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Memories are about the past, but they serve the future. Memory research often emphasizes the former
aspect: focusing on the functions that re-constitute (re-member) experience and elucidating the various
types of memories and their interrelations, timescales, and neural bases. Here we highlight the prospective
nature of memory in guiding selective attention, focusing on functions that use previous experience to
anticipate the relevant events about to unfold—to ‘‘premember’’ experience. Memories of various types
and timescales play a fundamental role in guiding perception and performance adaptively, proactively,
and dynamically. Consonant with this perspective, memories are often recorded according to expected
future demands. Using working memory as an example, we consider how mnemonic content is selected
and represented for future use. This perspective moves away from the traditional representational account
of memory toward a functional account in which forward-looking memory traces are informationally and
computationally tuned for interacting with incoming sensory signals to guide adaptive behavior.
Memory’s most compelling illusion is that it represents the past.

However, it is clear from an ecological perspective that memory

is all about the future. The purpose of memory is to learn about

the environment to anticipate future demands—not just putting

back the pieces of the past for recollection (remembering expe-

rience) but deriving possibilities based on the past to guide future

adaptive behavior (premembering experience). This notion has

old roots (Helmholtz, 1867), but, surprisingly, the fundamental

operations through which memories guide adaptive behavior

lack an established theoretical framework, and their mecha-

nisms have yet to capture the in-depth and systematic investiga-

tion they deserve. We propose that memory, over a broad

hierarchy of timescales, supplies the essential elements for se-

lective attention to guide perception and performance flexibly

and adaptively. We introduce the term ‘‘premembering’’ to cap-

ture this prospective and dynamic role of memory. Our construct

complements proposals for how memories can be used to

inform other cognitive functions, such as adaptive control, deci-

sion-making, and imagining future situations (Box 1).

Selective attention (hereafter called ‘‘attention’’) refers to the

set of functions that prioritize and select information to guide

adaptive behavior (Nobre, 2018). These functions modulate

incoming sensory signals and influence their processing at mul-

tiple stages to inform awareness, decisions, actions, and subse-

quent memories. It has long been appreciated that short-term

memory, or ‘‘working memory’’ (WM), plays an important role

in forming attentional templates (e.g., Desimone and Duncan,

1995). Here we suggest that WM is part of a much larger family

of heterogenous attention-guidingmemory traces that spanmul-

tiple timescales.

The premembering perspective has important implications for

understanding the content and formatting of memory. Rather

than slavishly storing and using veridical traces, the brain flexibly
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selects and even distorts memory content to enhance its utility in

guiding attention. Moreover, task-relevant informational content

may also be stored in a neural format that is optimized for the

anticipated utilization of the memory to guide performance.

Multiple Timescales of Memories Guide Attention
The essence of memory is the traces left by passing experience.

These range from transient perturbations to engrams that last a

lifetime, capturing modality-specific fragments to relational and

integrated wholes and supporting unconscious states to recol-

lective phenomena. Such traces can provide essential informa-

tional content required for prospectively prioritizing and select-

ing what is important. Working together, memory content and

attention functions shape how the brain transforms incoming

signals to guide perception, choice, action, and the formation

of new memories to serve adaptive behavior in the future

(Figure 1). It can be argued that these prospective properties

of memory are what define its fundamental ecological purpose:

to collect relevant aspects of experience to anticipate future de-

mands and guide behavior.

Short-Term Traces

Drawing a clear line defining when present becomes past may

be impossible. Nevertheless, it is clear that past traces affect

perception even from their earliest moments. The very stitching

of visual perception across eye movements into an apparent

cohesive flow may rely on short-term memories bridging the

anchoring and landing fixation contents (Irwin and Gordon,

1998). Furthermore, transient salient visual stimuli intrinsically

capture attention and leave a brief excitatory trail, temporarily

enhancing processing of stimuli that follow in their immediate

wake (Posner, 1980; Figure 2A).

At slightly longer timeframes, WM provides a limited set of

more durable traces that are independent of continuous sensory
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BOX 1. Prospective Memories in Different Cognitive Domains

We focus on how memories guide selective attention. The role memory plays in guiding behavior has also been considered within

other cognitive domains.

‘‘Cognitive control’’ refers to the collection of mechanisms that set and adjust our goals and that monitor and regulate perfor-

mance according to competing demands. Thus, the selective attention mechanisms we review are subordinate to cognitive

control, prioritizing and selecting putative targets and overcoming irrelevant distraction within a particular goal setting. Mem-

ories are increasingly recognized to play an important role in influencing the degree of top-down control exerted on a given trial.

They include both short-term traces between successive trials as well as intermediate memory traces that develop over task

performance (Chiu and Egner, 2019).

‘‘Decision-making’’ refers to the process of choosing one of a set of alternatives to produce a beneficial outcome. Choices are

made based on expectation of rewards developed through previous experience. Current models of decision-making mostly

rely on reinforcement learning. Recent computational studies suggest that different types of memory traces may work together

to optimize reinforcement learning, including those resulting from slow incremental implicit learning over trials as well as

episodic traces uniquely linked to individual experiences (Botvinick et al., 2019).

‘‘Decision-making’’ is closely related to selective attention, which can be involved in prioritizing information for guiding choice

behavior. Expectations play an essential role in both sets of processes. However, interestingly, they each stress a different

consequence of prior knowledge. In decision-making, predictions based on priors are mainly used to attenuate the processing

of what can be anticipated (Friston, 2010). In selective attention, predictions are mainly used to enhance the processing of

anticipated task-relevant information. These two phenomena nicely illustrate the flexibility with which memory-related traces

can be used to guide adaptive performance. The specific consequence of prior knowledge will be heavily dependent on the

purpose of the task (Nobre, 2018).

‘‘Episodic future thinking’’ involves drawing on previous experiences to imagine oneself in future situations (Atance and O’Neill

2001; Schacter et al., 2008). The construct is useful in different types of situations, such as navigation, planning to implement

intentions, understanding others’ mental states, and simulating future events. Neuropsychological, developmental, and brain

imaging studies have revealed substantial overlap between the neural system supporting episodic future thinking and episodic

recollection, suggesting that the LTM traces available for recollection can also be used prospectively and flexibly to build novel

plausible scenarios and run simulations (Schacter et al., 2008). Episodic future thinking differs from our construct of premem-

bering in being a specifically deliberative process based on LTM traces available to awareness to inform behavior in the future.

Premembering is a broader construct, considering the influences of memories of different types and timescales on ongoing or

imminent behavior.

Neuron

Review
stimulation and resistant to interference and that act to guide

adaptive behavior (Baddeley, 2003). The fundamental role WM

plays in guiding attention is widely recognized and has been

studied extensively (Desimone and Duncan, 1995). Information

in WM has been considered the major source of top-down pro-

active attention. Even before the target stimuli appear, these

memory traces influence the pattern of brain activity in a proac-

tive fashion to facilitate the processing of signals associated with

likely relevant items (Chelazzi et al., 1993; Kastner et al., 1999;

Stokes et al., 2009). These top-down anticipatory states based

on WM templates are often associated with willful, volitional ori-

enting of attention (Helmholtz, 1867; Posner, 1980). However, it

is important to note thatWMcontent can also influence incoming

information processing in an involuntary fashion (Soto et al.,

2008; see below).

Moreover, beyond the scope of classic WM, the relation be-

tween successive items can also influence information process-

ing. For example, when searching for an odd-one-out target, its

identification is facilitated when the current target shares a

defining feature value (Maljkovic and Nakayama, 1994) or loca-

tion (Maljkovic and Nakayama, 1996) with the target in the pre-

ceding trial. Traces from preceding stimuli also alter the quality

of perception. Reports of the spatial frequency and orientation
of a visual item are systematically distorted by that of preceding

items (e.g., Fischer and Whitney, 2014).

Short-term memory traces can be used to enhance or sup-

press information processing, depending on the situation. For

example, after initial facilitation of stimuli in the wake of non-

informative salient stimuli, decrements in performance occur at

the same location; the ‘‘inhibition of return’’ has been proposed

to encourage sampling and exploration (Posner and Cohen,

1984). Pre-exposure to irrelevant or distracting stimuli can facil-

itate performance in visual search tasks by helping overcome

distractor interference (Olivers et al., 2006). However, when the

current target shares the identity or features of a distractor in

the previous trial, performance decrements occur (negative

priming; Fanini et al., 2006; Tipper, 1985). Reward associations

can further magnify both facilitatory and inhibitory effects be-

tween successive stimuli (Della Libera and Chelazzi, 2006; Krist-

jánsson et al., 2010).

Intermediate Traces

Although most research has focused on the role of short-term

traces in anticipatory attention, the memory traces that guide

our perception stretch further back in time. Most of the knowl-

edge that guides the interpretation of sensory signals and sets

up expectations about the occurrence and context of relevant
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Figure 1. Mutual Interactions between Memory and Attention
Attention draws on past experience frommultiple timescales to anticipate and
prepare for incoming stimulation and guide adaptive action. Conversely,
attention is not only forward looking but can select and bias information during
encoding and maintenance in memory. These mutual interactions feed a
virtuous cycle that tunes our minds to the most relevant features of the envi-
ronment. In this review, we consider themultiplemnemonic timescales that are
important for guiding proactive attention (dark arrows).
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events is stored in our long-term memory (LTM; Nobre and Me-

sulam, 2014). However, somewhere between short-term traces

that guide performance between successive events and remote

long-term memories that guide performance between distant

episodes lives a rich variety of memory traces reflecting regular-

ities learned and utilized within a task setting. An elegant study

by Carlisle et al. (2011) showed the gradual transition from WM

to a longer-term trace when search targets were held constant

for a number of trials (Figure 2B). For early trials, they showed

a robust event-related potential associated with the location

and number of items in the WM template (contralateral delay ac-

tivity [CDA]; Vogel and Machizawa, 2004). As trials progressed,

the CDA progressively diminished, implying a gradual handover

to a longer-term, intermediate memory store.

Increasing numbers of experimental approaches are begin-

ning to explore how different types of intermediate traces guide

attention within task settings. ‘‘Probability cueing’’ refers to per-

formance benefits resulting from the higher prevalence of a

task-relevant item within a given location (Shaw and Shaw,

1977). The frequent appearance of a target at a given location fa-

cilitates its identification, whereas the frequent appearance of an

irrelevant stimulus at a location attenuates its distracting effect

(Goschy et al., 2014; Wang and Theeuwes, 2018; Ferrante

et al., 2018; Noonan et al., 2016). Memory traces linked to prob-

ability cueing are long lasting and largely acquired implicitly

(Jiang 2018). A related but different phenomenon is ‘‘selection

history’’ (e.g., Kyllingsbaek et al., 2001), which refers to facilita-

tion in identifying stimuli previously selected as targets indepen-

dent of their probability.

‘‘Reward history,’’ referring to the likelihood or value of a

reward typically associated with given target stimuli within a

task, has strong and persistent effects on performance (Ander-

son et al., 2011; Chelazzi et al., 2014; Krebs et al., 2011; Ray-

mond and O’Brien, 2009). Reward manipulations often come

bundled with manipulations of other sources of attention modu-

lation, such as probability cueing or selection history. In complex

search environments, reward history combines with other fac-

tors to guide effective performance (e.g., Navalpakkam et al.,

2010). In tasks that carefully control for other sources of influ-
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ence, stimuli with features that have high reward associations

act as potent distractors, even when they are otherwise incon-

spicuous and task irrelevant (Failing and Theeuwes, 2015; Hick-

ey and Peelen, 2015).

Learning and utilization of more complex associations also

occur within task settings. ‘‘Contextual cueing’’ shows that

pick-up of repeated spatial configurations of stimuli within visual

search arrays facilitates target identification (Chun and Jiang,

1998). This type of memory guides search behavior, resulting

in fewer fixations and faster search times (Harris and Remington,

2017). Neurophysiological markers of target detection are also

enhanced (Johnson et al., 2007; MacLean and Giesbrecht,

2015; Schankin and Schubö, 2009). Learning of statistical regu-

larities over time similarly leads to improvements in behavioral

performance (Schapiro et al., 2016). Interestingly, the presence

of statistical regularities within stimulus streams spontaneously

captures attention, leading to facilitation of target identification

in structured relative to unstructured streams (Zhao et al.,

2013). Both contextual cueing and statistical learning are

thought to involve hippocampus-related memory systems,

even though they are learned largely implicitly (Chun and Phelps,

1999; Schapiro et al., 2016). A recent neurophysiological study

of sequence learning in a serial response task has also revealed

proactive anticipation of upcoming stimuli and associated re-

sponses based on learned spatiotemporal expectations (Heide-

man et al., 2018).

Long-Term Traces

Although the role of LTM in guiding attention has been less well

explored than that of WM, its fundamental role in defining

perception, choosing actions, imagining, and forming newmem-

ories has long been recognized (Bartlett, 1932; Helmholtz, 1867;

Moscovitch et al., 2016; Box 1). We propose that the role mem-

ory plays in guiding attention may contribute to its fundamental

influence over our mental experience and behavior.

In everyday situations, the bank of remotememory traces from

previous settings and episodes arguably provides the richest

source of information for guiding attention and perception.

When waiting to meet a friend on a busy street, we rely on

LTM to search them out based on their appearance and likely

route. LTM provides knowledge about whether and how relevant

events occur in particular contexts and about their likely reward

outcome values. Thus, they afford rich content for flexible, pro-

active, and dynamic biases to guide the prioritization and selec-

tion of relevant information (Aly and Turk-Browne 2017; Bar,

2004; Nobre andMesulam, 2014). An increasing variety of exper-

imental approaches is being used to explore how LTM content is

used proactively to guide adaptive behavior. Although differing in

detail, the approaches share the notion that the brain uses LTM

information constantly, proactively, and predictively.

In visual search tasks using simple stimulus arrays, semantic

knowledge of features commonly associated with objects facili-

tates target identification, overcoming usual costs associated

with feature binding (Rappaport et al., 2013). On the other

hand, distractors with associative links to the target disrupt the

visual search by capturing attention (Moores et al., 2003).

Furthermore, newly learned associations continue to affect per-

formance on subsequent tasks, even when completely irrelevant

(Fan and Turk-Browne, 2016).
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Figure 2. Multiple Timescales for Memory-Guided Attention
(A) Even at very short time-scales, attention is influenced by preceding stimuli. For example, the classic exogenous cueing paradigm demonstrates how attention
lingers at a previously cued location (adapted from Posner and Cohen, 1984).
(B) At slightly longer timescales, WM guides visual search (quantified as contralateral delay activity [CDA]). However, as the timescale increases (over trials with
repeating template), attentional control is transferred to intermediate memory (i.e., reduced CDA; scale bar represents relative voltage difference over the scalp
surface; error bars represent ±1 SEM). Adapted from Carlisle et al. (2011).
(C) At even longer timescales, LTM maintains relevant information for guiding attention. In this study, Stokes et al. (2012) found that spatial information stored in
LTM can be used to modulate the visual cortex in preparation for a target stimulus (error bars represent ±1 SEM; scale bar represents the relative BOLD response
in left and right visual cortex).
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In tasks using complex scenes or environments, ‘‘contextual

priming’’ studies show that previous experiences within partic-

ular contexts guide the identification and interpretation of ob-

jects within the same contexts (Bar, 2004). When searching for

a specific item within a scene, LTM works alongside lower-level

statistics of visual features to guide performance (Navalpakkam

and Itti, 2006). Multiple types of LTM are at play (Wolfe et al.,

2011; Le-Hoa Võ andWolfe, 2015). Search performance benefits

from schematic probabilistic knowledge of encountering the

item within a particular context (Võ and Henderson, 2009) as

well as from its likely location relative to the layout of the scene

(Torralba et al., 2006) and to other objects within a scene (Bar,

2004). In addition, specific knowledge about the location of an

item within a particular scene also contributes—episodic guid-

ance (Brockmole and Henderson, 2006). Interestingly, incidental

memories formed through active search and selection of items

within a scene lead to stronger performance benefits and subse-

quent memories than familiarity or explicit attempts to memorize

items within scenes (Draschkow et al., 2014), suggesting that

effective memories fall out of natural behavioral interactions.

Memory-guided attention tasks show how learning of object

locations through repeated visual search in complex scenes or

environments facilitates performance in subsequent tasks. Per-
formancemeasures reveal significant improvements in detecting

and discriminating target items as a result of previously learned

specific contextual association between the particular item and

a scene or three-dimensional environment (Becker and Rasmus-

sen, 2008; Draschkow and Võ, 2016; Kit et al., 2014; Summer-

field et al., 2006).

‘‘Memory-guided orienting’’ tasks provide a good platform to

investigate anticipatory biases based on long-term memories

(Summerfield et al., 2006; Figure 2C). Participants form object-

scene associations to a high and stable level during a learning

session; the consequences of these memory traces are then

tested in a separate attention-orienting session. The separation

helps disentangle effects of early learning from those of subse-

quent memory utilization. In our own research, we have used

learned scenes presented in isolation as memory cues, followed

by the appearance of a target stimulus to be identified or discrim-

inated. The critical behavioral comparison is between perfor-

mance depending on whether the target location is correctly

predicted by previous memory experience (valid memory cue)

versus incorrectly predicted (invalid memory cue) or unpredicted

(neutral memory cue). Strong and reliable effects occur for both

perceptual sensitivity (Patai et al., 2012) and response times

(Summerfield et al., 2006). By presenting memory cues and
Neuron 104, October 9, 2019 135
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targets individually, it is possible to measure memory-related

brain activity that biases excitability according to anticipation

of the target location. fMRI reveals that memory cues engage

the hippocampus as well as the dorsal frontoparietal network

associated with the control of spatial attention (Summerfield

et al., 2006; Stokes et al., 2012). In addition, activity levels in vi-

sual cortical regions become spatially biased in anticipation of

the target location (Stokes et al., 2012; Figure 2C). Electrophys-

iological recordings also reveal memory-related spatial anticipa-

tory biases in the form of lateralization of alpha-band power

(Stokes et al., 2012; Summerfield et al., 2011). Anticipatory

biases in the cue-target period are followed by modulation of

event-related potentials related to visual processing (Summer-

field et al., 2011) and spatial selection (Patai et al., 2012; Doallo

et al., 2013) of target items. Reward associations further poten-

tiate the effects of memory-based orienting. Even a single asso-

ciation with a modest monetary gain or avoidance of loss during

the last learning block leads to performance improvements in the

subsequent attention-orienting session, even though reward is

irrelevant to the orienting task. Target stimuli during the orienting

task elicit larger visual P1 potentials when previously associated

with reward or punishment avoidance (Doallo et al., 2013;

Suárez-Suárez et al., 2019).

Rosen et al. (2014) have followed a similar approach involving

learning and utilizing spatial contextual associations in a change-

detection task. By comparing memory-guided and visually

guided attention conditions, they have highlighted a set of

cortical regions and differences in hemispheric lateralization

associated with LTM-based orienting (Rosen et al., 2016).

Thus, findings with memory-guided orienting tasks clearly

illustrate the ability of the brain to use LTM content proactively

to guide prioritization and suggest the involvement of limbic,

memory-related circuits. In monkeys, recent studies recording

activity from neurons in the hippocampus and entorhinal cortex

during free viewing provide converging evidence that medial

temporal areas, traditionally associated with memory, are

closely related to attention. Neurons in the entorhinal cortex

show strong visuospatial coding properties, signaling gaze loca-

tion using multiple frames of reference (Meister and Buffalo,

2018). Entorhinal neurons further show a grid cell-like arrange-

ment of viewed spatial locations, using only covert attention in

the absence of any eye or other physical movement (Wilming

et al., 2018). In addition to grid cells, saccade direction cells

are also present, with largely independent populations encoding

the direction of previous versus future saccades (Killian and Buf-

falo, 2018). Together, such findings point to mechanisms that

could support spatial attention based on LTM. Recordings in

the hippocampus showed that slow-wave ripples, thought to

promote plasticity, occurred during a search for object changes

within scenes and that their probability increased with scene

repetition and near remembered targets (Leonard and Hoffman,

2017). Such a mechanism would be a good candidate for sup-

porting memory-guided attention during search.

Dynamic Prospective Memories

In addition to carrying information about the location and identi-

fying attributes of anticipated events, memory traces also carry

information about their timing. Memory-based temporal expec-

tations can therefore enable the brain to prepare for events in a
136 Neuron 104, October 9, 2019
dynamic, temporally structured, and efficient way (Nobre and

van Ede, 2018). Temporal expectations rely on learning temporal

regularities that occur over multiple timescales. Neural markers

of proactive temporal anticipation have been observed when

the timing of stimuli follows a regular temporal rhythm (Cravo

et al., 2013), probabilistic conditional probabilities (Cravo et al.,

2011), or sequences (Heideman et al., 2018). Across episodes,

long-term memories can also guide temporally structured antic-

ipatory attention. Using a temporal variant of thememory-guided

orienting task, Cravo et al., (2017) showed improved perceptual

sensitivity and response times to detect and discriminate visual

targets occurring at the learned temporal interval (valid memory

cue) relative to the other interval (invalid memory cue). Event-

related potentials elicited by the memory cue revealed clear

modulation of target anticipation according to temporal expecta-

tion. Behavioral and neural markers of validity effects correlated

with one another and with the quality of learning of the temporal

association.

Plurality across Types and Timescales

Recognizing that memory traces of different types and time-

scales proactively guide perception invites us to reconsider

dominant concepts and dichotomies in the attention literature.

The simple separation between ‘‘bottom-up’’ sources of prioriti-

zation based on physical salience and ‘‘top-down’’ sources

based on current goals is clearly insufficient. To explore the nat-

ural kinds of memory-based attention, it is important to separate

two fundamental factors: their volitional character and their

source.

Subjectively, attention can be voluntary or involuntary, and its

source can be external, based on physical salience (exoge-

nous), or internal, based on brain states linked to current goals

or previous experience (endogenous). Often these two factors

are conflated, with exogenous sources assumed to guide invol-

untary attention and endogenous sources assumed to guide

voluntary attention. Instead, they should be viewed as theoret-

ically separable. Although physically salient stimuli capture

attention involuntarily, endogenous sources can guide attention

both voluntarily and involuntarily. In addition to their use in goal-

based voluntary attention, both short-term as well as LTM sour-

ces can also have automatic, involuntary consequences for

perception. For example, short-term memory carrying goal-

related information to perform one task also inadvertently influ-

ences performance in another task, sometimes causing signifi-

cant interference (Soto et al., 2008). Memory traces acquired

over a task setting—reflected in probability cuing, selection his-

tory, reward history, contextual cueing, or sequence learning—

are often acquired incidentally and utilized involuntarily and

without explicit knowledge (Chun, 2000; Jiang, 2018). Remote,

long-term memories for the presence and location of items

within rich, complex scenes are more often accompanied by

conscious recollection (Brockmole and Henderson, 2006;

Jiang, 2018). Although it is likely that these associations are

used to direct attention voluntarily, they may also orient atten-

tion involuntarily. Undermost conditions, benefits in LTM-based

orienting correlate with measures of explicit memory (Cravo

et al., 2017; Salvato et al., 2016), suggesting a viable source

for voluntary attention. However, dissociations have also been

noted. Although explicit retrieval of object-scene memories is
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significantly compromised in older individuals compared with

younger counterparts, the benefits of memory-based attention

are spared (Salvato et al., 2016). The relationship and the degree

of interaction between these two modes of memory-based

attention are important directions for future research (Nobre

and Mesulam, 2014).

In recognizing the role that memory associations within task

settings play in attention, some contemporary models of atten-

tion have proposed adding a third, ‘‘history’’ source to the tradi-

tional bottom-up and top-down sources in attention (e.g., Awh

et al., 2012). The inclusion is an important first step toward

acknowledging the fundamental role played by memory, but

there are also inherent limitations with treating memory as a

single and separate additional source of attention control. On

one hand, it is not possible to extricate memory from the two

traditional sources of attention. Brief memory traces contribute

to effects of bottom-up attention, prioritizing stimuli that trail

physical singletons, and WM traces are essential for goal-based

top-down attention. On the other hand, amalgamating memory

sources into one common history factor works against evidence

suggesting the plurality of memory mechanisms at play.

The internal, memory-based sources of attention are many.

Memories of various durations and types contribute, from traces

that stitch the continuity of perception to those that guide the

recognition of a long-lost friend. Most likely, multiple memory

systems and mechanisms are involved. For example, both

contextual cueing and memory-based orienting involve LTM

for the location of a target object within a given configuration in

an array or scene, and in both cases, the medial-temporal areas

have been implicated. However, brain imaging shows increased

hippocampal activity during memory-guided orienting in scenes

(Hannula and Ranganath, 2009; Summerfield et al., 2006) and

decreased activity by repeated versus novel arrays in contextual

cueing tasks (Greene et al., 2007; Giesbrecht et al., 2013). Elec-

trophysiological recordings also show different patterns of mod-

ulation of potentials associated with target selection (N2pc), with

attenuation by memory-guided orienting (Doallo et al., 2013; Pa-

tai et al., 2012) and enhancement by contextual cueing (Kasper

et al., 2015; Schankin and Schubö 2009). Striking differences

occur even when comparing different types of memory traces

within a single task. Goldfarb et al., (2016) contrasted the effects

of contextual cueing (associations between specific array con-

figurations and target locations) versus probability cueing (prob-

abilistic learning of most likely target locations and response

choices) in guiding visual search in a common task. Although

contextual cueing modulated activity in the hippocampus, prob-

ability cueingmodulated activity in the striatum. The effects were

selectively predictive of attention benefits across successive

trials and correlated with performance measures. Numerous

functional dissociations have also been observed in behavioral

effects of attention based on different types of memory within

a task context. Although often entangled in natural contexts,

probability cueing effects can be separated from single-trial

priming effects (Jiang 2018), from selection history (Ferrante

et al., 2018; Wang and Theeuwes, 2018), and from goal-based,

short-term-memory cueing (Goschy et al., 2014; Jiang, 2018).

Likewise, reward history can be separated from selection history

(Anderson et al., 2017).
Thus, the literature suggests a rich diversity of mnemonic influ-

ences on attention, with at least some functional dissociations.

There is much empirical work ahead to reveal the natural kinds

and neural mechanisms of memory-based attention to derive

its principles of organization and develop useful theoretical

models. Traces of different kinds and durations could act sepa-

rately and largely independently; they could compete, they could

become integrated within a unified predictive model (e.g., in a

Bayesian framework; Friston, 2010), they could converge and

operate through a common priority map to modulate sensory

processing (Bisley and Goldberg, 2010), or they could combine

in mutually supportive ways to enhance the quality and flexibility

of biasing signals (Botvinick et al., 2019). At this stage, it is pre-

mature to clump together memories into a single source of atten-

tional control, and doing so could discourage or misguide much

needed investigation in this important area.

Prospective and Adaptive Memories
Premembering has implications for understanding the nature of

memory itself. Consonant with a role in serving future behavior

by grounding attentional selection, the very nature of memory

traces is forward looking. What is encoded, maintained, and

selected for retrieval is strongly influenced by what is likely to

be important for future behavior.

Future-Relevant Content of Short-Term Memory

At the shortest timescales, the contents of memories maintained

across eye fixations are strongly influenced by the location of

the upcoming saccade. Even before a saccade is made, the

information corresponding to its upcoming landing zone is

remembered better than information at other, equidistant loca-

tions (Irwin, 1992).

Within WM research, findings increasingly highlight the pro-

spective qualities of these traces. The contents of WM are

strongly influenced by current task goals. They are selective

and can even be distorted to facilitate performance based on

anticipated task demands. The selectivity of WM was elegantly

illustrated by a neurophysiological study in monkeys showing

that neuronal activity in the prefrontal cortex (PFC) was largely

dominated by the single relevant item of amulti-item array during

a selective delayed-match-to-sample task (Rainer et al., 1998).

Later, responses in prefrontal neurons were shown to be most

sensitive to stimulus dimensions that were relevant for making

categorical discriminations imposed by the task (Freedman

et al., 2001). Although prefrontal neurons differentiated these

discriminant features, they were less sensitive to other equally

available, non-discriminant physical features until these became

task relevant. Similar effects were reported for the parietal cortex

when monkeys performed categorical discrimination tasks

based on arbitrary boundaries along continuous feature dimen-

sions (Freedman and Assad, 2006).

Selectivity in WM is also well documented in the human brain.

The CDA marker of WM derived from electroencephalograms

(EEGs) shows that encoding can be spatially and item selective

(e.g., Vogel and Machizawa, 2004). In addition, selectivity

can also occur for relevant features within memory items.

Using multivariate pattern analysis (MVPA) to derive popula-

tion-response properties from fMRI data, Serences et al. (2009)

found that decoding during a WM delay depended on the
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Figure 3. Memory Is Prospective, Representing the Information Most Likely to Be Relevant for Behavior
(A) Selective encoding. Serences et al. (2009) used fMRI to show that WM maintains sensory information (color or orientation) that is most relevant to behavior.
Decoding patterns of activity in early visual cortex, they found that activity in thememory delay carried orientation angle information when orientation was relevant
for future decision-making or color hue information when color was relevant (adapted from Serences et al., 2009).
(B) Selective maintenance. Wallis et al. (2015) used MEG to investigate selection of items already in WM. Retro-cues resulted in better memory performance
(center panel) and contralateral suppression of alpha power in the visual cortex (right panel; adapted from Wallis et al., 2015). Scale bar represents spectral
lateralization (contralateral minus ipsilateral) in normalized units (t-value).
(C) Memories can also be distorted to guide behavior. During a visual search task in which distractor stimuli are clustered on one side of the parametric feature
space (e.g., color in Yu and Geng, 2019), the search template held in WM becomes distorted away from the veridical target to better separate the target from the
competing distractors (adapted from Yu and Geng, 2019).
(D) Working memories also code for motor plans whenmotor affordances are available and can optimize performance. In van Ede et al. (2019), visual stimuli were
paired with specific motor plans (left panel), resulting in concurrent visual and motor preparation and their characteristic electrophysiological signatures (right
panel; adapted from van Ede et al., 2019). Scale bar represents spectral lateralization (contralateral minus ipsilateral) in percept signal change.
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expected demands during recall. Participants performed a de-

layed matching task on colored gratings and were cued that

either color or orientation was relevant to the discrimination. Pat-

terns of activity in the visual cortex selectively maintained the

task-relevant feature, consistent with a prospective memory

code for guiding future behavior (Figure 3A).
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Studies in human participants have also demonstrated that

selective contents in WM can be updated flexibly as predictions

change about the items or features that will be relevant for task

performance (Griffin and Nobre, 2003; Landman et al., 2003).

Cues presented during the delay that retrospectively inform par-

ticipants about the item most likely to be probed (retro-cues)



Neuron

Review
result in significantly better memory performance. fMRI studies

show selective maintenance of task-relevant features after infor-

mative retro-cues that predict or instruct which stimulus or attri-

butes will be probed (Kuo et al., 2014; LaRocque et al., 2017;

Lepsien and Nobre, 2007; Sligte et al., 2009). Human neurophys-

iological studies also show flexible updating of selective content

in WM during maintenance with retro-cues that indicate which

item in memory is most likely to be probed (Kuo et al., 2012;

Poch et al., 2014; Wallis et al., 2015; Figure 3B). Such updating

can also occur in the absence of external cues, when the pas-

sage of time is associated with the likely item to be probed, illus-

trating the flexibility of updating selective WM contents and the

role of temporal expectations (van Ede et al., 2017).

From a functional perspective, it is not always optimal simply

to maintain a veridical representation of previous input. When

making some types of fine-grained delayed discriminations, it

can be more advantageous to focus on neural information tuned

away from the behaviorally relevant feature to maximize separa-

bility from distractor items (Navalpakkam and Itti, 2007). In such

tasks, behavioral measures confirm that WM templates are

adaptive distortions of the experienced information (Navalpak-

kam and Itti, 2007; Geng et al., 2017). Application of multivariate

methods to derive tuning functions of fMRI voxels confirmed that

WM templates in such tasks reflect distortions of the perceived

stimulus, thus being adaptive rather than veridical (Scolari

et al., 2012). Interestingly, in addition to being shifted, the rele-

vant feature information maintained in the target template can

also be sharpened to increase separability from distractor stimuli

in the task (Geng et al., 2017; Yu and Geng 2019; Figure 3C).

These studies clearly reveal the prospective face of WM: con-

tent is optimized to the expected demands of future processing.

In some cases, the prospective WM representation triggered by

a stimulus bears no physical resemblance to it. Rainer et al.

(1999) trained monkeys on a paired-associate task that system-

atically manipulated the relationship betweenmemory items and

expected probe stimuli. This revealed a subset of neurons cod-

ing for the expected stimulus during the delay period even

though it was not actually presented on that trial. This also dem-

onstrates the interaction between WM and LTM.

WM representations also go beyond the experienced stimulus

to construct motor representations when specific actions can be

anticipated. Most WM tasks tend to probe the perceptual

content of the memoranda and typically isolate perceptual

qualities of stimuli from particular responses. In everyday life,

however, the perceptual content of WM often also carries motor

affordances, such as when reaching out and grasping the cup of

coffee outside your field of view or repeating a telephone number

to a friend. In a recent visual WM task that linked the reporting of

particular stimulus orientations to a specific hand, it became

clear that motor representations are derived from visually en-

coded stimuli and that motor information is in a similar state of

readiness as visual content when participants are probed (van

Ede et al., 2019; Figure 3D).

Future-Relevant Content of LTM

The prospective attributes of LTM are much more difficult to

study. Except under highly constrained experimental conditions,

it is difficult to determine what aspects of experience will prove

useful to guide future behavior at distant time points. Neverthe-
less, the prospective nature of LTM can be gleaned from a few

observations. The content of LTM is selective. We better

remember items that were relevant during the encoding context

(Aly and Turk-Browne, 2017). We retain aspects of stimuli that

are useful for adaptive behavior. Although our memories of the

details in the appearance of a penny are shockingly poor (Nick-

erson and Adams, 1979), we readily remember the attributes that

distinguish a penny from other coins. Similarly, our well-estab-

lished difficulty with individuating and remembering faces from

other cultures and races may, in part, reflect our focus on

discriminant features that are informative within our given cul-

tural context (Rhodes et al., 1989).

Functional States for Memory-Guided Attention
When considering the prospective nature of memory, studies

have typically focused on the task dependency of the repre-

sentational content (as reviewed above). This information-

based perspective provides an important starting point. At

minimum, the content of memory provides the basic informa-

tion needed for adaptive guidance of preparatory attention.

However, we need to delve deeper to understand how mem-

ories proactively exert their influence in adaptive behavior.

Focusing specifically on WM, we consider how mnemonic

states functionally contribute to memory-dependent process-

ing of subsequent input.

Computation-Specific Codes

From a functional perspective, we can distinguish the task rele-

vance of specific types of information from their intended use

(Figure 4). For example, tasks may differ in terms of which stimuli

are relevant (e.g., squares versus circles in a match-to-sample

paradigm), but tasks can also differ in how memories will be

used. The same memory item (e.g., red square) could be

required for comparing it with a previous item (e.g., color

match-to-sample) or for reproducing its exact hue (e.g., contin-

uous report). Under these circumstances, the same information

is maintained but for different computational purposes.

Theoretical simulations suggest that WMmay be coded differ-

ently depending on expected future use. Orhan and Ma (2019)

found that a recurrent neural network trained to perform WM

exploited a range of different possible coding schemes depend-

ing on the precise nature of the memory task. Essentially, the

same information content of a visual stimulus (e.g., orientation)

was stored differently depending on how it would be interro-

gated at the end of the delay.

The extant empirical data are also consistent with the theoret-

ical proposal that the format of WM depends on expected use.

For example, Warden and Miller (2010) showed that delay-

related activity in the PFC differs when the monkey remembers

the same stimuli (natural objects) for different types of recall

(match judgement versus serial order). Muhle-Karbe et al.

(2017) reported similar evidence in humans. Using fMRI, they

found that the patterns of neural activity coding for visual stimuli

during a memory delay critically depended on how memories

were to be used at the end of the trial (implement versus recall).

If computational specificity is functionally relevant to future

processing and also inherent to WM, then we might predict

that the content of WM always guides attention. The evidence

for this hypothesis is mixed. In a series of behavioral and
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Figure 4. Preparing for Specific Items or
Specific Tasks
(A) Typically, the prospective nature of WM is
studied by varying the type of information that will
be probed at the end of the trial. For example, if
participants are cued that circles are task-relevant,
then they preferentially encode and maintain in-
formation corresponding to those items.
(B) However, WM tasks can also differ in how the
items will be used (e.g., match-to-sample versus
reproduction task). From a functional perspective,
the neural format can also be adaptive for the type
of expected future task.
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neuroimaging studies, Soto et al. (2008) found that holding an

item in WM automatically biased attention to matching items

in an unrelated secondary search task. This effect persisted

even when the task strongly encouraged participants to

mentally separate the WM item from the search task (Soto

and Humphreys, 2007). This obligatory link suggests that

simply holding something in WM is sufficient for guiding atten-

tion. However, it turns out that the story is a bit more compli-

cated. When there is more than one item in the WM set, it is

easier to decouple from attentional selection (Downing and

Dodds, 2004).

To reconcile the apparent contradiction, Olivers et al. (2011)

proposed that one item in WM is in a prioritized state and serves

as an attentional template. We term this the ‘‘active’’ item. If only

one item is inmemory, then it is automatically also the active item

guiding visual search. If, however, there are multiple items in

WM, then only one item is functionally active, and others act as

functionally ‘‘latent’’ items. In the absence of any particular differ-

ence in relevance among items, priority could be assigned to any

one of them. On average, this dilutes the effect of automatic

attentional capture because the critical item only coincides

with the active one on some trials. Unless priority is under direct

experimental control, it is difficult to disentangle variability in pri-

ority state across trials from a diluted effect shared across items.

Active and latent memories can be studied more directly by

experimentally manipulating the relative priority of items in WM

using retro-cues (Griffin and Nobre, 2003). Behavioral and neural

evidence confirmed that participants can flexibly toggle priority

between different items inWM, resulting in performance benefits

for the currently relevant item. Interestingly, latent items are not

forgotten, just temporarily de-prioritized while the active item

guides current behavior (Lepsien and Nobre, 2007; Myers

et al., 2018; van Ede et al., 2018).
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It is tempting to think of retro-cueing

simply as an internal spotlight boosting

the representational content of cued rela-

tive to uncued (and potentially distracting)

memoranda. However, we argue that

retro-cues may also transform the format

of a memorandum, preparing it for future

use, such as by placing it in a prioritized

state and linking its informational content

to future action (Myers et al., 2017). More-

over, a change in priority status need not

result in a cost to other information in WM
(Myers et al., 2017). When one item is initially prioritized, the per-

formance cost to uncued items can be overcome when there is

time or opportunity to reset priorities (Myers et al., 2018; Rerko

and Oberauer, 2013; van Ede et al., 2017). Thus, in contrast to

the typical consequence of attention (in perception), trade-offs

in information quality are not necessary when prioritizing items

inWM (Myers et al., 2017). Instead, deficits arise mainly because

item-related traces in WM are not currently optimized for

readout.

Human neurophysiology also supports the general view that

prioritizing an item in WM involves a discrete state transition

(Wallis et al., 2015) rather than sustained internal attention. Using

magnetoencephalography (MEG), we observed that shifting

priority inWM leads to a transient lateralization of posterior alpha

power (Wallis et al., 2015; Figure 3B), indexing a punctate pro-

cess of spatial selection. This contrasts with a sustained pattern

of alpha lateralization, as observed during anticipatory attention

in perception (Wallis et al., 2015; see also Worden et al., 2000).

We interpret this transient response as a discrete process

of setting up the most relevant item to guide future target

processing.

Recent brain imaging studies also identified different neural

correlates of WM depending on current priority status. There is

a quantitative difference in decodability between active and

latent items. Across multiple experiments, Lewis-Peacock

et al. (2012) have shown that active items more readily decoded

frompatterns of visual activity. Indeed, latent items often have no

detectable neural trace even though they remain in WM and are

available for future use when they are re-prioritized (Sprague

et al., 2016).

These decoding studies show that latent working memories

can be nearly impossible to detect in delay period activity.

Nevertheless, complementary recent evidence shows that latent
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memories may bemeasured using approaches that are sensitive

to changes in neural states that might not be reflected in tonic

activity. The impulse response approach (Wolff et al., 2015) bor-

rows from the logic of active sonar, in which a well-characterized

impulse (‘‘ping’’) is emitted toward a hidden landscape, and the

contours are inferred from distortions in the reflected signal. In

the case of ‘‘neural sonar,’’ a neutral visual stimulus acts as a

sensory ping impulse and interacts with the brain state, resulting

in a state-dependent impulse response. Changes in the neural

landscape can be inferred from distortions in this output

response. Importantly, this approach is theoretically sensitive

to any change in the functional state of the targeted system. In

addition to themanifest delay activity relating to firing in neuronal

assemblies, which has been the focus of most WM studies to

date, it can also reveal activity-silent neural states, such as tem-

porary changes in synaptic weights within neuronal assemblies

(Stokes, 2015).

Using this approach, it has been possible to observe robust

memory signals in the impulse response despite dramatic differ-

ences in activity-based decoding between active and latent

items (Rose et al., 2016; Wolff et al., 2017). This suggests that

even functionally latent states have a robust neural signature in

silent neural states. Therefore, latent WM is not necessarily just

a weaker version of active WM, but, rather, it can be maintained

in a qualitatively different neural state. Such a scheme makes

sense when one considers that latent memories carry informa-

tion that may become important down the line and can therefore

be just as important to maintain as currently active memories.

The important difference is that latent memories should be

kept functionally dormant while the active memory is guiding

behavior to avoid cross-item interference. Some recent fMRI

studies provide initial support for this idea. For example, recent

fMRI studies identified different brain areas (Christophel et al.,

2017) and different coding schemes within the visual cortex

(van Loon et al., 2018) associated with active and latent working

memories.

How WM States Influence Attention

The classic biased-competition model of attention proposed that

perceptual templates in WM bias visual processing to prioritize

task-relevant items (Desimone and Duncan, 1995). This idea is

grounded in the notion that WM is maintained via persistent acti-

vation of sensory-specific neural codes (e.g., Chelazzi et al.,

1993), resulting in an elevated baseline for subsequent process-

ing of related input. For example, persistent delay activity associ-

ated with remembering the letter X essentially pre-activates the

neural code for X, providing a head start for the sensory process-

ing of X (or X-related) stimuli (Desimone and Duncan, 1995).

Indeed, there is extensive evidence for such persistent activity

associated with WM and preparatory attention. During WM de-

lays, persistent activity occurs across many brain areas (Christo-

phel et al., 2017), from the visual cortex (Pasternak andGreenlee,

2005) right up to the PFC (Curtis and D’Esposito, 2003). The

earliest evidence for WM-related persistent activity was

observed in the monkey PFC (e.g., Fuster and Alexander,

1971). WM delay activity is selective for the content of memory;

specific cells are more active when their preferred (relative to

non-preferred) stimulus is held in mind (e.g., Funahashi et al.,

1989; Miller et al., 1996). At the population level, item selectivity
gives rise to a population code that can be ‘‘decoded’’ by down-

stream regions. Similar evidence for item-decodable engrams

have also been reported in the parietal cortex (Chafee and Gold-

man-Rakic, 1998) and in visual areas such as the inferior tempo-

ral cortex (Fuster and Jervey, 1981). Correspondingly, brain

imaging studies using multivoxel pattern analysis have found

stimulus-specific delay activity throughout the human visual sys-

tem (e.g., Serences et al., 2009) and higher-order brain areas

(Ester et al., 2015). This suggests that WM could be a sys-

tems-level phenomenon (Christophel et al., 2017), with different

areas contributing to distinct but complementary functions (e.g.,

Dotson et al., 2018).

A very similar profile of activity is observed for preparatory

attention. In preparation for visual search guided by a specific

object or location in WM, activity in visual areas representing

the relevant object (Chelazzi et al., 1993) or location (Luck

et al., 1997) is elevated in anticipation of the search array. Human

fMRI studies have also reported elevated levels of activity for the

spatial location (Kastner et al., 1999) or identity (Stokes et al.,

2009) of relevant, anticipated objects based on WM templates.

Such findings have supported the influential idea that persistent

activity associated with maintenance in WM provides the major

neurophysiological mechanism for top-down attentional modu-

lation by effectively biasing subsequent activation of matching

sensory input (Desimone and Duncan, 1995). According to a

simple baseline shift model, persistent activity for WM becomes

preparatory activity for attention, giving relevant information an

advantageous head start in competitive sensory processing.

Despite the general appeal of elevated baseline activity linking

WM and attention, the specific neurophysiological evidence is

not straightforward. Although classic evidence for item-specific

delay activity highlighted pre-activation of target items, the

actual correspondence between selectivity during the delay

and sensory-related responses is more complex (Hayden and

Gallant, 2009). A neuron’s stimulus preference during the delay

often differs from preferences during stimulus processing in

the visual cortex (e.g., Mirabella et al., 2007) as well as the

PFC (Stokes et al., 2013; Spaak et al., 2017; Wasmuht et al.,

2018). The evidence is also mixed for another core prediction:

pre-stimulus activity should directly translate to a corresponding

boost in the sensory signal. Although a number of studies found

that trial-wise variance in item-specific delay activity correlates

with behavioral performance (e.g., Giesbrecht et al., 2006), there

is minimal evidence that this is achieved through a correspond-

ing boost to target processing (e.g., Fannon et al., 2008). For

example, in classic studies demonstrating anticipatory sus-

tained delay activity (e.g., Chelazzi et al., 1993), the initial

neuronal response to the target array is equivalent regardless

of whether the target to be selected is effective or ineffective at

driving the cell. Only later does neuronal firing settle into a strong

or weak response depending onwhether the target was effective

or ineffective, respectively.

A different but related idea is thatWMestablishes amatch filter

in sensory areas that effectively computes the perceptual simi-

larity between incoming sensory signals and an internal template

(Hayden and Gallant, 2009; Sugase-Miyamoto et al., 2008;

Myers et al., 2015; Figure 5). Theoretically, amatch filter template

does not depend on pre-activation of target templates but,
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Figure 5. Setting the Initial Condition inWM for AttentionModulation
through a Match Filter Model
WM establishes a match filter in sensory areas that computes the perceptual
similarity between incoming sensory signals and an internal template. A match
filter template need not involve pre-activation of the target stimulus. Moreover,
the match enhancement effect could serve a general salience cue for
capturing attention.
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rather, can be instantiated by more complex activity dynamics

(e.g., Machens et al., 2005) or by short-term synaptic plasticity

(Sugase-Miyamoto et al., 2008; Myers et al., 2015). This idea

can be tested by examining the response to memory-matching

stimuli rather than delay activity. For example, in a classic study,

Motter (1994) found an enhanced response for stimuli that

matched the cued color in V4. Hayden and Gallant (2009)

observed a similar enhancement for matching stimuli, which

they interpreted as evidence for a match filter mechanism. Su-

gase-Miyamoto et al. (2008) further demonstrated that the ampli-

tude of match-related activity in single neurons in high-level

visual areas co-varied with the amplitude of activity during en-

coding rather than during delay activity. This pattern was consis-

tent with predictions from their match filter model instantiated

with synaptic plasticity. Using MEG in human participants, we

showed that perceptual decision-making based on templates

held in WM is also consistent with a match filter mechanism

(Myers et al., 2015).

Although the match filter model is typically invoked to explain

WM decisions (e.g., Hayden and Gallant, 2009; Myers et al.,

2015), the match-related enhancement signal could also serve

attentional selection, providing a relative boost to target stimuli.

Moreover, the same match-related enhancement would also

naturally benefit the processing of related features, such as

items in the spatial location of the match object. Match-related

attentional enhancement is consistent with previous evidence

presented above for automatic memory-based capture (e.g.,

Soto et al., 2008).

Setting the Initial Conditions for Memory-Guided

Attention

In general terms, WM can be thought of as setting the initial con-

ditions for state-dependent processing (Stokes et al., 2013). The

initial condition at the time of target processing is determined by

previous input. Differences in stimulus history cause differences

in the initial condition, which, in turn, alter the response dynamics

of the system during target processing (Remington et al., 2018).

These state-dependent dynamics can perform a number of

memory-related operations (Buonomano and Maass, 2009),

such as reproduce a previous item (Mongillo et al., 2008) and
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its temporal delay (Wolff et al., 2019), bias the incoming signal

for a match-filter response (Sugase-Miyamoto et al., 2008),

adaptively distort processing based on off-channel tuning for

optimal discrimination performance (Navalpakkam and Itti

2007), and instantiate a temporary decision rule for flexible deci-

sion-making (Mante et al., 2013). Importantly, the previous input

that defines the initial conditions includes recent stimulation his-

tory (e.g., specific items in WM) but also stretches back across

timescales (e.g., task instructions and learning form intermediate

and LTM).

Mnemonic states could be expressed via elevated patterns of

neuronal activity and/or altered patterns of synaptic weights over

short and long timescales. In terms of WM specifically, under-

standing the relative contributions of neural states defined by

activity patterns versus activity-silent traces remains an impor-

tant area for investigation (Constantinidis et al., 2018; Lundqvist

et al., 2018). Various accounts propose mappings between

different functional and neural states in WM; functionally active

WM is expressed as decodable activity, whereas functionally

latent states are silent (e.g., Rose et al., 2016; Sprague et al.,

2016;Wolff et al., 2017). However, at least theoretically, function-

ally active or latent memories could be stored in either activity-

dependent or silent neural states. We should not conflate the

two notions of active.

In summary, a functional perspective re-castsWMas a flexible

shift in how the brain prepares to process future information

rather than just maintaining a representation of past information.

Considered this way, it is the functionality of the neural state that

is most important and not merely the decodability of memory

content. Decodability is only a minimal requirement for a mem-

ory. To understand how memories are stored for future use

(recall, attention, or anything else), it is necessary to understand

howmnemonic states interact with subsequent input to produce

appropriate output. Recent methodological developments pro-

vide an expanding toolbox for exploring the functional properties

ofmnemonic states. For example, impulse perturbations provide

a powerful tool for probing the functional state during memory

delays (Wolff et al., 2017). Analysis tools for characterizing

context-dependent neural dynamics (Remington et al., 2018)

will also shed further light on the critical interaction between

WM and subsequent processing.

LTM Biases

In principle, many of the mechanisms we have considered in the

context of how working memories guide future processing may

also apply to LTM. It will be important for future studies to deter-

mine the extent to which activity-silent LTM representations

modulate information processing directly, depending on the

overlap between present and past settings and goals. It will be

informative to understand under what conditions long-term

traces are prioritized and energized to guide adaptive behavior.

In the latter context, it will also be interesting to learn whether or

when activated LTM traces necessarily operate through func-

tionally active WM states to guide attention (e.g., Atkinson and

Shiffrin, 2016).

Conclusion
We have considered memory through a different temporal lens.

Rather than focusing on how memories echo the past, we
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have considered how we use past experience to anticipate rele-

vant events to unfold. In addition to providing evidence that

traces across several timescales premember events proactively

and dynamically, we argue that this basic ecological function of

memory shapes the content and the format of what is stored,

maintained, and accessed. Significant work lies ahead to under-

stand how mnemonic neural substrates facilitate the processing

of incoming information to guide adaptive behavior. Looking at

memory from this perspective opens many interesting doors

for future exploration, such as the types of memory-based

modulatory mechanisms, the existence of a common or multiple

memory-based priority maps to guide attention, and how mem-

ories can be selective and context dependent and yet be used to

generalize to novel situations.
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Chelazzi, L., E�sto�cinová, J., Calletti, R., Lo Gerfo, E., Sani, I., Della Libera, C.,
and Santandrea, E. (2014). Altering spatial priority maps via reward-based
learning. J. Neurosci. 34, 8594–8604.

Chiu, Y.C., and Egner, T. (2019). Cortical and subcortical contributions to
context-control learning. Neurosci. Biobehav. Rev. 99, 33–41.

Christophel, T.B., Klink, P.C., Spitzer, B., Roelfsema, P.R., and Haynes, J.-D.
(2017). The Distributed Nature of Working Memory. Trends Cogn. Sci. 21,
111–124.

Chun, M.M. (2000). Contextual cueing of visual attention. Trends Cogn. Sci. 4,
170–178.

Chun, M.M., and Jiang, Y. (1998). Contextual cueing: implicit learning and
memory of visual context guides spatial attention. Cognit. Psychol. 36, 28–71.

Chun, M.M., and Phelps, E.A. (1999). Memory deficits for implicit contextual
information in amnesic subjects with hippocampal damage. Nat. Neurosci.
2, 844–847.

Constantinidis, C., Funahashi, S., Lee, D., Murray, J.D., Qi, X.L., Wang, M., and
Arnsten, A.F.T. (2018). Persistent spiking activity underlies working memory.
J. Neurosci. 38, 7020–7028.

Cravo, A.M., Rohenkohl, G., Wyart, V., and Nobre, A.C. (2011). Endogenous
modulation of low frequency oscillations by temporal expectations.
J. Neurophysiol. 106, 2964–2972.

Cravo, A.M., Rohenkohl, G., Wyart, V., and Nobre, A.C. (2013). Temporal
expectation enhances contrast sensitivity by phase entrainment of low-fre-
quency oscillations in visual cortex. J. Neurosci. 33, 4002–4010.

Cravo, A.M., Rohenkohl, G., Santos, K.M., and Nobre, A.C. (2017). Temporal
Anticipation Based on Memory. J. Cogn. Neurosci. 29, 2081–2089.

Curtis, C.E., and D’Esposito, M. (2003). Persistent activity in the prefrontal cor-
tex during working memory. Trends Cogn. Sci. 7, 415–423.

Della Libera, C., and Chelazzi, L. (2006). Visual selective attention and the
effects of monetary rewards. Psychol. Sci. 17, 222–227.

Desimone, R., and Duncan, J. (1995). Neural mechanisms of selective visual
attention. Annu. Rev. Neurosci. 18, 193–222.

Doallo, S., Patai, E.Z., and Nobre, A.C. (2013). Reward associations magnify
memory-based biases on perception. J. Cogn. Neurosci. 25, 245–257.

Dotson, N.M., Hoffman, S.J., Goodell, B., and Gray, C.M. (2018). Feature-
Based Visual Short-Term Memory Is Widely Distributed and Hierarchically
Organized. Neuron 99, 215–226.e4.

Downing, P.E., andDodds, C.M. (2004). Competition in visual workingmemory
for control of search. Vis. Cogn. 11, 689–703.
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