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Abstract

De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism
spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel
risk genes, based on independent de novo loss-of-function (LoF) mutations falling in the same gene, and found that de novo
LoF mutations occurred at a twofold higher rate than expected by chance. However successful these studies were, they
used only a small fraction of the data, excluding other types of de novo mutations and inherited rare variants. Moreover,
such analyses cannot readily incorporate data from case-control studies. An important research challenge in gene discovery,
therefore, is to develop statistical methods that accommodate a broader class of rare variation. We develop methods that
can incorporate WES data regarding de novo mutations, inherited variants present, and variants identified within cases and
controls. TADA, for Transmission And De novo Association, integrates these data by a gene-based likelihood model involving
parameters for allele frequencies and gene-specific penetrances. Inference is based on a Hierarchical Bayes strategy that
borrows information across all genes to infer parameters that would be difficult to estimate for individual genes. In addition
to theoretical development we validated TADA using realistic simulations mimicking rare, large-effect mutations affecting
risk for ASD and show it has dramatically better power than other common methods of analysis. Thus TADA’s integration of
various kinds of WES data can be a highly effective means of identifying novel risk genes. Indeed, application of TADA to
WES data from subjects with ASD and their families, as well as from a study of ASD subjects and controls, revealed several
novel and promising ASD candidate genes with strong statistical support.
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Introduction

The genetic architecture of autism spectrum disorders (ASD) is

complex and thought to involve the action of at least hundreds of

genes. Yet, despite this complexity, four recent studies [1–4]

identified five novel genes affecting the risk for ASD from whole-

exome sequencing (WES) of 932 ASD probands. The studies made

these discoveries by also sequencing the parents of the probands

and thereby discovering a multiplicity of independent Loss-of-

Function (LoF) mutations in each of these five genes. The

multiplicity is key: due to the rarity of de novo LoF events, two or

more independent recurrent events in a sample of this size

generate more evidence for association than would two LoF

variants found in a comparable case and control sample. Thus,

even though de novo events are rare, these observations provide an

excellent signal-to-noise ratio, have proven valuable in the pursuit

of reliable signals for genes affecting the ASD risk, and are likely to

form the foundation for many studies targeting gene discovery in

the future [5].

Note, however, that the multiplicity test is using only a small

fraction of all the information collected by a WES study. Many

other de novo events occur, beyond LoF, and these are ignored.

Moreover it completely ignores inherited rare variants within

families. And, of course, delineation of rare variants into inherited
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and de novo is challenging or impossible for case-control studies. We

conjecture that the distribution of variation, whether inherited, de

novo and from case-control, can be leveraged, in combination with

the de novo mutations, to maximize the statistical power to detect

risk genes.

We propose an integrated model of de novo mutations and

transmitted variation to address these challenges. We demonstrate

that both the number of de novo mutations and the numbers of

different types of transmitted variations in family trios (father,

mother and an affected child), follow simple distributions

dependent on a set of common parameters: mutation rates,

relative risks of mutations and population frequency of the

variants. This model readily incorporates additional data from

case-control studies. The statistical framework of our model

enables us to rigorously analyze the genetic architecture of a

complex disease, conduct power and sample size analysis, and

identify risk genes with higher sensitivity. Through simulations we

show that the power of our novel statistical test, called TADA for

‘‘transmission and de novo association’’, is substantially higher than

competing tests. Our simulations also provide guidance in

planning future studies targeting discovery of genes involved in

the risks of complex diseases, henceforth, risk genes.

We demonstrate the benefits of TADA through an extensive

study of ASD using published WES data from 932 ASD trios as

well as nearly 1000 ASD subjects and matched control subjects

from the ARRA Autism Sequencing Consortium (AASC) study

[6,7]. Using the model underlying TADA, we estimate there are

approximately 1000 genes that play a role in risk for ASD, with an

average relative risk of approximately 20 due to LoF in one of

these genes. Finally, we identify several potential novel ASD risk

genes (genes whose mutations affect the risk of ASD) using TADA

and the ASD data.

Results

Multiplicity test of de novo mutations
For concreteness we start by reviewing the multiplicity test to

detect risk genes by evaluating the independent recurrence of de

novo mutations in the same gene. The multiplicity test classifies a

gene as affecting risk if it sustains d or more recurrent de novo LoF

mutations in a sample of N families. Based on computations of

expected rates of de novo events as a function of a gene’s exonic

length and base pair composition [2], a recent study [1] found that

d§2 LoF events for Nv1000 is significant evidence to declare a

gene as a risk gene (pv0:05, genomewide). Applying this threshold

to data from four ASD family studies [1–4] led to the discovery of

five novel genes affecting ASD risk.

A weakness of the multiplicity test is that it produces a single

threshold for the entire genome, regardless of the heterogeneity

amongst genes in their sizes and base pair composition, and its

threshold is a function of sample size, so that the threshold for

N~1,000 is inadequate when the sample increases to N~10,000.

To illustrate the power of the Multiplicity Test and its properties,

we performed some simulations using genetic parameters that are

described and estimated in the next section.

As demonstrated previously [1], the power for detecting a gene

increases monotonically with increasing sample size N and it

depends strongly on the gene’s mutation rate (Figure 1A).

Although the per gene power is relatively low, for a disorder like

ASD, more than 60 genes are expected to contain at least two LoF

mutations with N~5000 families (Figure 1B). The corresponding

false discovery rate (FDR) is less than 5% for Nv2000 and well

below 10% for N as large as 5,000; switching to a threshold of

d~3 to diminish false discoveries leads to a significant loss in

power (Figure 1B).

The original treatment of the multiplicity test as requiring a

single threshold is simple to adjust. Instead one can compute the p-

value for each gene using a Poisson model for the probability of

observing Xd or more recurrent de novo events based on the gene’s

mutation rate. We will call such a test the De Novo Test. This test

automatically incorporates the number of families and a gene

specific mutation rate to determine the likelihood of recurrent de

novo events.

Model of de novo and inherited mutations in a family
design

TADA model is formulated for sequence data from individual

genes. Data for the model can come from sequences of trios

(unaffected parents and an affected child) and from cases and

controls. Given the information from a gene, namely the pattern of

de novo mutations and inherited, damaging variants in the affected

progeny, the goal is to relate the data with the underlying genetic

parameters such as the relative risk of the mutations. In the model,

we restrict the class of variation to rare and deleterious mutations

acting dominantly and assume subjects can be classified as

carrying one of two ‘‘alleles’’, those with a deleterious mutation

of this type (a) and those without (A). We put alleles in quotes

because, for example, we treat all LoF events in the same gene as a

single LoF ‘‘allele’’. Because severe mutations are generally present

at very low frequencies in the population (typically v:001), there

are effectively two possible genotypes per gene, AA and Aa. If we

let q=2 denote the allele frequency of a, then the frequencies of the

genotypes AA and Aa in the population are approximately 1{q
and q, respectively.

For a trio consisting of unaffected parents and an affected child,

there are four likely genotype combinations (Figure 2), of which

only three are informative: if both parents are homozygous, a

heterozygous child results from a de novo mutation; and if one

parent is heterozygous, the a allele is either transmitted or not.

Based on the de novo and transmitted alleles, we formulate a

likelihood model for the observed data. Let m denote the rate of

mutation for the gene being analyzed per generation and

Author Summary

The genetic underpinnings of autism spectrum disorder
(ASD) have proven difficult to determine, despite a wealth
of evidence for genetic causes and ongoing effort to
identify genes. Recently investigators sequenced the
coding regions of the genomes from ASD children along
with their unaffected parents (ASD trios) and identified
numerous new candidate genes by pinpointing sponta-
neously occurring (de novo) mutations in the affected
offspring. A gene with a severe (de novo) mutation
observed in more than one individual is immediately
implicated in ASD; however, the majority of severe
mutations are observed only once per gene. These genes
create a short list of candidates, and our results suggest
about 50% are true risk genes. To strengthen our
inferences, we develop a novel statistical method (TADA)
that utilizes inherited variation transmitted to affected
offspring in conjunction with (de novo) mutations to
identify risk genes. Through simulations we show that
TADA dramatically increases power. We apply this
approach to nearly 1000 ASD trios and 2000 subjects
from a case-control study and identify several promising
genes. Through simulations and application we show that
TADA’s integration of sequencing data can be a highly
effective means of identifying risk genes.

Model of De Novo and Inherited Variation

PLOS Genetics | www.plosgenetics.org 2 August 2013 | Volume 9 | Issue 8 | e1003671



chromosome; let c denote the genotype relative risk for the

genotype Aa; and let f and cf denote the penetrance of AA and

Aa, respectively. Let Xd , Xt and Xnt be the counts of each of the

three outcomes (de novo, transmitted and nontransmitted, respec-

tively), from a sample consisting of Nd families. These counts

approximately follow Poisson distributions (see Text S1 for

derivation): Xd*Pois 2mcNdð Þ, Xt*Pois qcNdð Þ, and

Xnt*Pois(qNd ).

For case-control data, counts of genotype Aa in Ncase cases and

Ncontrol controls follow a Poisson distribution with approximate

rate parameters qcNcase and qNcontrol, respectively (see Text S1).

From this structure it is apparent that the transmitted counts can

be viewed as a type of case-control data with sample size Nd .

Combining data, let X0 be the total number of Aa in the controls

plus the number of transmitted A variants, and let X1 be the total

number of Aa in the cases plus the number of transmitted a

variants. It follows that

Xd*Pois 2mcNdð Þ X0*Pois(qN0) X1*Pois qcN1ð Þ ð1Þ

for which N0~NcontrolzNd and N1~NcasezNd . The resulting

probability model has three parameters (m,q,c) per gene. For each

Figure 1. Properties of the Multiplicity Test. (A) The probability a risk gene has two or more de novo LoF mutations in N families (i.e., the power)
depends on the mutation rate m. Power per gene of the Multiplicity Test as a function of N is shown for 4 mutation rates, which were chosen based
on percentiles (25’th, 50’th, 75’th, 90’th) of the distribution of m obtained from the full gene set. (B) The expected number of risk genes discovered by
the Multiplicity Test at d~2 (red, solid) or 3 (blue, dashed) as a function of the sample size N . The barplot shows the FDR at d~2. The simulation
assumes 1000 diseases genes out of 18,000, each with relative risk c~20:2; these parameters were estimated in the section on Genetic Architecture
of ASD.
doi:10.1371/journal.pgen.1003671.g001

Figure 2. A probabilistic model for a family trio with an affected child. Genotype probabilities are computed as the marginal probability of
parental genotypes times the conditional probability of the child, given the parents. The parameters m and q represent the mutation rate, and the
population frequency of the Aa genotype, respectively. Phenotype probabilities for the child, given genotype, are a function of f0, the penetrance of
the AA genotype, and c the relative risk of the mutation a. Rate is the (approximate) rate of observing counts Xd , Xnt and Xt from the latter 3 types of
trios, respectively.
doi:10.1371/journal.pgen.1003671.g002

Model of De Novo and Inherited Variation
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gene, the mutation rate per gene (m) can be estimated from its

exonic length and nucleotide content [1] and hence this quantity

can be treated as known. The statistical problem for each gene is

to estimate q and then test if c~1.

Transmission And De novo Association test: TADA
We conjecture that a more powerful strategy to discover risk

genes from family data is to combine the information on de novo

and inherited mutations into an unified statistical framework,

such as the one we just proposed, which forms the basis for

TADA. TADA tests the hypothesis H0 : c~1 against the

alternative H1 : c=1. A traditional likelihood ratio test will

not work well in this setting because one or more of the counts

will be zero for many genes, leading to poor maximum

likelihood estimates for q and c. To circumvent this problem

we cast TADA in a Hierarchical Bayes (HB) framework, thereby

improving estimates of q and c by pooling information across all

genes, but still modeling rates as gene-specific. The underlying

assumption is that LoF and severe missense mutations are rare

in all genes and hence we can learn about the frequency

distribution in a given gene by looking at the distribution across

all genes. Likewise, we can learn about how mutations in one

gene affect risk by examining the range and distribution of risks

across all disease-related genes.

The HB model assumes a fraction p of the genes are associated

with the disorder (model H1); the remaining fraction follow the

null model (model H0). Under H0, the relative risk is constrained

(c~1), but under H1, c is assumed to follow a distribution across

risk genes. For both models, the frequency of severe mutations per

gene, q, is assumed to vary by gene, with some commonality across

the genome. The distributions of c and q under both models are

specified by prior parameters, and we estimate the values of these

parameters by maximizing the marginal likelihood of the data (this

is known as the Empirical Bayes method, see Methods). Once the

prior parameters are estimated, we compute the evidence for H1

and H0 for each gene. Specifically, for the i-th gene, let xi be its

data, the evidence for H1 is defined as:

P(xi DH1)~

ð
p(xi Dqi,ci)p(qi DH1)p(ci DH1)dqidci ð2Þ

where p(xi Dqi,ci) is given by Equation 1, p(qi DH1) and p(ci DH1)
represent the prior distributions. Unlike the likelihood-based test,

the evidence for H1 is not based on point estimates of q and c;

instead it integrates out the two parameters. The model evidence

of H0 can be defined similarly, except that c is fixed at 1. The

Bayes factor of any gene is the ratio of P(xi DH1) to P(xi DH0). The

statistical significance of the Bayes factor is given by its p-value,

determined empirically by simulating data under the model

assuming c~1 (see Text S1).

Some insights into the relationship to a likelihood-ratio test

(LRT) can be gained by examining an approximation of B, the

Bayes factor:

B~
p(xi DH1)

p(xi DH0)
&

p(xi Dq̂qi(H1),ĉci(H1))

p(xi Dq̂qi(H0),c~1)
ð3Þ

where the parameters are estimated by Bayesian mean posterior

estimators. These parameter estimates are a weighted average of

the maximum-likelihood estimate for the i-th gene and the mean

of the prior distributions. For example, q̂qi(H0) is interpolated

between the allele frequency derived from all genes and the gene-

specific estimate (Figure S1). Thus the Bayes factor is similar to the

LRT except that we utilize a refined estimator of the allele

frequency.

The model just described is designed for a single type of

mutation (say LoF), but it can incorporate multiple types. For

different types of mutations, such as LoF and damaging missense

mutations, the distributions of c and q are likely to be different, so

we model each type of mutation and estimate the prior parameters

separately using the HB framework. Then the total Bayes factor of

a gene is the product of the Bayes factor from each type of

mutation, and the p-value can be computed similarly from

simulations. In practice, we note that the damaging missense

mutations predicted by bioinformatic tools likely contain a number

of mutations having no effect on the gene function, thus we

introduce an additional model to account for this feature,

downweighting the evidence from missense mutations (see

Methods).

The TADA method we described can also be used for de novo

data alone. Basically, we ignore inherited and standing variants,

but allow multiple types of de novo mutations. The details are not

repeated here, but are provided in our supporting Website (see

Methods). We call this simplified model, TADA-Denovo, and it is

particularly useful for genes with multiple de novo events in different

categories (e.g. some nonsense and some missense mutations).

Genetic architecture of ASD
We use the proposed model to estimate the number of ASD risk

genes (k), their average relative risk (�cc), and the distribution of the

population frequency of the mutations. These estimates yield

insight into the genetics of ASD and pave the way for realistic

simulations to study the power of statistical tests. Our overall

strategy is first to use de novo mutations to estimate an approximate

range of the parameter values, then use the HB method to refine

these estimates using both family and the case-control data.

Consider the de novo LoF mutations in N~932 families [1–4].

These data reveal a total of C~123 de novo LoF mutations across

all genes, and M~5 multiple-hit genes (at least 2 independent de

novo LoF events per gene). Our goal is to find values of k and �cc that

best predict the observed counts C and M (Text S1). We assume

that the relative risk of an ASD risk gene varies across k genes,

with the average relative risk of the LoF mutations equal to �cc. The

mathematics of TADA reveal there is an inverse relationship

between k and �cc (Figure 3A, see Equation 27 in Text S1). For an

alternative and more intuitive explanation of why these param-

eters have an inverse relationship, see the arguments in [2]. For

any given value of k, we can compute the expected number of

multiple-hit genes; matching the expected with the observed value

of M, we estimate the the number of ASD risk genes is between

550 to 1000 (Figure 3B). In the next step, we use the HB model to

estimate the most likely value of k within this range, and the result

is k~1000 ASD risk genes, with the corresponding relative risk

c~20:2 (see Text S1). These estimates are similar to published

results using somewhat different methods [1,2].

We examine evidence for the hypothesis that the population

frequency of LoF mutations for ASD risk genes (q1) is lower than

that for non-risk genes (q0) because mutations in ASD risk genes

are under stronger negative selection than the average gene. These

frequencies are of interest because they have a major influence on

the power of association test [8]. We estimate q based on the

number of LoF variants in the case-control data from the AASC

[7] and the transmitted/nontransmitted data from 641 families

(the transmission data are only available for a subset of the 932

families). To obtain the empirical distribution of q across all genes

we first count the frequency of the LoF mutations in each gene

(Figure 3C); we find a substantial number of genes with 0 LoFs.

Model of De Novo and Inherited Variation
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We next estimate the prior distributions of q under the null and

alternative models, respectively, using the HB model and find they

provide a good fit to the observed data (Figure 3C, Figure S1).

From these analyses the mean of q under H1, i.e. the average q for

ASD risk genes, is about 3|10{5, significantly smaller than that

of non-risk genes, 6|10{4 (see Text S1 for a description of how

the HB model uses a mixture model to permit estimation of

parameters specific to ASD risk genes without actually classifying

genes as such.) Notably, while the empirical estimate of q for most

genes is 0 (thus not useful for inference), the value of q from the

HB model is never equal to 0 due to smoothing.

Using the same procedures we also estimated these param-

eters for missense mutations that are probably damaging

according to the PolyPhen prediction [9] (denoted as Mis3

mutations). Estimates reveal lower risk for these mutations, as

expected, and lower q for ASD risk genes compared with non-

ASD genes (Table S1).

Power analysis by simulation
Equipped with estimates of the genetic parameters, we can

simulate genetic data under the model and assess the performance

of statistical methods. We compare performance of three tests: De

Novo, as described in Section 2.1; TADA, described in Section 2.3;

and a ‘‘Meta test’’, which combines two tests, one based on de novo

events and the other on inherited variants, via meta analysis. For

the meta test we compute the p-value from data on inherited

variants using a Fisher exact test, treating transmitted/untrans-

mitted events as case-control data; and compute a p-value for de

novo events using the De Novo test. Then these p-values are

combined using Fisher’s method. In all the simulations, different

parameters are used to generate the data, yet TADA always uses

the same set of parameters derived from the real data, as described

previously. Thus these results establish the robustness of TADA

under different parameter settings and thus, to some extent, how it

should behave for real data.

Because TADA is a novel method, data were first simulated

under the null hypothesis of no association to obtain the

distribution of the TADA test statistic and its associated p-values.

The results show that the test is well calibrated and type I error is

properly controlled (Figure S2).

Next, data were simulated under the alternative model, using

different sample sizes and different combinations of the parameters

q and c, within the range of plausible values estimated in the

previous section. This comprehensive simulation showed TADA

has superior power relative to the other two tests (Figure S3). In

Figure 4, we show a selected portion of the simulation results

under the most likely scenarios, reflecting the trade-off between

relative risks and allele frequencies, i.e. mutations with high risks

are likely to exist in lower frequencies in the population. For a gene

with typical parameter values (Figure 4B), the power of the TADA

test, at N~5000, was about fivefold larger than that of the other

two tests.

To assess the performance of the tests from a genome-wide

analysis, we generated realistic simulated counts based on the

estimated genetic parameters for ASD, namely average relative

risk of 20 and k~1000 risk genes, among a total of 18,000 genes

sequenced. We focus on false discovery rate (FDR), calibrating the

empirical FDR to control at 10%, and estimated power as the

number of true discoveries. Results confirmed the advantage of

TADA (Figure S4A). For example, at N~5000, TADA identified

more than 200 ASD risk genes at FDR below 10%, while the De

Novo and Meta tests identify about 50 and 70 genes at this level of

FDR, respectively (cf Figure 1). We performed additional

simulations with somewhat different procedures to demonstrate

the robustness of these findings. In one experiment, we simulated

data under the average relative risk of 10, instead of 20, while

TADA still uses the relative risk of 20. The power of all methods

was significantly reduced, as expected, yet TADA still performed

better than both de novo test and the simple meta-analysis (Figure

S4B). In another experiment, the simulation procedure incorpo-

rated the possible dependency between the LoF frequency of a

gene (q) and its relative risk (c), based on simple mutation-selection

balance: the two were not sampled independently, but rather the

frequency was inversely proportional to the risk (see Methods).

Despite this change of simulation model, the results were virtually

identical to those from earlier simulations (Figure S4C).

Figure 3. The genetic parameters of ASD. (A) The relationship between the number of ASD risk genes (k) and the average relative risk (�cc). m
stands for the total number of genes in the human genome, and n for the fold enrichment of the de novo LoF mutations in probands vs. siblings
(about 2 in our data). (B) The expected number of multi-hit genes (M) in N~932 families, as a function of the number of ASD risk genes (k). The
observed M is 5, and we define the plausible range of k as the values corresponding to M~4 to 6. The model assumes the relative risks of ASD risk

genes follow a gamma distribution with the scale parameter b. The variance of the relative risk (c) across genes equals �cc=b2 (�cc is the average of c of all
ASD risk genes), which limits the range of plausible values for the model. The estimated value of the average c is approximately 20. (C) For each gene,
we compute the empirical allele frequency (q̂q) of LoFs as the number of LoF variants divided by the sample size. The histogram of the LoF frequencies
of all genes is shown. Also shown are the estimated distributions of q under the null (red, solid line) and the alternative (blue, dashed line) models,
respectively.
doi:10.1371/journal.pgen.1003671.g003

Model of De Novo and Inherited Variation
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Analysis of data to identify genes affecting the risk of
ASD

The data we used were all reported de novo mutations from 932

ASD families [1–4]; transmitted mutations from 641 of these

families; and case-control data from the AASC, consisting of 935

ASD subjects and 870 controls [7]. Each missense mutation was

classified into a category of damage to the protein based on its

predicted effect on the coding sequence using PolyPhen2 [9]:

benign (Mis1); possibly damaging (Mis2); and probably damaging

(Mis3). Note that de novo LoF mutations occurred at about two-fold

enriched rate in the probands relative to the unaffected siblings

(Figure 5A, Table S2). The rate for de novo Mis3 was also higher in

probands than siblings, but the difference was not as striking.

There is essentially no difference in probands and siblings for other

types of mutations. We thus applied the TADA method to the LoF

and Mis3 mutations.

The overall inflation of the results due to population stratifica-

tion is negligible: a modified [7] genomic control factor [10]

lq~1:02 (see Text S1). There is significant enrichment of genes

with low p-values compared with random expectation (Figure 5B):

244 genes have p{valuev0:01, 64 more than expected under the

null model. There is an intriguing coincidence in the excess of

small p-values - namely that it is very similar to the excess number

of genes with single-hit de novo LoF events in ASD subjects

Figure 4. The power per gene of competing tests. The results of three tests are shown: novo (red), meta (blue), and TADA (purple). Results are
shown for various values of N , c and q with type I error fixed at 0.001. Parameter values are chosen to cover plausible parameter values according to
our model estimation: (A) c~15,q~1|10{4 ; (B) c~20,q~5|10{5 ; and (C) c~25,q~2:5|10{5 .
doi:10.1371/journal.pgen.1003671.g004

Figure 5. Application of TADA to the genetic data of ASD. (A) De novo LoF and ‘‘probably damaging’’ missense mutations are enriched in ASD
probands (red) compared with unaffected siblings (blue), based on a comparison including all trio and quad families. The other types of missense
mutations are not enriched. To make the numbers comparable, the number of mutations in siblings is scaled by a constant multiplier (214/124) so
that the numbers of silent mutations is equal in probands and in siblings. The annotations of missense mutations are based on PolyPhen. (B) Q-Q plot
(log. scale) of the p values for all genes in the ASD dataset based on a combined analysis of LoF and severe missense mutations.
doi:10.1371/journal.pgen.1003671.g005
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compared to their unaffected siblings [1]. Notably the large tail in

the QQ plot is largely driven by the de novo LoF events, and

appears to reflect true signal instead of inflation.

We control for the multiple hypothesis testing using the

Benjamini-Hochberg procedure [11]. Fifteen genes meet the

criteria of a False Discovery Rate less than 20% (Table 1, see

Table S3 for the complete results). The list includes all five genes

with two de novo LoF mutations, as well as several novel genes that

are promising candidates for ASD based on existing evidence. For

the novel predictions, the p-values from the de novo data alone are

far from achieving genome-wide significance (the pdn column in

Table 1) and would be impossible to identify without combining

the de novo, transmitted and case-control data.

The results of TADA generally depend on the estimates of the

mutation rates of the genes, as well as the Bayesian prior

parameters of the model. We perform additional analyses to study

how sensitive the results are to these parameters. Based on our

findings, we choose several genes from Table 1 for this

investigation. Although the error of mutation rate estimation is

likely small [1], we vary the mutation rate of each gene: from 1/2

of the estimated rate to twice the rate. As expected, the p-value

increases as the mutation rate increases, although overall the

impact is modest (Figure S5A). Next we vary the Bayesian prior

parameter, �cc, which represents the average relative risk over all

risk genes, from 10 to 20. The p-values from TADA are even less

sensitive to this parameter (Figure S5B).

Table 1. Top predicted ASD risk genes from the TADA analysis of combined ASD data (de novo, inherited and case-control).

Loss of function (LoF)

Gene De novo Transmitted Nontransmitted Case Control pdn pTADA(LoF)

KATNAL2 2 1 0 4 0 3.161026 261027

CHD8 2 0 0 3 0 9.561025 2.461026

LMCD1 0 2 0 0 0 1 0.067

S100G 1 0 0 3 0 0.00042 1.661025

DYRK1A 2 0 0 0 0 8.661026 4.361026

PPM1D 1 0 0 2 0 0.0032 0.00023

SCN2A 2 0 0 0 0 5.961025 2.861025

CUL3 1 0 0 3 0 0.004 0.00013

DEAF1 0 2 0 1 0 1 0.031

BANK1 0 1 0 4 0 1 0.0064

POGZ 2 0 0 0 0 361025 1.461025

WDR55 0 1 0 0 0 1 0.18

FAM91A1 1 0 0 0 0 0.0046 0.0019

COL25A1 1 0 0 5 0 0.0034 2.361025

Probably damaging (Mis3)

Gene De novo Transmitted Nontransmitted Case Control pTADA

KATNAL2 0 2 3 4 5 1.561026

CHD8 0 4 6 9 9 1.361025

LMCD1 0 4 0 9 0 1.761025

S100G 0 0 0 0 0 2.161025

DYRK1A 0 0 4 4 1 5.661025

PPM1D 0 0 0 2 0 7.961025

SCN2A 1 8 7 5 5 8.461025

CUL3 0 0 0 1 0 8.661025

DEAF1 0 1 0 8 0 0.0001

BANK1 0 7 0 6 2 0.00011

POGZ 0 4 1 3 5 0.00012

WDR55 1 0 0 6 0 0.00012

FAM91A1 0 12 1 2 2 0.00016

COL25A1 0 5 3 4 4 0.00016

The pdn column shows the p-values using the De Novo Test from the de novo LoF mutations alone. The pTADA(LoF) column shows the p-values from the TADA test using
all LoF data. The pTADA column shows the p-values from the TADA test using both LoF and Mis3 data. The star symbols mark the double-hit genes that were reported in
earlier publications. C1orf95 also has q-value,.2, however this signal is based entirely on 11 identical Mis3 variants in cases and 0 in controls. This allele is common in
African populations [40]. While the AASC sample is of European ancestry, a portion of it, largely from Portugal, carries some sub-Saharan alleles [7]. Thus, this signal is
likely due to population substructure. Similarly, the 3 LoF variants seen in S100G are copies of a splice variant that is common in African populations, so this result
should be viewed with caution.
doi:10.1371/journal.pgen.1003671.t001
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Discussion

For disorders like ASD, recent results show that detection of de

novo LoF events can be a powerful means of discovering novel risk

genes [1–4]. Yet de novo events are relatively rare, roughly one per

exome, and de novo LoF events even more so, and thus many

families must be assessed to identify multiple de novo LoF events in

the same gene. To make the most of this experimental design, we

develop a new statistical approach, TADA, that utilizes both

transmitted and de novo variants from nuclear families and case-

control data to determine genetic association. TADA builds on the

simple multiplicity test, which relies on recurrent de novo events, but

it creates a full analytical framework to incorporate all of the

information on the distribution of rare variation. The result is a

test with greater power. Our test achieves its good performance

properties by providing an analytic framework that links the

observed pattern of de novo mutations with the underlying genetic

parameters, such as the relative risk conveyed by such mutations.

In addition to analyzing data for novel gene discovery, this

framework can be used to analyze the power of a test and predict

the required sample size to attain sufficient power for future

investigations. Moreover, by using empirical Bayes methods,

TADA refines estimates of allele frequencies of the damaging

mutations by using the full genome to estimate these quantities.

This approach increases the information in the transmitted

variants in each gene considerably and yet maintains good control

of false discoveries.

Association studies evaluating cases and controls have been a

common design for identifying variation affecting risk for complex

diseases. It has proven successful for identifying common variation

affecting risk, after sufficient samples had been amassed to ensure

variation having modest impact on risk could be detected [12].

Common variants surely play a role in ASD [13,14], but the effect

sizes are small [15] and it will be challenging to detect individually-

significant SNPs. Indeed virtually every discovery for ASD risk

genes traces to rare and de novo variants [1–4,16–20].

As the cost of sequencing drops, genetic research increasingly

focused on the role of rare variants in complex diseases such as

ASD, but the sample size has been limited and so has the yield

of such studies. For a sample of nearly 1000 ASD case and well

matched controls the ARRA ASD sequencing consortium

(AASC) found no significant associations [7], except for

variation acting recessively [6]. These results comport with

studies of other disorders and suggest that large sample sizes will

be required to achieve good power in rare variant association

studies [21]. Arguably a fundamental difficulty is that most of

the mutations with large effects tend to be under strong negative

selection, existing at very low frequencies in the population [22].

Variants that occur with greater frequency often have smaller

effect on the phenotype, reducing the power of gene-based test

statistics.

Our analysis provides insight into some advantages of de novo

over case-control studies, especially for LoF events. The de novo test

gains power because the mutation rate for genes can be estimated

accurately from supplementary sources, and need not be estimated

as part of the statistical procedure. Because of the low mutation

rate, the number of de novo LoF events expected by chance is very

small, and thus we could attach high statistical significance to any

gene with more than one independent LoF mutation. While a

single de novo LoF event is certainly not definitive evidence, it can

put a gene on the short list as a risk gene – for ASD, it is more

likely than not an ASD risk gene. In contrast, for case-control data,

we require an estimate of the allele frequency q under the null

hypothesis. When the mutant allele is very rare (as for ASD risk

genes), a very large sample is required to ensure that this frequency

is indeed small.

Another feature of observed de novo mutations is that they have

not been subject to the force of purifying selection, which plays a

key role in shaping the pattern of standing variation. Therefore it

is likely that de novo mutations, especially LoF mutations, have

stochastically larger effect sizes than rare variation transmitted for

generations, because selection tends to drive down allele frequen-

cies of variants having large effects on reproductive success.

Moreover, allele frequency is inversely tied to power, critical for

any experimental design. Therefore studies utilizing de novo

variation can have distinct advantages, in terms of power, relative

to those that do not.

By simulations we demonstrate that the power of TADA is

higher than tests based solely on de novo events or standard meta-

analysis that combines p-values from de novo and inherited data

(transmission or case/control). There are two explanations for this

gain of power. First, TADA’s hierarchical model uses the

information in the case-control (or transmission) data more

efficiently than the standard hypergeometric or trend test. One

important property of LoF mutations, compared to less severe

functional variants, is their rarity in the population (Figure 3C).

TADA, which is similar in spirit to a Poisson test of rare events, is

able to exploit the rarity of these damaging events by estimating

the distribution of LoF alleles across the exome (see Figure S1B),

whereas the other methods cannot. Second, because damaging de

novo mutations are rare, most genes will not harbor them even

when thousands of cases have been sequenced. For such genes,

using Fisher’s method to combine the de novo p-value, which will be

close to 1, with the p-value from the case-control data penalizes the

overall test statistic. In contrast, the Bayesian approach uses de novo

events when they are informative and disregards the de novo data

when they are uninformative; the Bayes factor from de novo in such

cases would be close to 1, making little contribution to the gene’s

total Bayes factor.

We estimate that there are about 1,000 ASD risk genes with

average relative risk about 20. In a recent paper using the same de

novo data, the number of ASD risk genes (k) was estimated at 370

[4]. In that paper, the expected number of genes with recurrent

LoF events was derived as a function of k, and equating it to 5 (the

observed number), produced the solution that k~370. The

analysis made the implicit assumption that all ASD risk genes are

equally likely to sustain multiple de novo LoF events. In Text S1 we

show, using Jensen’s Inequality, that the non-uniform distribution

of the mutation rates and the relative risks among the ASD risk

genes leads to a significant under-estimation of k, explaining the

discrepancy between our results and those of Iossifov et al. [4].

When applied to ASD data, TADA predicts a number of novel

ASD risk genes (Table 1), as well as supporting results for known

ASD risk genes. For some of the newly implicated genes it is

straightforward to garner other supporting evidence for their role

in ASD. S100G is a downstream target of CHD8, a key

transcriptional regulator often disrupted in ASD subjects [23].

CUL3 plays a critical role in neurodevelopment [24,25] and in

particular regulates synaptic functions [26]. A recent study

identified an additional de novo protein-changing mutation in

CUL3 in ASD probands [27], replicating our finding here.

COL25A1, a brain-specific collagen, was implicated in risks for

Alzheimer’s disease [28] and antisocial personality disorder [29].

Inspection of other genes slightly below our chosen FDR

threshold reveals several more interesting genes that likely play

some role in ASD (all ranked among the top 25, see Table S3).

TBR1, a transcription factor critical in brain development,

regulates several known ASD risk genes [30]. A recent study has
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identified recurrent de novo disruptive mutations in TBR1 in ASD

subjects [23]. MED13L, a component of the Mediator Complex, is

intriguing because of its role in Rb/E2F control of cell growth [31]

and the fact that RB/E2F plays a key role in neurogenesis [32]

and neuronal migration [33]. Recently MED13L has been

associated with risk for schizophrenia [34]. NFIA is a member of

the NFI transcription factor family, thought to have a neuropro-

tective role [35], and NFIA-knockout mice display profound

defects in brain development [36].

Genotyping/sequencing errors can introduce biases in data

analyses, especially those for family data [37,38] and for

combining data across multiple heterogeneous studies [39]. Our

analyses are likely robust to these possible biases because the

variant calls were all carefully evaluated: (i) all de novo mutations

described previously [1–4] and analyzed here, a total of 122 LoF

and 314 damaging missense mutations, have been validated by

previous studies; (ii) the case-control data have been carefully

harmonized to minimize batch effects by using stringent quality

control filters [7]; and (iii) for the case-control data, all variant calls

in two genes (CHD8 and SCN2A) have been evaluated by Sanger

sequencing and 20 out of 20 validate, further supporting the

quality of the variant calls in the case-control data. When the

sensitivity of calling minor variants is low (under-calling), this may

create an under-transmission bias in family-based test statistics;

however, TADA is effectively a one-sided test of the adverse effect

of the minor allele. As such, TADA is only powered to detect risk

variants that are over-transmitted and thus bias due to under-

transmission is not a significant concern. Nonetheless, data quality

is always an important concern, and can change over time in

subtle ways [37,38], making high-quality filters and validation of de

novo events critical for good data analyses. It is possible that TADA

would benefit by modeling measurement errors and this will be a

topic for future research, when the error structure in the data is

better understood.

While much of our focus has been on ASD data and the genetic

architecture of ASD, TADA has utility beyond the genetics of

ASD. For example, we would expect TADA to be useful for gene

discovery by the analysis of data from any genetic disorder or

disease for which de novo mutations play a substantive role in risk.

Early onset diseases and disorders are obvious candidates for the

use of TADA, as are disorders such as schizophrenia and

congenital heart disease. Indeed there are a plethora of human

diseases for which de novo mutations account for at least a small

fraction of risk, even diseases that onset in mid-life such as

cardiovascular disease. Because TADA is based on a general

theoretical framework for combining rare variation found in exons

of genes, we predict that its logic can have even broader

applications than simply the analysis of single genes for their

association with disease.

Methods

Sequence data
We combined exome sequence data from four recent studies of

ASD, covering 932 families [1–4]. Detailed information about

study design, including family structure (simplex versus multiplex),

ascertainment, and DNA source (blood versus cell line), can be

found in the Supplements of these papers. The de novo mutations,

including both single nucleotide variants (SNVs) and indels, were

identified as described in the original papers. The transmitted and

non-transmitted variants were extracted from 641 of these families

(see Text S1 for details on data processing). We excluded all

common variants from the analysis, defined as those present at

w1% population frequency in the Exome Sequencing Project

(ESP) controls and/or the 1,282 parents [40]. Only SNVs were

called for the transmission data, indels were not identified. We also

included case/control data from the ARRA ASD Sequencing

Consortium, consisting of 935 ASD subjects of European ancestry

and 870 controls of ancestry similar to cases, selected from the

NIMH repository (see complete information on study design in the

supplement of Liu et al [7]). The SNVs and indels in the case/

control were called as described in [7]. Each mutation/variant in

the combined data was classified into different categories, based on

its predicted effect on the protein function, according to the

program PolyPhen2 [9]. In this study we focused on (1) LoF

mutations, defined as nonsense mutations, mutations in splice sites

or frameshift indels; and (2) mutations classified as ‘‘probably

damaging’’ to protein function by PolyPhen2 (Mis3). We also

removed all genes with more than 10 LoF events in the control

samples (166 genes in total) from the analysis, as these genes are

unlikely to be related to ASD.

Mutation rate estimation
For each gene, the total rate of base pair substitutions was

estimated using a probability model taking the gene length and

base content into account [1]. To estimate the rate of a specific

type of mutation (LoF or Mis3) of a gene, we multiplied the gene-

level mutation rate and the proportion of that type of mutation.

The proportion of LoF or Mis3 mutations was estimated from the

data of unaffected siblings in the ASD families (Table S2). In these

siblings, there were 461 single-nucleotide variants (SNVs) and 34

LoF variants, thus the LoF fraction was 34=461~0:074. Similarly

the Mis3 fraction was calculated as 147=461~0:32.

TADA model and the statistical test
Two hypotheses were compared, H1 : ci=1 versus H0 : ci~1,

for each gene. For most genes, the number of LoF mutations either

transmitted or not (or in cases and controls) was generally very

small and often 0, leading to a naive estimate of q̂q~0 and creating

a challenge for a likelihood-based test. To refine inference we took

an Empirical Bayes approach and developed a hierarchical Bayes

model for the data (Figure 6). We estimated the prior parameters

in the model by maximizing the marginal likelihood. The

hierarchical model assumed a fraction p of the genes was

Figure 6. Bayesian hierarchical model of TADA. A fraction p of
the genes are associated with the phenotype under investigation and
follow model H1 , and the remainder follow model H0 . The prior
distribution of gene-specific parameters, relative risk (ci) and allele
frequency (qi), can vary under the competing models, H1 or H0.
Priors are specified by the hyperparameters, w1 and w0 , respectively,
which are estimated from the data. Counts of events for the i-th gene
follow a Poisson distribution, parameterized by ci and qi under H1,
and qi under H0 .
doi:10.1371/journal.pgen.1003671.g006
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associated with the disorder (model H1) and the remaining fraction

followed the null model (H0). Under H0, we assumed c~1 for all

genes and q followed a Gamma(�qq0n0,n0) distribution (we

parameterized the distribution so that its mean was �qq0). The

scaling parameter of the Gamma distribution (n0) played the role

of a precision parameter or pseudo count; the bigger n0 the more

similar q was estimated to be across genes. Under H1, we assumed

ci of the i-th risk gene follows a Gamma(�ccb,b) distribution and qi

follows a Gamma(�qq1n1,n1) distribution.

Let w1~(�cc,b,�qq1,n1) be the prior parameters of H1, and

w0~(�qq0,n0) be those of H0 (they are also called hyperparameters).

The counts for the i-th gene, xi~(x1
i ,x0

i ,xd
i ), follow Poisson

distributions parameterized by ci (1 for non-risk genes) and qi, as

defined in Equation 1.

The marginal likelihood of the i-th gene under either model,

P(xi DH1) and P(xi DH0), is given by:

P(xi DH0)~

ð
p(xi Dqi,ci~1)p(qi DH0)dqi, ð4Þ

P(xi DH1)~

ð
p(xi Dqi,ci)p(qi DH1)p(ci DH1)dqidci: ð5Þ

The marginal likelihood of all the data, as a function of the

hyperparameters (w1,w0), is

P(xDw,w0)~ P
n

i~1
pP(xi DH1)z(1{p)P(xi DH0)½ �: ð6Þ

We assume the proportion of risk genes, p, is known (in our

analysis of ASD data, this is obtained by the estimated value of k,

the number of ASD risk genes, see Section 2.4). The hyperpara-

meters can then be found by maximizing this marginal likelihood

function. Once we have the estimated values of w1 and w0, we

compute the Bayes factor of any gene:

Bi~
P(xi DH1)

P(xi DH0)
: ð7Þ

The p-values of the observed Bayes factors are calculated by

sampling the null distribution according to Equation 1 (see Text

S1).

TADA for multiple types of mutations
When analyzing multiple types of mutations (LoF and Mis3 in

our analysis of ASD data), we assumed the data for each type of

mutation were independent of each other, and hence we estimated

the prior parameters for each type of mutation separately. The

Bayes factor of a gene is defined as the product of the Bayes factor

for each type of mutation. For these ASD data, the Mis3 mutations

are likely to be a mixture of those causing protein-damaging

changes and those having no real effects on the protein function.

We thus computed the joint Bayes factor of the gene using this

equation:

B~BLoF½w :BMis3z(1{w)�; ð8Þ

we used w~0:55 in our ASD analysis (see Text S1).

Simulation procedure
Our simulation procedure generated data using the estimated

genetic parameters of the LoF mutations of the ASD risk genes

(Text S1). For our initial simulations, we compared the power of

several statistical tests, at the single gene level, under various

combinations of parameter values. We set the mutation rate as

the mean mutation rate of the LoF mutations of all human

genes, 1:7|10{6. The parameters c and q were chosen

according to their estimated mean values: c~15,20,25, and

q~5|10{5,1|10{4,2|10{4. We compared the power of the

three tests under type I error 0.001.

For the second set of simulations, we assessed the performance

of the three tests in the genomewide setting. Specifically, from

among 18,000 genes in the human genome, we first randomly

sampled k~1000 risk genes and the rest were assumed to be

unrelated to disease (we used the estimated mutation rates of all

genes to make this simulation realistic). For a risk gene and a LoF

mutation, the effect size parameter c was sampled from the

distribution c*Gamma(20,1). Its population frequency parame-

ter q was sampled from the distribution, Gamma(0:5,10000). For

a non-causal gene, its relative risk c~1, and the frequency

parameter q was sampled from the distribution Gamma(0:5,500).
The simulation procedure then generated, for each gene, the

number of de novo mutations (Xd ), the number of transmitted

variants (X1) and the number of nontransmitted variants (X0),

according to Equation 1.

We ran the three statistical tests, as described in the text, on the

simulated data from all genes. At various significance levels, we

calculated the number of true discoveries (M1), i.e. the number of

diseases genes whose test statistic reached significance level a. We

chose the value of a so that FDR is less than 0.1, and reported M1

at this value of a (see Text S1 for our procedure for controlling

FDR in the simulations.)

In additional simulations, we varied the basic procedure just

described. In one setting, the average relative risk was set to 10

instead of 20, i.e., c of a risk gene was sampled from the

distribution Gamma(10,1). In another setting, instead of sampling

q and c of each risk gene independently, we modeled the two as

dependent. Specifically, for the i-th risk gene, let ci and qi be the

relative risk and the LoF frequency, respectively. First sample ci

from Gamma(20,1), then determine qi according to a simple

mutation-selection balance: qi~mi=d, in which mi is the mutation

rate and d is a constant. To determine the value of d, we plugged

in the mean values of q, m and c in the above equation and solve

d~0:0017.

Software
TADA software is available as an R package at http://wpicr.

wpic.pitt.edu/WPICCompGen/. The package also includes

TADA-Denovo, the simplified version of TADA, that analyzes

only de novo data.

Supporting Information

Figure S1 Bayesian estimation of the frequency parameter q. (A)

The observed LoF counts (red) of all genes, vs. the simulated

counts (blue). For simulation of one gene, we first sample q from

the estimated prior distribution of q under H0, and then generate

the count data under this q according to the Poisson model

(Equation 1 of the text). The procedure is repeated for all genes,

and the resulting barplot is provided along with the distribution of

the observed data. Note that we did not use the distribution qDH1,

as most of the genes are not disease-related. (B) The Bayesian

hierarchical model estimation of the allele frequency q of LoF

variants. The blue circles show the observed frequencies of 10

different genes, which are also maximum likelihood estimates

(MLE). The red circle shows the average q over all genes (prior
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mean). The Bayesian posterior mean estimates are the weighted

average of the MLE and the prior mean (the intersection of the

dashed line and solid lines), with weight w (0.20 in this example).

(TIF)

Figure S2 Typical Q-Q plots under the null distribution of the

TADA test statistic. We simulate n~10000 genes under the null

model, with mutation parameter m~1:7|10{6 (the mean LoF

mutation rate of all human genes), and q varying from from

3|10{4 to 3|10{3 (the average q of non-autism genes is about

0.001) and number of family trios (N) varying from 1000 to 3000.

The TADA model is applied to each of 9 simulated datasets to

obtain the p-values and resulting Q-Q plots. Although there is

normal variation in these samples, most follow the expected null

distribution fairly closely.

(TIF)

Figure S3 The power of the de novo test (red), the meta test (blue)

and TADA (purple) at type I error 0.001, under various values of

N , c and q.

(TIF)

Figure S4 The number of discovered disease genes as a function

of sample size at FDR equal to 10%. We compare power for a test

relying on only de novo events (De novo Test, red), a test combining p-

values from de novo and transmitted data by Fisher’s method (Meta

test, blue), and the joint likelihood-based analysis (TADA test,

purple). Results from three different simulations are shown. (A)

Simulation using the estimated ASD parameters (the average

relative risk �cc~20). (B) Simulation assuming �cc~10. (C) Simulation

under the inverse-relationship between the LoF frequency (q) and

the relative risk (c) for each risk gene.

(TIF)

Figure S5 Sensitivity analysis of TADA for four selected genes.

(A) For each gene, suppose m is its (estimated) mutation rate, we let

TADA use a different rate, ranging from m=2 to 2m, and the

resulting p-values are shown. (B) We vary the prior parameter �cc
(the average relative risk of all risk genes) of TADA from 10 to 20,

and compute the TADA p-values.

(TIF)

Table S1 Parameters from Hierarchical Bayes estimation. The

LoF and damaging missense (Mis3) mutations of ASD genes have

high relative risks, and appear to be under stronger purifying

selection than non-ASD genes.

(PDF)

Table S2 The statistics of the de novo mutations in autism

probands and unaffected siblings. The missense labels are based

on predictions from PolyPhen2. Missense1–3 correspond to

‘‘benign’’, ‘‘possibly damaging’’ and ‘‘probably damaging’’

mutations, respectively. The last row is the counts of frameshift

indels.

(PDF)

Table S3 The complete prediction results of TADA. The

‘‘mut.rate’’ column shows the estimated mutation rate of the

genes. For each of the two types of mutations, LoF and mis3

(severely damaging), five counts are shown, including the number

of de novo mutations, the numbers of transmitted and non-

transmitted variants, and the number of variants in cases and

controls. The pdn column shows the p-values using the De Novo Test

from the de novo LoF mutations alone. The pTADA(LoF) column

shows the p-values from the TADA test using all LoF data. The

pTADA column shows the p-values from the TADA test using both

LoF and Mis3 data. The last column shows the q-value of pTADA

after Benjamini-Hochberg correction of multiple testing.

(XLSX)

Text S1 Supplementary methods explaining the details of

TADA, and our analysis of ASD data.

(PDF)
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