of each transition.

Their expression must then fluctuate in a coordinated manner, in

accordance with each division phase.

As mentioned earlier, the fact that p19 is the only member of

the INK4 family whose mRNA and protein levels fluctuate

periodically during the cell cycle suggested that it might play a role

in cell cycle regulation in normal dividing cells [32]. This

prompted the study on the impact that this pattern of expression

might play in the cell cycle, as well as on the underlying

transcriptional mechanisms that lead to it. The short half-life of the

p19 protein and the fact that, because of this, its levels closely

reflect those of its mRNA emphasized the importance of

understanding the regulation of the p19 gene at the transcriptional

stage.

Several transcription factors had previously been reported to

regulate p19 gene expression. p19 was induced by FOXO during

G1 arrest caused by Akt inactivation, by Stat3 in macrophage

proliferation inhibition by IL-10, by Sp1 in multiple cell lines

treated with HDAC inhibitors and by AML-1 en megakaryocytes

[40,41,42,43]. Repression of p19 by Egr1 was reported in prostate

cancer cells [44]. However, none of these transcription factors

appear to be able to account for the periodic expression of p19.

The studies presented here show that E2F1 induces the p19

gene. E2F1 overexpression upregulated p19 in normal cycling cells

as well as in cells arrested at all cell cycle phases. The latter result

indicates that it is a transcriptional effect of the increased levels of

free E2F1 and not an indirect consequence of E2F1 overexpres-

sion on cell cycle position. These results are consistent with a

previous report showing that both E2F1 and E2F2 were capable of

upregulating p19 mRNA levels, among other cell cycle regulators

[45]. Another report identified an E2F binding site in the p19 gene

promoter but the authors failed to detect a significant upregulation

of p19 by E2F1 using a reporter construct containing the 23814/

22 region from the TIS from the p19 promoter [46]. The reasons

for this discrepancy remain to be explored.

The regulation of p19 expression by E2F1 could be the

mechanism responsible for its periodicity. Several evidences

support this conclusion. E2F1 transcriptional activity and p19

induction displayed similar kinetics. Moreover, E2F1 forced

expression in cycling cells altered p19 expression kinetics, leading

to an early induction during the cell cycle. Finally, when binding of

endogenous E2F1 to the p19 promoter was prevented using TFO,

p19 levels and duration of expression were significantly reduced.

E2F1 has a well-characterized proliferative function through the

induction of cyclin E and other genes whose products are involved

in the G1 and S phases. In contrast, p19 has been described as an

antiproliferative factor due to its ability to inhibit the cyclin D/

CDK4,6 complexes. Thus, the data discussed here show a dual

effect of E2F1, which can lead to both positive and negative

control of cell cycle progression. This apparent conundrum could

be explained by different timing of expression of proliferative and

antiproliferative genes. Kinetic analysis of the E2F target genes

showed a 2-hour delay between the expression of p19 and that of

cyclin E, supporting this hypothesis.

Finally, the physiological relevance of this mechanism was

explored using TFO that specifically block the binding of E2F to

its response elements in the p19 promoter, without affecting other

E2F target genes. Cell proliferation and cell cycle distribution

analysis showed that the E2F-p19 pathway regulates temporal

variables of the cell cycle. More specifically, inhibition of this

pathway stimulated cell proliferation and increased the relative

fraction of cells in S phase.

Taken together, the results described here support a model of

normal cell cycle progression in which, following phosphorylation

of pRb, free E2F induces cyclin E, among other target genes. Once

cyclinE/CDK2 takes over as the cell cycle driving kinase activity,

the induction of p19 mediated by E2F1 leads to inhibition of the

CDK4,6-containing complexes, bringing the G1 phase to an end

(Figure 8). Thus, this is the first description of a regulation of p19

by a transcription factor, E2F, which can explain its cyclic pattern

of expression. Moreover, this pattern appears to be involved in a

new feedback mechanism mediated by p19 that regulates E2F

activity, the duration of the G1 phase and entry into S phase. This

regulation contributes to terminating the proliferative activity of

the G1 cyclin/CDK complexes and provides an additional

mechanism to limit E2F activity. However, its involvement in

the mechanisms that guarantee the irreversibility of the G1/S

transition remains to be established.

E2F target genes encoding antiproliferative functions have

previously been identified. p27Kip1 was similarly shown to be

induced by E2F1 and regulate cell cycle progression in normal,

physiological conditions [47]. In other reports, both p21Cip1 and

p27Kip1 were shown to be regulated by elevated E2F activity and

control cell cycle progression [48,49].

Thus, the induction of p19 by E2F1 is a normal event that takes

place during cell cycle progression. This step could be part of a

regulatory network that contributes to the fine-tuning of the cell

cycle.

p18 mRNA levels have also been reported to fluctuate during

the cell cycle and to be induced by E2F [45,50]. However, p18

protein levels do not reflect its mRNA levels, suggesting that this

pattern of expression does not have a biological significance in cell

cycle regulation. It could be speculated that the ability of the p18

and p19 promoters to respond to E2F was acquired early during

evolution and that this regulation might confer an advantage in a

different cellular context. Since p19 is the only INK4 family

member with the shortest half-life, the most parsimonious

evolutionary scenario would indicate that this characteristic was

acquired later during evolution. It is the combination of both

attributes, short half-life and E2F responsiveness, which confers

p19 protein levels a fluctuating periodic behavior that is important

in cell cycle control.

Materials and Methods

Cell lines, drug treatments and transfections
BHK-21 and HEK-293 cell lines were grown in DMEM

(Invitrogen) supplemented with 10% fetal bovine serum (FBS),

100 U/ml penicillin, 100 mg/ml streptomycin, 100 mM non-

essential amino acids, and 2 mM glutamine at 37uC in a 5% CO2

humidified atmosphere. WI-38 cells were maintained in MEM

(Invitrogen) supplemented as indicated above. When indicated,

cells were synchronized by serum deprivation (growth in medium

containing 1% FBS) for 24–36 h, then allowed to re-enter the cell

cycle by addition of regular growth medium. Stable BHK-ER-

E2F1 cells were previously described [35]. E2F1 activity was

induced in these cells by treatment with 300 nM 4-OHT (Sigma)

for 5 h. When indicated, cells were incubated in medium with

0.5% FBS or treated with 200 mM mimosine, 2.5 mM etoposide,

100 mM adriamycin, 0.1 mg/ml nocodazole (Sigma).

Cells were transfected using Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions. Decoy and triplex

forming oligonucleotides (Bio-Synthesis) were transfected at a final

concentration of 100 and 500 nM, respectively. When indicated,

expression plasmids were cotransfected with pBabe-Puro and cells

were selected with 1.5 mg/ml puromycin (Sigma) for 60 h before

assayed.
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Oligonucleotides
Circular dumbbell double-stranded decoy oligonucleotides:

wild-type E2F decoy: 59-ATGCGCGAAACGCGTTTTCGCG-

TTTCGCGCATAGTTTTCT-39 (where the underlined se-

quences correspond to the E2F consensus biding site) and mutant

E2F decoy: 59-ATAATCTAAACGCGTTTTCGCGTTTAGA-

TTATAGTTTTCT-39 oligonucleotides were annealed and

ligated for 24 h at 16uC with 1 unit of T4 DNA ligase (Invitrogen).

The patent application for triplex-forming oligonucleotides

sequences is pending. The oligonucleotides were from Bio-

Synthesis, Inc.

RNA extraction and northern blot analysis
RNA extraction and northern blot analysis were previously

described [51]. Briefly, 10–20 mg of total RNA were denatured,

electrophoresed in 1% glyoxal-agarose gels, and transferred to

nylon membranes (Hybond N, Amersham). Membranes were

sequentially hybridized with the indicated [32P]-labeled probes

and radioactivity was detected using a PhosphorImager (FujiFilm

BAS-1800II).

Immunoprecipitation and western blot analysis
Cells were lysed with RIPA buffer (50 mM Tris-HCl pH 7.5,

150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1%

SDS, 100 mg/ml phenylmethylsulfonylfluoride, 60 mg/ml aprotinin

and 1 mM sodium orthovanadate). Equal amounts of proteins

(100 mg) were mixed with anti-human p19 monoclonal antibody

(P0999-55A, USBiologicals) and protein A/G-agarose beads (Santa

Cruz) for 1 h at 4uC. Beads were washed four times with PBS,

resuspended in sample buffer containing 2% SDS and 30 mM b-

mercaptoethanol, and boiled for 3 min. Proteins were resolved in

10% polyacrylamide gels and analyzed by immunoblotting using

anti-p19 antibody. E2F1 (sc-251), actin (sc-47778), and secondary

antibodies were from Santa Cruz. The signal was detected using

enhanced chemiluminescence detection reagent (Amersham Life

Sciences) and LAS-1000 Image Analyzer (FujiFilm).

Nuclear run-on transcription assay
Nuclear run-on transcription assays were performed as

previously described [52]. Nuclear RNA was radiolabeled,

extracted and hybridized to nylon membranes (GeneScreen Plus,

Perkin Elmer) previously slot-blotted with 10 pmoles of specific

single-stranded DNA probes. Radioactivity was detected using a

PhosphorImager (FujiFilm BAS-1800II).

Reporter constructs and site-directed mutagenesis
A 2307 bp fragment of the human p19INK4d promoter

(22887/+20 from TIS) was amplified by PCR using the following

Figure 8. p19 mediates a negative feedback mechanism that regulates E2F activity. A simplified model of normal cell cycle progression.
Following phosphorylation of pRb, free E2F induces p19 through binding to its promoter. This induction is delayed, compared to that of cyclin E
(indicated by numbers 1 and 2), due to differences in the affinity of the E2F binding sites in both promoters. The E2F-dependent accumulation of p19
inhibits the CDK4 containing complexes, bringing the G1 phase to an end.
doi:10.1371/journal.pone.0021938.g008
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primers containing XbaI and XhoI restriction sites (underlined):

59-CGTCTAGATCTCCCCTGCTCTGTACCAC-39/59-TAC-

TCGAGGAACCTCCTCCAGCAGCAT-39. The fragment was

cloned into the XbaI and XhoI sites of the pBLCAT6 reporter

plasmid to create p19CAT. E2F sites in the human p19 promoter

were mutated alone or in combination as follows: E2FC site:

TTTCCCGC to TTTCCTAC (2630/2629 from TIS) and

E2FD site: GCGCGACC to ATGCGACC (2685/2684). Site-

directed mutagenesis was performed by Mutagenex, Inc.

Reporter assay
Cells were transfected following the standard calcium phosphate

precipitation method essentially as previously described [53].

Briefly, cells seeded in 6-well dishes were transfected with 4.4 mg

CAT reporter plasmid, 5 mg of pCEFL-b-galactosidase and

expression vectors when indicated. Total DNA amount was

adjusted to 15.4 mg/well with non-specific DNA carrier. After

16 h, the medium was replaced by serum-free medium, and cells

were further incubated for 24 h. Cells were then harvested and

CAT and b-galactosidase activities were determined as previously

described [54]. CAT activity was normalized to b-galactosidase

activity.

Electrophoretic mobility shift assay (EMSA)
EMSAs were performed as previously described [53]. Briefly,

complementary single-stranded oligonucleotides were annealed

and end-labeled with T4 polynucleotide kinase and 50 mCi of

[c-32P]-ATP (6000 Ci/mmol, 150 Ci/ml) at 37uC for 30 min.

Nuclear extracts (5–20 mg), 150,000 dpm of labeled probe (0.07–

0.1 pmoles) and 3 mg of poly[d(I–C)] were incubated in a total

volume of 20 ml of TM buffer (50 mM Tris-HCl, pH 7.9,

12.5 mM MgCl2, 1 mM EDTA, 1 mM dithiothreitol, 20%

glycerol) for 30 min at room temperature. When indicated,

nuclear extracts were preincubated for 20 min at room temper-

ature with excess of unlabeled competitor DNA before the

addition of the labeled probe. Samples were loaded on native

5% polyacrylamide gels in 0.25X TBE. Gels were dried and

radioactivity detected as described above. Double-stranded DNA

probes and cold competitors used were: E2F-A (2473/2452 bp):

59-GCCGTAAGGTCGCGCGCCGGGC-39; E2F-B (2549/

2528 bp): 59-CGACGCGTTTCACGCCGAGCCC-39; E2F-C

(2642/2621 bp): 59- AGCCTTCTTTCCCGCCTGCCGG-39;

E2F-D (2692/2671 bp): 59-GCAGCCCGCGCGACCCTG-

CCCC-39. The E2F consensus and mutant sequences used were:

59-TCAGTTTTCGCGCCTAAACACAAAC-39 and 59-TCA-

GTTTTCGATCCTAAACACAAAC-39, respectively.

Thymidine incorporation, MTT assay and flow cytometry
Thymidine incorporation and MTT assay were previously

described [32,37]. Cells for flow cytometry were prepared as

described [32]. DNA content and cell cycle distribution were

analyzed using a FACScan flow cytometer (Becton Dickinson) and

WinMDI 2.9 and Cylchred 1.0.2 software.
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