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Abstract
Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant
breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple
founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For
example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population
structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic
and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means
of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene
annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population,
expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop
multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm ‘package’ that multi-parent
populations should feature to optimise their use as powerful community resources for crop research, development and breeding.

Over recent years, numerous multi-parent populations (MPPs)
have been successfully developed in crops (Huang et al. 2015;
Cockram and Mackay 2018). MPPs bring together key
genomic, phenotypic and germplasm resources to form a
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platform for research and development. In this review, we
examine three themes covering new developments in crop
MPP research: (1) we survey the rapidly expanding variety of
crop MPPs, explaining how differences in their design and
construction affect their power and precision in mapping
quantitative trait loci (QTL), on which we provide a brief
primer. (2) We review the use of genomic technologies in
MPPs, which have proven particularly suitable for gathering
dense genomic information across large populations. We
make general recommendations for collecting genotypic
resources in MPPs. (3) We discuss successful applications of
MPPs, particularly where they have been used for breeding
and pre-breeding. This includes the identification of QTL, the
application of genomic prediction to MPPs, and the direct use
of MPP lines as germplasm for varietal release or pre-
breeding. These recent developments have shown the poten-
tial of MPPs for crop improvement.

Multi-parent populations (MPPs)

Bi-parental populations, derived from crosses between two
inbred lines, have been the standard design for genetic
mapping in crops. There are three key advantages to bi-
parental populations: (1) the relative simplicity of their
construction. Just two generations are needed for F2 (selfed/
inter-crossed F1 hybrids) populations, and only about six
further generations of inbreeding in self-fertilising species
are needed to make recombinant inbred lines (RILs) whose
genomes are fixed. (2) Their high power to detect QTL
because all allele frequencies are typically close to the
optimal value of 50%. (3) The low rate of linkage dis-
equilibrium decay within chromosomes. There are normally
only one or two recombinants per chromosome arm
(inbreeding a RIL only adds about one observable recom-
binant per arm) meaning only a few hundred genotyped
markers are needed to map QTL.

However, bi-parental populations have two principal dis-
advantages: the lack of mapping precision, which stems from
limited effective recombination occurring during population
development, and low genetic diversity, which is due to the
genetic bottleneck caused by the choice of two founders. This
may limit the number of QTL captured as no more than two
alleles segregate at any locus. Consequently, around a decade
ago, a second generation of experimental mapping popula-
tions, initially utilising additional crossing generations in a bi-
parental but eventually inter-crossing multiple parents
(MPPs), was developed to address these issues.

The limited genetic recombination in bi-parental popu-
lations was first addressed via the advanced inter-cross
(AIC) design. These capture additional recombination via
crossing the F2 generation for further generations prior to
genetic mapping, effectively increasing the mapping

precision (Dudley 1993; Darvasi and Soller 1995). Despite
its potential benefits, AIC has seldom been used in crops.
So far, examples of AIC exist in two plant species, thale
cress (Arabidopsis thaliana, Gerald et al. 2014) and maize
(Zea mays, Lee et al. 2002; Balint-Kurti et al. 2010), dis-
cussed further by Cockram and Mackay (2018). A possible
reason for the lack of uptake, acknowledged by Darvasi and
Soller (1995), is that simply increasing population size in
bi-parental populations also increases mapping precision.
Although large bi-parental populations also require
increased phenotyping and genotyping, there is no
requirement for additional crossing to create the population,
which is particularly important for selfing species where
manual crossing is onerous.

Currently, the two most popular MPP designs in plants
are nested association mapping (NAM) and multi-parent
advanced generation inter-cross (MAGIC) populations.
NAM population construction involves a series of crosses
between a recurrent founder line and a number of alternative
founders (Fig. 1). NAMs can be thought of as sets of bi-
parental populations all linked by a common parent. They
are therefore conceptually familiar for those used to work-
ing with bi-parental populations. While NAM captures
additional genetic diversity, increased genetic recombina-
tion is essentially only captured via increasing the numbers
of lines screened—as is the case in bi-parental populations.
In contrast, the MAGIC design is more complex. MAGIC is
an extension of AIC in some respects, except several
founders are inter-crossed over multiple generations before
selfing to generate inbred lines. MAGIC populations typi-
cally descend from 4, 8 or 16 parents, consistent with a
simple funnel breeding design (Fig. 1; Huang et al. 2015).
This is however not essential, for example, the first MAGIC
population in plants used 19 A. thaliana parents (Kover
et al. 2009). Each MAGIC line usually inherits alleles from
all parents, and MAGIC chromosomes are random mosaics
of the founder haplotypes. By capturing increased genetic
recombination and genetic variation, MAGIC populations
are designed to address both of the principal limitations of
bi-parental populations for QTL mapping.

The beneficial properties of MPPs, namely high mapping
power and resolution, expanded diversity compared with bi-
parental populations, and their minimal population structure
has increased their uptake in crop research. This increasing
popularity of crop MPPs means that many now represent
mature research and development tools. Most of the world’s
major crops have spawned several MPPs (Table 1) and new
MPPs for other crops are imminent (e.g., pigeonpea,
Cajanus cajan and chickpea, Cicer arietinum, MAGIC
populations with whole-genome sequence data, Pandey
et al. 2016; Roorkiwal et al. 2020) or under development
(e.g., sunflower, Helianthus annuus, Matias Dominguez,
personal communication and Triticum uratu, MDA,
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personal communication). Where multiple MAGIC and/or
NAM populations for the same crop are available, these are
usually descended from different founders (Table 1).
Availability of multiple MPPs offer the chance to replicate
QTL across MPPs and to combine MPPs to improve power
(Li et al. 2015).

While this review focuses on NAM and MAGIC popu-
lations, many conceivable crossing designs can recombine
multiple founders. Whatever the design, MPPs are gen-
erally: (a) derived from an explicit set of founders, pre-
ferably highly inbred lines or varieties that reproduce
faithfully, (b) produced through experimental crosses that
minimise selection and (c) composed of a large number of
recombined individuals that are analysed together as a
population. Philosophically, MPPs are established for long-
term durability rather than short-term expediency. Bi-
parental crosses are very efficient for mapping genetic
variants that are known or suspected to vary between par-
ents. MPPs are typically made with greater agnosticism
about target traits and/or causal variants. Figure 2 demon-
strates that large MPPs give a relatively good chance of
detecting QTL that segregate in the population from which
the founders were chosen. Thus, once constructed, MPPs
provide enduring platforms on which it may be worth
mapping non-target traits and/or investigating the genetic
architecture of complex traits and the relationships between
traits in the source population more generally.

MPP founder selection

Founder selection is a key issue in MPP design because it
determines the pool of genetic variation that segregates in

the population. In Fig. 2, we assume that the founders are
chosen randomly from a source population. However, many
MPPs specifically aim to maximise the genetic diversity
captured by the founders, which can be aided by genetic
algorithms for founder selection (Ladejobi et al. 2016). In
addition, different MPPs may target different source popu-
lations of interest, which is typically the case when multiple
MPPs exist for the same crop. For example, some MPPs
target diversity among elite lines from a particular region
(Bandillo et al. 2013; Mackay et al. 2014; Sannemann et al.
2018; Kidane et al. 2019), while other MPPs include
landraces and wild accessions (Kover et al. 2009; Maurer
et al. 2015). In other cases, founders are selected with
particular traits in mind, e.g., MAGIC rice populations
focussed on heat and biotic stress resistance (Leung et al.
2015). Table 1 includes brief details of founder selection
strategies implemented across various MPPs to date.

Diverse, trait-specific and region-specific MPPs are
useful in different scenarios. In general, those MPPs
developed to maximise segregating genetic variation are
rich in novel allelic combinations from the diverse founders.
This makes them a permanent resource to analyse the
genetic basis of complex traits in different environments.
However, diverse MPPs are potentially less useful for the
direct use of their germplasm in pre-breeding because
undesirable alleles may segregate in the progeny (Huang
et al. 2015). In contrast, MPPs based on a more con-
servative founder selection strategy optimised around par-
ticular varieties, traits or environments might be more
quickly translated into superior breeding lines and are of
greater immediate value to breeders. An intermediate MPP
design may employ a mix of improved and adapted

Fig. 1 Common multi-parent population (MPP) designs. The nes-
ted association mapping (NAM) design consists of a series of bi-
parental crosses against a common founder, from which recombinant
inbred lines (RILs) are typically generated through selfing and single-
seed descent (represented by dashed arrows). Hundreds of RILs can be

derived from each bi-parental cross. Only four crosses are shown here
but this design is readily extendable to include more founders. In the
multi-parent advanced generation inter-cross (MAGIC) design, a series
of equally balanced crosses are made between founders before RILs
are developed.
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breeding lines together with diverse varieties or varieties for
high yield, disease resistance and tolerance to abiotic
stresses. When an MPP produces lines that combine several
desirable traits, they can be used directly in breeding pro-
grammes (Descalsota et al. 2018; Zaw et al. 2019).

In the case of NAM populations, the use of a single
recurrent founder that will be represented in 50% of the
genomes of the resulting RILs requires particular attention.
The recurrent founder may be chosen to be a standard
reference variety. For example, a variety with a sequenced
genome was chosen in maize (McMullen et al. 2009). If the
population is designed to be used for pre-breeding material,
it is key that the recurrent founder has good agronomic
performance. For example, the Ethiopian durum wheat
NAM was designed to mix diverse Ethiopian landraces with
an elite international variety (Kidane et al. 2019). To reduce
the representation of potentially maladaptive exotic genetic
material in the population, backcrossing to an elite recurrent
founder is also sometimes performed prior to RIL devel-
opment (Jordan et al. 2011; Nice et al. 2016; Chen et al.
2019).

Crossing design

Though sharing the same overall objective of increasing
genetic diversity, NAM and MAGIC populations differ in
the genetic features of their constituent RILs. Each MAGIC
chromosome is a random mosaic of all the founder gen-
omes, while a NAM chromosome is a mosaic of just the two
parents in its family.

The interconnected design of NAM populations allows
new families to be added incrementally. Some NAM
populations capture genetic diversity from up to 90 foun-
ders and may include thousands of individual RILs
(McMullen et al. 2009; Maurer et al. 2015; Bouchet et al.
2017; Kidane et al. 2019). However, although the overall
diversity can be large, the recurrent founder in NAM limits
the haplotypic diversity within any family of RILs (Lade-
jobi et al. 2016). Furthermore, the benefits of increasing
genetic diversity by adding founders may need to be
balanced against the number of RILs developed from each
cross (Gage et al. 2020; Garin et al. 2020). We also note that
tailored mapping methods may be required to account for
differing recombination frequencies among the NAM’s
constituent bi-parental families (Li et al. 2011).

MAGIC designs require several intermating generations,
proportional to the logarithm of the number of founders
(Huang et al. 2015). In addition, the founders can be
brought together in many different ways, where a particular
order of crossing is referred to as a ‘funnel’. For example, in
a population with four founders—A, B, C and D—a line
derived from [(A × B) × (C ×D)] has come through a dif-
ferent funnel to one derived from [(A ×C) × (B ×D)]. TheTa
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number of possible funnels is often large: a population with
8 founders has 315 possible funnels if reciprocal crosses are
ignored (Mackay et al. 2014). When using fully inbred
founders, the genotypes of the initial two-way cross com-
binations are fixed, but the subsequent four-way crosses are
heterozygous with unknown genetic makeup, and alleles
can be lost to sampling. Thus, replicates of each crossing
combination should ideally be made for all subsequent
intermating generations to capture independent recombina-
tion events. However, the large number of crosses required
in order to make and replicate all funnels may be a con-
siderable challenge to population construction.

Different approaches have been employed to minimise
the crossing effort required to construct MAGIC popula-
tions. Most MAGIC populations use a much reduced subset
of all possible funnels (see Table 1) and derive multiple
RILs from each funnel. Stadlmeier et al. (2018) found that a
small number of funnels with an extra generation of inter-
crossing could capture recombination as effectively as a
more comprehensive MAGIC design with all possible four-
way crosses. Other designs reduce the crossing effort by
using a subset of founders in each funnel (Huang et al.
2011; Li et al. 2014) or exploiting several generations of
random mating (Scarcelli et al. 2007; Sallam and Martsch
2015; Islam et al. 2016; Wada et al. 2017). In sorghum and
bread wheat, outcrossing for random mating has been
enforced using male-sterile lines (Thépot et al. 2014;
Ongom and Ejeta 2018). Of potential relevance to crop
MPPs, in fruit flies (Drosophila melanogaster), inter-
connected MAGIC populations have been developed that
expand diversity while maintaining the closed MAGIC
mating design (King et al. 2012). This approach could be

adopted in crop MAGIC populations that share founders
(e.g., Huang et al. 2012; Shah et al. 2019) to combine
desirable features from both NAM and MAGIC crossing
designs.

A final comment on population structure in MPPs is
required. RILs derived from the same MAGIC funnel or
NAM family are more closely related than those from dif-
ferent MAGIC funnels or NAM families. This imposes a
degree of population structure which could artificially
inflate the significance of QTL if not controlled. For-
tunately, there are now a suite of methods that largely
eliminate the effects of unequal relatedness using linear
mixed models (Bradbury et al. 2007; Kang et al. 2008;
Zheng et al. 2015; Broman et al. 2019). These model the
phenotypic covariance between individuals in terms of their
genetic covariance, which is usually computed using cor-
relations between marker dosages (Yang et al. 2011). In any
event, population structure in experimental MPPs is gen-
erally much less pronounced than it is in populations
derived from pre-existing germplasm.

Power and precision in QTL mapping: a quick primer

We next summarise the key characteristics of MPP popu-
lation designs, using theoretical results on power and
recombination. There is a well-established general theory to
calculate the power to detect a QTL segregating in any
population (Lynch and Walsh 1998). Power is a function of
the sample size N and the fraction f ¼ σ2QTL=σ

2of the total
phenotypic variance σ2 explained by the QTL, σ2QTL. Spe-
cifically, the power is the probability that a chi-squared
distribution with one degree of freedom and non-centrality

Fig. 2 Probability of detection of a QTL within different experi-
mental designs. The founders are assumed to be randomly selected
from a source population in which a bi-allelic causal variant segregates
at a particular minor allele frequency (MAF). Detection probability
reflects both the number of founders that vary at the causal locus

(calculated using binomial sampling) and the corresponding mapping
power within the experimental population, which was calculated using
a significance threshold of 10−4 and assuming that 5% of the pheno-
typic variation in a bi-parental population would be explained by the
QTL: β2QTL ¼ 0:2, σ2 ¼ σ2QTL þ 0:95 see Eq. (1).
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parameter Nf exceeds q0, where q0 is the quantile corre-
sponding to the genome-wide threshold p value for the test
of the null hypothesis of no association at a locus (i.e., when
the non-centrality parameter is equal to zero). Thus, power
only depends on Nf: if the fraction of variance explained by
a QTL, f, is halved but the sample size doubled then the
power is unchanged. For inbred lines, the variance
explained by a bi-allelic QTL with minor allele frequency π

is

σ2QTL ¼ πð1� πÞβ2QTL; ð1Þ

where ±βQTL is the deviation from the mean phenotypic
effect attributed to carrying either QTL allele. This formula
is for inbred lines: it should be multiplied by 2 for F2
crosses. Questions of dominance do not arise in RILs
because all loci should be homozygous. The formula neatly
separates the underlying biological effect of an allele, βQTL,
from the effect of allele frequency, π. Assuming that an
allele has the same biological effect, βQTL, across genetic
backgrounds, power is maximised when the allele fre-
quency is half, as occurs for QTL that segregate in bi-
parental populations. Reducing the minor allele frequency
from 1/2 to 1/8, as occurs for alleles that are private to one
founder in eight-parent MAGIC populations, will reduce
power by 7/16= 44%, so that sample size should be
increased 2.3-fold to maintain power.

There is no equivalent general theory that gives a con-
fidence interval for a QTL as a function of the sample size,
QTL effect size, genetic map, etc. The most relevant result
for MPPs is from Broman (2005), who derived formulae for
the map expansion of MPPs assuming that 2n founders are
crossed together during the creation of each RIL (n= 1 for
bi-parental and NAM populations). The probability QnðrÞ
that two neighbouring marker loci with recombination
fraction r descend from the same founder in each RIL is

QnðrÞ ¼ 1� ð1� rÞn�1

ð1þ 2rÞ : ð2Þ

If the markers are very close together so r is small, then
QnðrÞ � nþ 1ð Þr. Thus, doubling the number of founders
increases the probability of a recombinant by a linear
amount. We expect, other things being equal, that a con-
fidence interval for a 2n-parent MAGIC resembles that in a
two-parent population except that it is scaled by
Q1ðrÞ=QnðrÞ � 2=ðnþ 1Þ, which is 50% and 40% of the
width of the 2-parent RIL, for 8- and 16-parent MAGIC
populations, respectively. However, in practice other factors
including allele frequencies and the sample size will
change, and the confidence interval for a given QTL
depends strongly on the local genetic map. Many QTL
studies determine confidence intervals empirically using a

LOD-drop approach, where the QTL extent includes all
nearby markers that have p values of association that are
within a set range compared with the strongest association.
This has been shown to give reliable estimates of con-
fidence intervals provided it is calibrated appropriately for
each experimental population (Manichaikul et al. 2006).
Empirical results also suggest that QTL effect size has an
important influence on the interval size, with strong QTL
better localised than weak QTL; thus, high power generally
also implies shorter confidence intervals. A high density of
recombinants around a weak QTL might not improve
mapping resolution very much.

Both mapping power and resolution are expected to be
roughly proportional to sample size. The mean total number
of breakpoints between the markers with recombination
fraction r in N individuals will be appoximately N nþ 1ð Þr,
so increasing the sample size to preserve power also
increases the amount of recombination and therefore the
mapping resolution. In NAMs, we note that only those
families in which the QTL segregates are relevant for
mapping resolution, so the effective value of N for recom-
bination will be lower. However, NAMs are frequently
larger than MAGIC populations, which preserves both
mapping power and resolution in practice, at the expense of
phenotyping and one-time genotyping effort (Dell’Acqua
et al. 2015; Anderson et al. 2018).

Application of genomics to MPPs

Next generation sequencing (NGS) platforms have revolu-
tionised genetics by providing a genotyping technology
which can in theory assay every base of an organism’s
genome (Auton et al. 2015). As DNA sequencing
throughput has increased, costs have dropped by several
orders of magnitude (Mardis 2017). NGS-based genotyping
has become a highly cost-effective and efficient agri-
genomics tool in both model and non-model crop species
including those with large and complex genomes (Cao et al.
2011; Cheng et al. 2019; Haberer et al. 2019; Lachagari
et al. 2019). As NGS assembly algorithms and data types
have improved, whole-genome sequencing (WGS) has been
widely used for de novo assembly (Schatz et al. 2014;
Zapata et al. 2016; Clavijo et al. 2017; IWGSC 2018;
Haberer et al. 2019), as well as for re-sequencing, tran-
scriptome sequencing (RNAseq) and epigenetic sequencing.
When combined, these approaches allow experimental
annotation of genes, their transcriptional variants and their
transcriptional control (ENCODE Consortium 2012).

There are two main applications of NGS to MPPs. First,
de novo assembly of reference genomes for each of the
founders, where the development of improved DNA
sequencing, algorithms and new data types now allow the
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construction of chromosome-level genome assemblies
(Mascher et al. 2017). This permits the construction of a
multiple sequence alignment of the founders, a general-
isation of the pan-genome concept that focuses more on the
presence/absence of the gene catalogue across the founders
(Golicz et al. 2016; Gao et al. 2019), followed by a com-
prehensive re-annotation of the gene models in each foun-
der. In Gan et al. (2011) it was shown that the gene models
in the 19 founders of an A. thaliana MAGIC population
were so divergent that a simple ‘lift-over’ of the reference
annotation to each assembly caused dramatic and largely
false over-prediction of deleterious mutations (e.g., pre-
mature stops and frame-shifts); RNAseq evidence showed
that the effects of most of these mutations were skipped by
subtle changes in splicing. Moreover, structural rearrange-
ments revealed by de novo assembly may be significant. For
example, gene expression may be perturbed by the change
in regulatory context (Imprialou et al. 2017). These results
demonstrate the promise of ongoing projects to produce
genome assemblies for MPP founders in crop plants (e.g.,
https://nam-genomes.org, https://gtr.ukri.org/projects?ref=
BB%2FP010741%2F1).

Second, NGS offers the ability to genotype new and
existing markers. Common marker technologies such as
single-nucleotide polymorphism (SNP) genotyping arrays
and Kompetitive Allele Specific PCR (KASP) assays only
assess known alleles at specifically designed loci and
therefore tend to miss most rare variants, and even common
alleles absent from the samples used to develop the assays
(Burridge et al. 2018; You et al. 2018). In contrast, NGS
technologies can be used to query either the whole genome
(i.e., WGS) or a smaller, reproducible fraction thereof. This
second strategy is referred to as reduced representation
sequencing (RRS). RRS approaches include: hybridisation
(e.g., exome capture, Parla et al. 2011), restriction-site-
associated DNA sequencing (RAD-seq, Baird et al. 2008),
double-digest RAD-seq (Peterson et al. 2012), genotyping-
by-sequencing (Elshire et al. 2011) and diversity array
technology-seq (Schouten et al. 2012). Whilst RRS
approaches are cheap, it should be noted that sample pre-
paration involves a greater number of steps than WGS and
so introduce a higher degree of bias, which often results in
missing data. In addition, the density of polymorphic mar-
kers will be lower when coding regions are targeted because
they tend to be less variable.

Sparse genotyping can limit both the power and preci-
sion of QTL mapping. Equation (1) assumes that the causal
variant has been genotyped, or that a surrogate marker in
perfect linkage with it has. If this assumption is violated, the
variance explained by the QTL is reduced by ρ2, the squared
Pearson correlation between the genotyped marker and the
causal variant, reducing power accordingly. Furthermore,
Eq. (2) assumes that recombination breakpoints are

observable. Wherever founders are identical, at least at the
genotyped markers, their recombinants are invisible, limit-
ing mapping resolution. For example, in wheat MAGIC
populations, only 50–72% of the predicted recombination
events appear to have been observable, possibly because the
density of markers on genotyping arrays is insufficient to
distinguish between founder haplotypes (Gardner et al.
2016; Stadlmeier et al. 2018). Finally, ascertainment bias in
genotyping array design can make it particularly difficult to
distinguish between haplotypes from diverse founders
(Dell’Acqua et al. 2015).

Dense genomic information, in contrast, can identify
alleles within QTL that are putatively causal. For example,
Imprialou et al. (2017) used WGS to associate signatures of
structural variation with phenotypic variation, finding a
deletion containing three genes within a QTL for germi-
nation time in A. thaliana. Similarly, transcriptomic data
can prioritise candidate genes. For example, Dell’Acqua
et al. (2015) narrowed functional candidate genes in maize
to those that had expression patterns in the founders con-
sistent with the phenotypic effects that were estimated
during QTL mapping.

Imputation in MPPs: the power of haplotypes

A simple mapping strategy is to genotype and phenotype an
MPP and then perform association mapping to identify
QTL. While this can be successful, there are advantages in
exploiting the fact that RIL chromosomes are recombination
mosaics of the genomes of the founders. These mosaics can
be inferred from SNPs, for example using a Hidden Markov
Model (Mott et al. 2000; Liu et al. 2010; Zheng et al. 2015;
Broman et al. 2019). In a bi-parental cross between inbred
lines, bi-allelic polymorphic markers are sufficient to
identify the parental origin of each RIL genomic locus.
When there are multiple haplotypes and/or founders seg-
regating in the populations, bi-allelic markers are not
completely informative anymore and the haplotypic context
given by surrounding markers is used to infer the founder
that contributed each genomic locus within each RIL (Mott
et al. 2000).

Once recombination mosaics have been constructed,
sequence information from the founders can be projected
onto RILs. Importantly, variants can be imputed even when
they are not directly genotyped in any of the RILs. Thus,
low-cost sparse genotyping data for the RILs can be used to
infer the mosaics and then dense genomic data from the
founders can be copied onto them to impute all variants
(Fig. 3). In general, there is uncertainty in the genome
mosaics and in the founder genomes, which can be easily
accommodated by representing genotypes and haplotypes
as dosages. Association mapping itself can be performed on
the dosages of either haplotypes or imputed variants.
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Performing both types of association may be used to dis-
tinguish whether a QTL is caused by a bi-allelic variant or is
haplotypic (Yalcin et al. 2005): evidence from an outbred
eight-parent MPP in rats, Rattus rattus, suggests that ~40%
of QTL are caused by multiple causal variants, or equiva-
lently that multiple founder haplotypes have different
effects (Baud et al. 2013).

Genotype imputation has been an active area of research
in the past decade, and many powerful methods have been
published and extensively applied already. Some of the
most popular for human population studies are Beagle
(Browning 2008) and IMPUTE (Howie et al. 2009). A
common drawback of these established methods is that they
rely on high sequencing depth and on the availability of a
high-quality reference panel to infer and follow the haplo-
types in the progeny. These conditions are, however, not
always achieved for non-model organisms including crop
species. For this reason, various methods have been
developed to cater for the crop community, including
mpMap (Huang et al. 2014), FILLIN (Swarts et al. 2014),
STITCH (Davies et al. 2016), LB-Impute (Fragoso et al.
2016), LinkImputeR (Money et al. 2017) and magicImpute
(Zheng et al. 2018). We note that the founder haplotypes of
an MPP play a similar role to haplotype reference panels
that are used in human genetics. However, while the latter is
a construct, being simply a convenient set of basis haplo-
types from which every chromosome can be derived as a
mosaic, the MPP founder haplotypes are the real ancestral

genomes for the MPP population and usually correspond to
stable lines or varieties.

Imputation methods suggest a simple and cost-effective
genotyping strategy: low-coverage (e.g., 0.3x–1.0x) WGS
of each RIL. For example, using 476 A. thaliana MAGIC
RILs sequenced at 0.5x, it was possible to impute SNPs
with a concordance of 98% at sites previously genotyped by
a conventional genotyping array (Imprialou et al. 2017).
Within each constituent genome the coverage of each
variable site will be random, and most sites will be covered
by no more than one read. Nevertheless, by combining all
the data from hundreds of RILs in a single analysis it is
possible to simultaneously infer both the haplotype space
and the mosaic of each chromosome in terms of these
haplotypes, and hence impute the complete genome of each,
even without knowledge of the founder genomes (Davies
et al. 2016). It can be useful to infer founder haplotypes
because unknown founders may have accidentally con-
tributed to the population and/or the founders used for
crossing may differ slightly from those sequenced. Never-
theless, the founders should ideally be characterised using
orthogonal and more comprehensive genomic data; re-
annotated de novo assemblies of the founders are the gold-
standard. Given that researchers have to balance effort and
resources, it’s significant that imputation in MPPs allows
dense genomic information from a relatively small number
of founder genomes to be leveraged across the population.
Thus, MPPs provide one of the most cost-effective ways of

Fig. 3 Reconstruction of MAGIC recombination mosaics and
imputation. a In this schematic example, the MAGIC founders are
genotyped more densely and confidently than the MAGIC recombi-
nant inbred lines. The observed genotypes in the recombinant inbred
lines (white) can be used to infer the ancestry mosaics (background
colours) from which unobserved genotypes (black) can be imputed.
Two examples of ancestry mosaics reconstructed from low-coverage
sequence data in b Arabidopsis thaliana and c bread wheat. In b, the

ancestry mosaic is estimated using the Reconstruction program (http://
mtweb.cs.ucl.ac.uk/mus/www/19genomes/MAGICseq.htm), and
accuracy is assessed as the fraction of mismatches in each block
between the inferred founder haplotypes and calls derived directly
from low-coverage sequencing data. In c, the inferred ancestry pro-
portion probabilities (dosages) are emitted after imputation using the
software, STITCH (Davies et al. 2016).
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Table 2 Traits mapped in crop multi-parent advanced generation inter-cross (MAGIC) populations.

Crop QTL mapping trait/s Reference

Barley Flowering time (Sannemann et al. 2015;
Mathew et al. 2018;
Afsharyan et al. 2020)

Bread wheat Plant height, hectolitre grain weight (Huang et al. 2012)

Awn presence/absence (Mackay et al. 2014)

SnTox 1 and SnTox3 sensitivity
(Parastagonospora nodorum fungal effectors)

(Cockram et al. 2015;
Downie et al. 2018)

ToxB sensitivity (Pyrenophora tritici-repentis
fungal effector)

(Corsi et al. 2020)

Coleoptile and shoot length (Rebetzke et al. 2014)

Grain dormancy (Barrero et al. 2015)

Inflorescence architecture and paired spikelet
development

(Boden et al. 2015)

Digitally extracted phenology and senescence (Camargo et al. 2016)

Powdery mildew resistance (seedling) (Stadlmeier et al. 2018)

Plant height (Sannemann et al. 2018)

Inflorescence architecture and development (Dixon et al. 2018)

Digitally extracted plant area, height, water use and
senescence

(Camargo et al. 2018)

Powdery mildew, Septoria tritici blotch and tan
spot disease resistance

(Stadlmeier et al. 2019)

Septoria nodorum blotch disease resistance (in leaf
and glume tissues)

(Lin et al. 2020)

Chinese mustard
(Brassica juncea)

Glucosinolate content (Yan et al. 2020)

Cotton Fibre quality (Islam et al. 2016; Thyssen
et al. 2019)

Fibre length (Naoumkina et al. 2019)

Root-knot nematode resistance (Wubben et al. 2019)

Fibre maturity and fineness (Kim et al. 2020)

Verticillium wilt resistance (Zhang et al. 2020)

Cowpea Flowering time, growth habit, flower colour, leaf
shape and seed characteristics

(Huynh et al. 2018)

Durum wheat Grain yield (Milner et al. 2016)

Faba bean Frost tolerance and related traits (Sallam and Martsch 2015)

Maize Grain yield, flowering time (Dell’Acqua et al. 2015)

Genetic recombination (Guan et al. 2017)

Plant height, ear height and flowering time (Anderson et al. 2018)

Corn borer resistance (Jiménez-Galindo et al.
2019)

Fusarium seedling rot resistance (Septiani et al. 2019)

Fusarium ear rot resistance (Butrón et al. 2019)

Stover yield and saccharification efficiency (Lopez-Malvar et al. 2020)

Cold tolerance (Yi et al. 2020)

Rice Blast/bacterial blight resistance, salinity/
submergence tolerance and grain quality

(Bandillo et al. 2013)

Yield and yield components (Meng, Zhao et al. 2016)

Plant height, heading date (Meng, Guo et al. 2016)

(Raghavan et al. 2017)
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obtaining near complete genomic information for a large
genetically diverse population.

Applications of MPPs

A primary use of crop MPPs is to map QTL for agronomic
traits to relatively narrow genetic intervals across geneti-
cally diverse backgrounds. To date, many traits have been
mapped in MPPs, ranging from pathogen resistance to fla-
vour profile. Table 2 summarises the traits mapped just in
crop MAGIC populations, encompassing simple to complex
traits and exemplifying their utility in dissecting the genetic
architecture of crop phenotypes. For example, 75–80% of
the phenotypic variance in leaf length, width and angle in a
large maize NAM population can be accounted for by more
than 30 QTL that have been identified (Tian et al. 2011;
Gage et al. 2020).

One purpose of mapping QTL is to understand the
genetic basis of traits and to identify markers that can be
used in breeding programmes. In applied settings, key
factors influencing whether QTL are useful are the size and
stability of the effect across environments and genetic
backgrounds, and the phenotyping effort required to assess
the trait directly. While causal markers reduce the potential
for linkage drag (introgression of linked but unfavourable
alleles) during marker-assisted selection, nearby markers
that tag the causal allele can be used instead. Similarly,
studies of general patterns of genetic architecture do not
require gene-level QTL mapping. For other theoretical and
some applied applications (e.g., gene editing), validation of

causal variants may be required. Thus, the research goals
should generally determine the appropriate experimental
design (e.g., population size and founder selection) and
analysis (e.g., acceptable false positive rate), as reviewed
elsewhere (Bernardo 2008, 2016).

In principle, all QTL identified from MPPs could have
been mapped to the same accuracy in an appropriately
chosen bi-parental population and/or a Genome-Wide
Association Study (GWAS) that uses a panel of existing
lines. As noted above, relative to bi-parental populations,
MPPs are a more general tool within which a wider variety
of traits segregate due to the increased genetic variation
(Fig. 2). Compared with GWAS of pre-existing lines,
experimental populations like MPPs largely avoid the
potentially confounding influence of population structure
and raise the allele frequency of a subset of alleles that are
rare in the wider population. Thus, MPPs increase the
overall probability of detecting very rare beneficial alleles.
Such alleles are of particular interest for breeding (Bernardo
2016) but are difficult to detect, even in MPPs (Fig. 2). A
further consideration is mapping resolution, which should
be smallest in large GWAS that capture historical/natural
recombination across the pre-existing germplasm, e.g.,
linkage decays to background levels over ~10 Kbp in wild
A. thaliana accessions (Kim et al. 2007). In MAGIC
populations of 527–529 RILs, QTL for various traits were
mapped to intervals of 0.3–6Mbp in A. thaliana (Kover
et al. 2009) and 1.5–17Mbp in maize (Dell’Acqua et al.
2015). In a MAGIC rice population of over 1316 RILs, the
mapping intervals were ~700 Kbp on average (Raghavan
et al. 2017). However, as discussed above, empirical

Table 2 (continued)

Crop QTL mapping trait/s Reference

Yield and yield components, flowering time, plant
height, amylose content, submergence tolerance
and brown spot disease resistance
Yield and yield components, plant height, bacterial
leaf blight, flowering time and biofortification

(Descalsota et al. 2018)

Bacterial leaf streak and bacterial leaf blight (Bossa-Castro et al. 2018)

Grain shape (Ogawa, Nonoue et al. 2018)

Grain quality, cooking and taste attributes (Ponce et al. 2018)

Yield, plant height, heading date, grain quality and
biofortification

(Zaw et al. 2019)

Grain length, grain width, grain thickness, and
thousand grain weight

(Ponce et al. 2020)

Heading date (Han et al. 2020)

Sorghum Plant height (Ongom and Ejeta 2018)

Strawberry Fruit quality-related traits (Wada et al. 2017)

Tomato Fruit weight (Pascual et al. 2015)

Fruit weight and flowering time plasticity in
response to water, salinity and heat stress

(Diouf et al. 2020)
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mapping resolution may be determined by the QTL effect
size and population size.

The wheat MAGIC populations developed at CSIRO
(four Australian spring wheat founders, Huang et al. 2012)
and NIAB (eight UK winter wheat founders, Mackay et al.
2014) are examples of MPPs that have been used to map
genes controlling important yield related traits. The CSIRO
spring wheat population was used to identify 18 QTL that
influence the formation of paired spikelets—a modified
form of inflorescence architecture in wheat. Due to the high
density of polymorphic markers, the Photoperiod-1 gene
could be identified as a key regulator of paired spikelet
development (Boden et al. 2015). Subsequent analysis of a
RIL from the same population that robustly formed paired
spikelets permitted dissection of a second QTL on chro-
mosome 4D through investigation of a RIL-specific chro-
mosomal duplication event of 4D, which doubled the copy
number of TEOSINTE BRANCHED 1 (TB1) (along with
many other genes) (Dixon et al. 2018). That is, an unex-
pected duplication occurred during population develop-
ment. The chromosomal duplication proved to be highly
relevant when determining the causal gene between two
closely located candidates: TB1 and the Green Revolution
gene, Reduced height-1 (Rht-1). Analysis of spikelet
architecture in the UK winter wheat eight-way population
enabled identification of further allelic diversity for TB1.
Mapping using this population demonstrated that the con-
trol of the paired spikelet formation by TB1 also occurred in
winter wheat and allowed identification of a new allele of
TB1 involved in the regulation of paired spikelet formation
and height on chromosome 4B (TB-B1) (Dixon et al.
2018, 2020). Markers for TB1 alleles are now used for
marker-assisted selection in the wheat breeding industry.

After primary mapping, QTL are often fine mapped
through further crosses (Jaganathan et al. 2020). In MPPs,
the intermediate crosses made during population develop-
ment can be useful because, at each stage, some lines may
be heterozygous for alleles at a QTL of interest. These can
be used to rapidly develop pairs of near isogenic lines
(NILs) differing only at one or two haplotype blocks
underlying the QTL of interest. NILs and/or RILs can then
be used for further molecular characterization, validating
candidate genes. For example, Liller et al. (2017) used NILs
to narrow down a QTL for barley awns to a region con-
taining 66 genes and used RNA-expression data to suggest
two candidate genes; Wubben et al. (2019) used virus-
induced gene silencing of four candidate genes in five
MAGIC RILs to identify one that was required for root-knot
nematode resistance in cotton.

Separate from direct applications in breeding, QTL
mapping is used by evolutionary biologists to understand
the genetic basis of adaptation. For this purpose, MPPs can
be used to quickly dissect the genetic basis for variation in

putatively adaptive traits. For example, the A. thaliana
MAGIC population has been used to fine-map several traits
involved in developmental timing (e.g., time to bolting,
Kover et al. 2009) and to examine the natural genetic basis
of variation in seed size and number (Gnan et al. 2014). In
addition to examining natural variation, MPPs could be
used to identify genes under selection in experimentally
evolving populations. Using wheat, for example, experi-
mental evolution has identified natural selection for key
phenology genes at contrasting geographies in France
(Rhoné et al. 2008). In another application, Knapp et al.
(2020) found that several genes controlling plant height and
phenology reverted to the wild type in experimental wheat
populations evolving under natural selection in the UK.
Similar approaches could exploit the genetic variation in
crop MPPs to identify additional genes underlying envir-
onmental adaptation and historical selection. For example,
using MPPs with founders that span early and modern
agriculture, it should be possible to examine the evolu-
tionary history of crop improvement, identifying traits and
genes involved in historical yield increases. This in turn
could provide valuable insights into the potential for future
yield increases.

Multi-trait analyses

Phenotyping information may be accumulated and shared in
large and stable collections of inbred lines, particularly in
crop MPPs. They are a convenient system in which to study
interactions and correlations between traits—sometimes
across multiple environments—and the extent to which their
genetic basis is shared. Exploitation of MPPs to study
trait–trait interactions at the level of the underlying genetics
is one of their great, yet largely unfulfilled, applications. As
high-throughput, high frequency phenotyping platforms
become available, publicly accessible repositories of phe-
notypic data for multiple traits and environments will fur-
ther enhance these applications.

As phenotypes for related traits are collected, multi-trait
QTL analyses can be conducted (van Eeuwijk et al. 2010).
Where data is incomplete, packages are available to impute
missing phenotypes (Dahl et al. 2016). If multiple traits are
measured, each with their own errors, but are under pleio-
tropic control of a single QTL, a combined analysis gen-
eralised across traits should give a more accurate indication
of the true genetic effect. This has readily been applied in
simple mapping populations (Hackett et al. 2001) and
methods to analyse multi-trait and multi-environment traits
in MPPs have been developed by Verbyla et al. (2014),
allowing pleiotropic QTL and closely-linked QTL to be
distinguished. Scutari et al. (2014), Descalsota et al. (2018)
and Zaw et al. (2019) used Bayesian networks to simulta-
neously model multiple traits. Mapping composite traits
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derived from groups of correlated traits might uncover
novel QTL that are not found when traits are analysed
independently. Such analyses might suggest previously
untried breeding routes to minimise trade-offs, for example,
to avoid increasing yield at the expense of quality or
delayed flowering, which increases the risk of encountering
terminal drought (drought during grain filling) or adverse
weather conditions at harvest that cause lodging or pre-
harvest sprouting.

The accumulation of MPP trait data from multiple
environments also enables QTL mapping of genotype by
environment interactions, with the potential to breed for
improved crop resilience to environmental stresses, and to
understand and exploit the changes in trade-offs that occur
under different environmental conditions. For example, the
adaptation of A. thaliana to different environments has been
studied in a MAGIC population. Several QTL were found
to promote a plant’s fitness (reproductive success) in its
native environment (Sweden or Italy) but reduce its fitness
when transplanted to the non-native environment—a type of
evolutionary trade-off (Ågren et al. 2013). In a tomato
MAGIC population, trials across water, salinity and heat
stress treatments revealed QTL that affect plasticity of
response (Diouf et al. 2020). Garin et al. (2020) recently
developed specific methods for multi-environment QTL
analysis in MPPs and applied them to a European maize
NAM population, finding alleles that have a greater effect
on yield at sites with higher precipitation. This type of
multi-environment trial analysis is also at the core of a rice
MAGIC population constructed from founders that vary in
their tolerance to temperature stresses (Leung et al. 2015).

Even ignoring genetic information, MPPs are valuable
for dissecting correlations between phenotypes because they
capture diversity and largely eliminate confounding popu-
lation structure. As an illustrative example, consider plant
height and root architecture in wheat. The height of wheat
varieties has greatly decreased over the past century, par-
ticularly due to the introgression of large effect ‘Green
Revolution’ alleles at the Rht genes that reduce the risk of
yield loss through lodging (Hedden 2003). In addition,
more-modern varieties tend to have smaller root systems,
which may have been selected to increase yield by reducing
below-ground competition within the crop (Fradgley et al.
2020). These traits (plant height and root architecture) may
have a physiological connection causing them to be corre-
lated. Alternatively, they may be correlated because modern
varieties are likely to have experienced selection for both
traits at independent loci. MPPs offer an opportunity to
identify correlations between traits that are truly caused by a
shared underlying genetic basis. For example, in a maize
NAM, leaf length, width and angle have weak correlations
(0.03–0.08) and share only 2–6% of QTL (Tian et al. 2011)
whereas different carbon and nitrogen metabolites are more

highly correlated (up to 0.7) and share QTL (Zhang et al.
2015; Gage et al. 2020).

MPP germplasm in breeding programmes

Independent of QTL analysis, MPPs provide useful germ-
plasm for breeding or pre-breeding activities. The extensive
shuffling of genetic variation during population develop-
ment generates novel allelic combinations. Therefore, a
subset of lines will usually display better phenotypes than
any of the parental lines. These ‘transgressive’ lines may be
good breeding material in their own right (Huynh et al.
2018). This is particularly true when the parents are com-
mercial/cultivated varieties, although the MPP may have
taken several years to construct since the parent varieties
were released. Several MPPs employ participatory methods
in the prioritization and/or selection of founders and traits
(e.g., Kidane et al. 2017, 2019; Mancini et al. 2017; Cam-
panelli et al. 2019) to facilitate end-user applications.

There are several examples where MAGIC germplasm
has been used for pre-breeding or released in their own right
as a variety. Li et al. (2013, 2014) report that a RIL from a
rice MAGIC population was released as a new variety in
China. Separate rice MAGIC populations developed at the
International Rice Research Institute (IRRI) have also been
used; the MAGIC RIL, IR 95099:7-B-2-10-10-2, is in the
pipeline of varietal release in southern Vietnam on the basis
of its maturation date, yield and grain quality, which were
assessed in trials at the Cuu Long Delta Rice Research
Institute, Can Tho (RKS, personal communication). In
chickpea, RILs from MAGIC populations developed at the
International Crops Research Institute for the Semi-Arid
Tropics (ICRISAT) have been directly released as new
varieties, as well as used as donors in commercial breeding
programmes (RKV, personal communication). From a 16-
founder wheat MAGIC population developed at NIAB, 24
MAGIC RILs have been selected for inclusion in com-
mercial breeding programmes on the basis of their yield, ear
weight and protein content (NF, personal communication).
Thus, the collection of phenotypic data across several
agronomically important traits in MPPs facilitates the
identification of promising lines.

A major impediment to the uptake of the results of QTL
studies in breeding programmes is the crossing effort
required to combine beneficial alleles at multiple loci
(Bernardo 2008). In large and highly recombined MPPs,
RILs that ‘pyramid’ several beneficial alleles will usually
already exist. For example, the rice Bio-MAGIC population
developed at IRRI demonstrates the pyramiding of multiple
genes for three diseases (blast, bacterial blight and brown
plant hopper) without employing backcrossing (Leung et al.
2015). Furthermore, Descalsota et al. (2018) and Zaw et al.
(2019) identify rice MAGIC RILs with beneficial allelic
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combinations across grain yield, grain zinc content, flow-
ering time, plant height and amylose content. Four lines
carry tolerant alleles for multiple diseases and insects, as
confirmed by re-sequencing data. These lines are planned to
be used directly in breeding programmes (Hei Leung and
RKS, personal communication). In cotton, Thyssen et al.
(2019) identify MAGIC RILs that pyramid eight alleles
with positive effects on four different measurements of fibre
quality. Thus, the identification of QTL and their carriers—
often part of initial population development and analysis—
also primes MPP germplasm for agricultural use.

As largely unstructured populations with associated
large-scale phenotype and genotype resources, MPPs are
also highly suitable for genomic prediction. This process
involves fitting a model to predict phenotypes from gen-
otypes using a training dataset. The accuracy of this
prediction can then be evaluated in a test set of lines.
Prediction accuracies will be most accurate when the
training set and test set are highly related, and more
caution should be taken when applying predictions to
more distantly related material. Bian and Holland (2017)
reported reasonable within-family prediction ability for
plant height, southern leaf blot resistance (prediction R2 ~
0.5) and grey leaf spot resistance (R2 ~ 0.25) in a large
maize NAM. Islam et al. (2020) used a MAGIC popula-
tion of cotton to predict fibre quality traits across years,
finding predictive abilities (correlation coefficients) ran-
ging from 0.41 to 0.68. Although less accurate than direct
phenotyping, genomic prediction can increase genetic
gain by reducing the phenotyping time and effort required
for selection after the model is trained. Zhang et al. (2017)
implemented this type of selection regime in an MPP
generated from two rounds of inter-crossing between 18
elite tropical maize lines, finding that realised yield
increased by 0.1 tonnes per hectare per year with scope for
further improvement using faster genotyping protocols. A
potential drawback of genomic selection is that it may
select against favourable contributions from exotic foun-
ders due to linkage drag, especially in MPPs with a
mixture of elite and exotic founders. For this reason, Yang
et al. (2019) demonstrate the use of origin-specific
genomic selection in maize and barley NAM popula-
tions, suggesting a way to maximise genetic diversity for
long-term genetic gain.

The MPP ‘package’

MPPs integrate extensive genotype, phenotype and germ-
plasm resources to provide enduring and general tools that
advance theoretical knowledge and support breeding. MPP
designs have allowed rich genomic information to be

gathered for large populations in a cost-effective way.
Furthermore, MPPs have proven to have useful applications
in crop breeding. To fully realise their potential, we advo-
cate thinking of MPPs as a package, ideally comprising:

(i) The germplasm of the RILs and their founders, free of
intellectual property constraints.

(ii) A publicly accessible database of agronomically
important phenotype data for the founders and the
descendent RILs, with a system for adding further
phenotypic data.

(iii) Complete de novo assemblies of the founders with
catalogued genetic variation (including structural
variation) and gene models confirmed using RNAseq.

(iv) The genome mosaics of the RILs, with founder
annotations and variants projected and integrated
software for mixed model GWAS at both SNP and
haplotype level.

(v) Demonstration that the population can be used for
genomic prediction, the identification of likely causal
variants underlying QTL and marker development for
marker-assisted selection.

Most crop MPPs currently only have a subset of these
resources available. However, the continued enrichment of
MPPs with open-access phenotypic and genotypic resources
will enhance their power as an enduring and growing
genetic toolbox to address crop improvement.
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