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Abstract: Expanding data suggest that glioblastoma is accountable for the growing prevalence of
various forms of stroke formation, such as ischemic stroke and moyamoya disease. However, the
underlying deterministic details are still unspecified. Bioinformatics approaches are designed to
investigate the relationships between two pathogens as well as fill this study void. Glioblastoma is a
form of cancer that typically occurs in the brain or spinal cord and is highly destructive. A stroke
occurs when a brain region starts to lose blood circulation and prevents functioning. Moyamoya
disorder is a recurrent and recurring arterial disorder of the brain. To begin, adequate gene expression
datasets on glioblastoma, ischemic stroke, and moyamoya disease were gathered from various
repositories. Then, the association between glioblastoma, ischemic stroke, and moyamoya was
established using the existing pipelines. The framework was developed as a generalized workflow to
allow for the aggregation of transcriptomic gene expression across specific tissue; Gene Ontology
(GO) and biological pathway, as well as the validation of such data, are carried out using enrichment
studies such as protein–protein interaction and gold benchmark databases. The results contribute to
a more profound knowledge of the disease mechanisms and unveil the projected correlations among
the diseases.

Keywords: glioblastoma; ischemic stroke; moyamoya; bioinformatics; association; GSEA; pathway;
orthology

1. Introduction

Glioblastoma, generally regarded as glioblastoma-multiforme (GBM), is the most
deadly form of cancer in the brain region throughout the world [1]. Percival Bailey and
Harvey Cushing introduced the name glioblastoma multiforme in 1926, emphasizing the
hypothesis that the cancerous cells arise from Gila, fundamental drug precursors (glioblasts).
Additionally, it is an utterly volatile presentation caused by necrosis, hemorrhage, and cysts
(multiform) [2]. GBM has vague signs or symptoms initially. Headaches, mood changes,
fatigue, and symbols close to those of a stroke are all possible symptoms [3]. Symptoms

Pharmaceutics 2022, 14, 1573. https://doi.org/10.3390/pharmaceutics14081573 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14081573
https://doi.org/10.3390/pharmaceutics14081573
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-9125-9573
https://orcid.org/0000-0002-5068-2690
https://orcid.org/0000-0001-6919-0031
https://orcid.org/0000-0002-6273-0645
https://orcid.org/0000-0001-6649-3694
https://orcid.org/0000-0003-0756-1006
https://orcid.org/0000-0002-8678-156X
https://doi.org/10.3390/pharmaceutics14081573
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14081573?type=check_update&version=1


Pharmaceutics 2022, 14, 1573 2 of 23

sometimes escalate quickly, leading to unconsciousness [4]. Recent studies suggest that
astrocytes, brain stem cells, and oligodendrocyte progenitor cells could all represent the
disease’s biological origin cell [5,6]. Glioblastoma stem cells have already been observed in
patients with GBM, exhibiting features similar to progenitor cells. Their involvement, along
with the dispersed form of glioblastomas, makes surgical removal impossible and is thus
thought to be a potential source of resistance to medical therapies and a strong recurrence
risk [7]. The disease affects around three out of every 100,000 people annually, but the
rate can be even higher in certain areas [8]. Glioma has the highest mortality rate of the
different forms of brain tumors, is an unusual curable shape, is immune to chemotherapy
and radiotherapy, and has a poor prognosis [9].

Ischemic stroke victims are more likely to acquire a brain tumor, most often a glioma,
due to the ridiculous effects of ischemia as well as the effects of hypoxia on a cell’s functional
and metabolic state [10]. When blood circulation to a portion of the brain is eventually cut
off, an ischemic stroke occurs, which leads to the loss of neurological control. Ischemia may
also occur when blood circulation to a particular part of the brain is inadequate to satisfy
physiological demands [11,12]. Thus, this causes a lack of oxygen in the brain (cerebral
hypoxia) and, as a result, brain tissue dies (cerebral infarction/ischemic stroke) [13]. On the
other hand, proliferating cell density, metastasis, and a general prothrombotic propensity
correlated with tumors raise the likelihood of ischemic infarctions [9]. Several theories
have been suggested to explain why ischemic infarction and brain tumors, especially
glioma, occur together. The most prevalent mechanism highlights how both situations are
prone to hypoxia [14]. Cerebral ischemia, for example, induces blood flow congestion and
predisposes to hypoxia [15]. At the same time, a quickly increasing malignant mass has
a hypoxic heart owing to the intensified need for oxygen from rapidly dividing cells [16].
Other possible pathways in the interplay between the two systems have been suggested
by researchers, including astrocyte-activation [17], angiogenesis, reactive-gliosis [18], and
various modifications in the tumor microhabitat [19]; some of which are primarily caused
by cerebral ischemia as a result of quick glioma growth [9]. Moreover, frequent removal
surgery (operation of any tissue or part of an organ) to treat gliomas raises the possibility
of ischemic injury [20].

Moyamoya disease is a form of arterial occlusive disease that most frequently damages
the brain’s carotid arteries. More specifically, carotid arteries narrow down or become
blocked in the brain region, limiting blood supply to the brain [21]. It is identified by
the angiographic characteristics of bilateral central carotid artery stenosis and unwanted
expansion of the favoring veins in the brain’s center [22]. While the cause of primary
moyamoya disease is unclear, moyamoya disease may be brought about by a number of
different pathogenic reasons. Internal carotid arteries might become blocked as a result of
intracranial basal tumors or radiotherapy, resulting in the formation of moyamoya-type
vessels [23,24]. Hence, this is related to “leptomeningeal artery end-to-end anastomoses”,
“transdural anastomoses”, and ’telangiectatic collaterals”, which are the most popular
inside and outside areas of the basal ganglia [25]. In recent research studies, the relationship
between glioblastoma and mm has been described [25,26].

In conclusion, there is convincing evidence that GBM, I. stroke, and mm have patho-
logically and medically significant connections, although this connection has not been
thoroughly investigated. Since the etiology of GBM, I. stroke, and mm are complicated,
and their risk factors differ in specific ways, the underlying relationship’s in biological
aspects, and molecular mechanisms are still unknown. Despite their strong therapeutic
relevance, GBM, I. stroke, and mm are very complicated disorders in terms of their clinical
manifestations, making them challenging to analyze using traditional hypothesis-driven
endocrinology analysis. Furthermore, there is still a scarcity of bioinformatics research on
the issues discussed. The objective of this project was to find certain connections among
diseases since knowing the existence of these connections could provide valuable insights
into the diseases’ mechanisms. Therefore, this prompted us to design a bioinformatics
framework to identify the essence of the interaction, such as gene expression and dysregu-
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lation, signaling pathways, and protein–protein interactions analyzed from disease-affected
tissues. Results were then validated using experimentally validated gold benchmark
databases and literature such as DisGeNET, db-GaP, and Rare-Diseases-AutoRIF.

2. Substances, Procedures, and Methods
2.1. Collected Datasets

The datasets included for the analysis were derived from the National Center for
Biotechnology Information (NCBI), a well-known Gene Expression Omnibus (GEO)
database. Each disease’s query returns a series of datasets. If the dataset is obtained
from a non-human species and does not meet two criteria for each group, such as control
samples (healthy) and case samples (patients), it is not preferred for our study. Addition-
ally, we discarded repeated datasets, unfavorable formatting, or insignificant experimental
emphasis. We also excluded datasets with sample sizes smaller than our preselected cutoff
sample size of three for each group. Linear regression is used to analyze the transcrip-
tomic differential expression of the selected GEO datasets, and a linear model may have
appropriate analytical strength when the sample size for either the healthy or the patient
is three, or higher than three [27]. In addition, we concentrated on a particular cell or
tissue type in light of its influence on the course of a disease. This method resulted in
selecting three strongly important datasets for glioblastoma, I. stroke, and moyamoya (mm)
as well as suitable for the analysis. The datasets for glioblastoma and ischemic stroke are
RNA-seq, and the dataset for moyamoya disease is micro-array. As no RNA-seq datasets
met our requirements, we used the microarray dataset for moyamoya. We looked for
datasets with the lowest amount of biases and distortion for this study. For the analysis,
we selected transcriptome RNA-seq/microarray datasets of human participants with the
accession numbers GSE106804, GSE56267, and GSE131293, which included both healthy
and diseased patients.

The glioblastoma dataset (GSE106804) included gene expression data from the Extra-
cellular Vesicle of 13 glioblastoma patients and 6 healthy controls [28]. GBM is constantly
in contact with its underlying tumor microenvironment (TME). Extracellular vesicle has
a significant effect on the GBM tumor microenvironment, paving the path for the devel-
opment of GBM [29,30]. Hence, we selected the dataset. The I. stroke (GSE56267) dataset
included gene expression evidence from the cortical tissue of seven I. stroke patients and
six healthy controls, whereas cortical neurons depict important intact genome information
regarding I. stroke patients [31]. The moyamoya dataset (GSE131293), the only microarray
data, included gene expression results from three patients and three stable controls’ neural
crest stem cells [32].

2.2. Preprocessing and Distinction of Differentially Expressed Genes

As mentioned earlier, the datasets were collected from NCBI. We performed differential
expression analysis to detect the genes that are noticeably expressed in patients’ samples
compared to healthy samples. We performed differential expression analysis (DEA) of
RNA-seq raw count data using DESeq2, an R package. The internal normalization technique
was carried out using DESeq2 and determined the geometric mean of every gene across
all samples. Then, the negative binomial distribution, a linear model, was calculated for
each gene, considering variability among samples. Finally, notable genes were filtered
using the Wald test and we automatically removed low-expressed/outlier genes using
Cook’s distance [33]. For microarray data, we used Limma, also a linear model, for DEA,
which performed a t-test to find the importance of every gene over samples [34]. The
code for DEA was implemented in R and can be accessed through our Github repository:
https://github.com/hiddenntreasure/glioblastoma, accessed on 11 July 2022.

We used the Z-score transformation (Zmn) for each disease phenotype to make the
gene expression data more comparable. The equation for this transformation is

Zmn =
gmn − X̄

σm
(1)

https://github.com/hiddenntreasure/glioblastoma
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where σm indicates standard deviation and gmn suggests the magnitude of the gene (m)
in the sample (n). Thus, this allows us to directly measure the expression of genes across
samples and types of cells from various disorders.

We discarded the genes with missing or null values. Two parameters are deployed to
derive the most significant/biomarker genes accountable for the emergence of a disease.
First, the p-value should be less than 0.05; secondly, the absolute value of the log2-fold
change is either 1 or greater/less than 1. Genes with a logFC greater than one are highly
expressed compared to the other genes and are known as upregulated (up-reg) genes,
whereas downregulated (down-reg) genes are lower expressed in contrast to gene expres-
sion arrays and logFC is less than 1. We have several significant genes for each disease that
are differentially dysregulated and significantly liable for developing a disease. Then, we
identified shared genes between a pair: glioblastoma and I. stroke, as well as glioblastoma
and moyamoya.

The prevalent genes in these two pairs of diseases were then used to build a gene-
disease network (GDN), and different neighbors were found using Jaccard coefficient
methods [35], which is the co-occurrence score. In contrast, the edge (connection among
genes) predicts the correlation coefficient rate for the nodes (genes):

E(m, n) =
N(Gm ∩ Gn)

N(Gm ∩ Gn)
(2)

G indicates the total number of genes represented as nodes, and E denotes the number
of connections among genes represented as edges. To cross-check illness comorbidity
relationships, we used the R programs comoR [36] and POGO [37].

2.3. Enrichment Analysis for Significant Gene Ontology and Molecular Pathway Selection

Previously, gene expression profiling generally consisted of a group of genes corre-
sponding to either healthy or affected samples, enlisted in a list L as per their differential
expression. A meaningful understanding of this list was extracted. However, in a given
biological process, it may provide an insufficient number or an excessive number of statis-
tically significant genes that might fluctuate from one dissertation to another for a given
batch of genes [38,39]. However, enrichment analysis denotes a normalized set of genes
that employs previously identified molecular pathways or gene expression arrays. More-
over, it defined the group of genes associated with the different genotypes (phenotypes)
hypothesis [40].

EnrichR was employed to acquire a deeper insight into the biological pathways and
Gene Ontology (GO) terms associated with GBM in relation to I. stroke and mm [41]. It
conducts GSEA to classify the DEGs’ corresponding pathways and GOs. Compared with
a catalog of well-annotated gene sets, such as pathway analysis, it facilitates observing
the functional relevance of the given gene set. The pathway is the molecular biology
concept, which defines an artificial condensed process model within a cell or tissue [42].
A typical pathway model begins across an external signaling molecule by provoking a
specific receptor that triggers a string of proteins connected with each other [43]. The Gene
Ontology (GO) is a computational paradigm for representing gene (protein) functions as
well as their related connections towards other genes [44]. The hierarchical arrangement
of the GO makes it possible to compare proteins annotated with different meanings in
ontology as well as have relationships with each other. We focused on four different
pathway databases: KEGG [45], BioCarta [46], Reactome [47], and Wiki-Pathways [48]; and
biological Process (BP) from Gene Ontology (GO) domain [49].

2.4. Analysis of Protein–Protein Interactions (PPIs)

The PPIs are central to all cellular/molecular mechanisms since they constitute the
physical interactions between two or even more protein components [50]. We used data
from the STRING database [51] and Network Analyst [52] to create PPI networks centered
on the connections among various proteins. We used the String Interactome repository
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from “String-db.org” (accessed on 28 October 2014) with a confidence level of 800 and
topological criteria such as degree >15 [51]. Proteins are denoted by colored circles/nodes;
conversely, connections of the proteins are characterized by edges.

2.5. Analysis of Transcription Factors (TFs) and microRNAs (miRNAs)

We discovered DEGs-TFs, which regulate the identified significant genes (identified
from transcriptomic differential analysis) not only at their correct period but also at their
suitable volume in a cell throughout the cell’s/organism’s lifetime, and are responsible
for determining the transformation of genetic information from DNA to mRNA at the
transcription level. Furthermore, gene-miRNAs were also discovered in order to help
researchers by giving insight into the regulatory biomolecules that determine and control
RNA splicing and expression of genes at their post-transcriptional level.

EnrichR was deployed to identify the DEGs-TFs and microRNAs [41]. The DEGs-TFs
relationship was identified and studied using the JASPAR database [53] and ENCODE [54,55],
whereas miRNA-DEGs interactions are found using a well-known database called TarBase [56]
and miRTarBase [57]. The topological investigation was carried out using Cytoscape’s Net-
work Analyzer and Network Analyst [58,59].

2.6. Drug Prediction

Network Analyst was used to identify the possible medications for treating glioblas-
toma and its associated diseases. The drug was predicted using the DrugBank database
version 5.0. [60]. A list of protein–drug interactions was made based on statistical im-
portance. Two protein–drug interactions were predicted for two pairs of cases, such as
glioblastoma and I. stroke, and glioblastoma and mm. In our study, we utilized highly
interacted shared proteins (hub proteins) found from both pairs of cases.

2.7. Description of the Experimental Methodology

Figure 1 summarizes the network-based systemic and computational framework for
evaluating differentially expressed human genes due to the association among diseases.
The R code was used to introduce the optimized pipeline, and the implementation is
accessible from our Github repository: https://github.com/hiddenntreasure/glioblastoma,
accessed on 11 July 2022.

Diseasome 
Network

Pathway Identification

Go Indetification

PPI Analysis

Hub-Proteins 
Identification

DEGs Transcription
Factor

Interaction analysis 

DEGs-microRNA
Interaction analysis 

Moyamoya 

Ischemic Stroke

Glioblastoma 

GEO (RNA-Seq and 
Micro-Array Data)

Differential
Expression Gene 

Common
Expression Gene 

DisGeNet

db-GaP

Rare-Disease-AutoRIF

Validation using  
below databases

Figure 1. Demonstration of the work flow of our hypothesized methodology.

String-db.org
https://github.com/hiddenntreasure/glioblastoma
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To identify hypothesized selective biomarkers between GBM and I. stroke and GBM
and mm, we used gene expression analyses using limma. Moreover, we extracted signaling
pathways and GO terminologies from various databases, as well as protein–protein interac-
tions (PPIs), transcription factors (TFs) of genes, and gene-MicroRNAs (miRNAs) that are
related to the derived biomarkers. Our network-based method was cross-checked with the
three gold standard databases, namely, DisGeNET, db-GaP, and Rare-Diseases-AutoRIF, to
validate our biomarker genes and pathways.

3. Result Analysis
3.1. Evaluation of Gene Expression

“Expression profiling by high-throughput sequencing” (or RNA-seq) data of GBM
was reviewed from the NCBI to categorize and comprehend the gene enrichment that could
influence the development of I. stroke and mm. However, due to the unavailability of
moyamoya’s RNA-seq data, we collected “expression profiling by array” (or microarray)
data of moyamoya.

A well-known project called Bioconductor established R packages called Limma and
DESeq2 for microarray and RNA-seq data. We used it to perform expression profiling
and found 3585 DEGs in glioblastoma with a p-value less than 0.05 and an absolute logFC
greater than 1. Whereas 1038 genes are upregulated due to foreign signals increasing
the cellular process factor in all genes, 2547 genes are downregulated due to the same
component decreasing markedly. Following the statistical study, we identified the most
significant DEGs for each disease, such as I. stroke and moyamoya. Table 1 illustrates that
1465 significant DEGs were found in I. stroke, whereas the expression increased (up-reg) in
1120 genes and expression decreased (down-reg) in 345 genes; similarly, 1382 significant
DEGs were found in mm, whereas the expression increased (up-reg) in 715 genes and
expression decreased (down-reg) in 667 genes. The GSE accession numbers for the selected
study are GSE106804 [28], GSE56267 [31], and GSE131293 [32] for glioblastoma, ischemic
stroke, and moyamoya, respectively, as shown in Table 1.

Table 1. Detailed information about the selected transcriptomic datasets from NCBI that meet all
the criteria.

Disorder Source Dataset Raw Case Control Significant Up Significant Down
Name Tissues/Cells Accession No. Genes Samples Samples Reg. Genes Reg. Genes

Glioblastoma Extracellular GSE-106804 59,171 13 6 1038 2547
Vesicle

Ischemic Stroke Cortical ischemic
stroke tissue GSE-56267 28,089 7 6 1120 345

Moyamoya Neural crest GSE-131293 54,675 3 3 715 667
stem cell

Due to the proper data availability, we took the dataset from three different cells:
extracellular vesicle, cortical ischemic stroke tissue, and neural crest stem cell for GBM,
I. stroke, and mm, respectively (Table 1, column 3). However, the findings still show
insightful outcomes for our projected hypothesis. Column 2 in Table 1 demonstrates the
RNA sequencing technology used to identify the transcriptomic data for each disease in
our study. The number of samples for both cases and controls is an essential identifier
in identifying associations among diseases because the increasing number of samples
enhances the computational power of a dataset. In our study, moyamoya has only three
samples, both for control and case, which is the least, whereas the other two diseases have
at least six samples for either side. The overall up- and downregulated genes are quite
balanced for moyamoya, though not for GBM and I. stroke.
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3.2. Identified Enriched Pathways and Gene Ontology Terminologies

Pathway enrichment analysis was implemented to better understand the molecular
mechanisms/processes that underlie all complicated diseases. Using EnrichR [41], a
bioinformatics resource, we conducted a comparison-based enrichment analysis to classify
overexpressed pathways in our relationship (GBM and I. stroke; or GBM and MM), and
the analysis was performed on top of three different databases (Wikipathways (human-
2019) [61], BioCarta (2016) [41], and KEGG (human-2019) [62]) in our experiment. The
pathway enrichment experiments were performed using the common DEGs between GBM
and its associated diseases (I. stroke and mm). We carried out regulatory research to learn
more about the molecular mechanisms that play a role in this comorbidity. Our research
identified overexpressed pathways in which DEGs are identified in various disorders and
categorized them based on their functional importance. Manual curation was used to limit
pathways considered greatly enriched in the typical DEG sets with p-value criteria. The
criteria denote that the p-value must be less than 0.05. EnrichR discovered major pathways
from KEGG, WikiPathways, and BioCarta databases that are significantly linked to DEGs
that are common between GBM and I. stroke pair and GBM and mm pairs. Using the
shared 50 genes between GBM and mm, we obtained 149 shared pathways, among which
20 are significant, considering the p-value (<0.05). Similarly, 59 genes are common between
GBM and I. stroke; we obtained 217 signaling pathways common between them, and 68
are highly expressed (significant pathways). Thus, ascending sorting of p-value implied
retrieving the top 15 significant pathways between (a) GBM and I. stroke—Table 2 and (b)
GBM and mm—Table 3.

Table 2. List of top-15 highly-expressed pathways between GBM and I. stroke.

Pathway Name p-Value Database

Phagosome 4.6 × 10−6 KEGG-orthologs

Staphylococcus aureus infection 4.21 × 10−5 KEGG-orthologs

Photodynamic therapy induced HIF-1 survival signaling 0.000159 Wiki-Pathways

Leukocyte transendothelial migration 0.000292 KEGG-orthologs

Intestinal immune network for IgA production 0.000346 KEGG-orthologs

Antigen Processing and Presentation 0.0005171 BioCarta

Complement and Coagulation Cascades WP558 0.000605 Wiki-Pathways

Lung fibrosis WP3624 0.00077 Wiki-Pathways

Cell adhesion molecules (CAMs) 0.000777 KEGG-orthologs

IL 4 signaling pathway 0.000818 BioCarta

Inflammatory bowel disease (IBD) 0.000845 KEGG-orthologs

miR-509-3p alteration of YAP1/ECM axis 0.001055 Wiki-Pathways

Serotonin and anxiety WP3947 0.00105 Wiki-Pathways

Leishmaniasis 0.001232 KEGG

Th1 and Th2 cell differentiation 0.00230 KEGG-orthologs

Table 3. List of top-15 highly-expressed pathways between GBM and moyamoya.

Pathway Name p-Value Database

Serotonin and anxiety 0.000813 Wiki-Pathways

Propanoate metabolism 0.002895921 KEGG-orthologs

GPCRs, Class A Rhodopsin-like WP455 0.003858665 Wiki-Pathways

Leucine, valine, and isoleucine degradation 0.00642032 KEGG-orthologs
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Table 3. Cont.

Pathway Name p-Value Database

Amyotrophic lateral sclerosis 0.007222503 KEGG-orthologs

Neuroactive ligand-receptor interaction 0.010018848 KEGG-orthologs

Cytosolic DNA sensing pathway 0.010854501 KEGG-orthologs

D4-GDI Signaling Pathway 0.014908285 BioCarta

Pertussis 0.015517163 KEGG-orthologs

Peroxisome 0.018324143 KEGG-orthologs

Salmonella infection 0.019588053 KEGG-orthologs

Cardiac Protection Against ROS 0.027165345 BioCarta

C-type lectin receptor signaling pathway 0.027901009 KEGG-orthologs

Antigen Processing and Presentation 0.029598762 BioCarta

AMPK signaling pathway 0.0362706 KEGG-orthologs

We also discovered highly expressed Gene Ontology (GO) terms, especially for iden-
tifying molecular events associated with a disease. Therefore, popular DEGs between
two diseases were employed to obtain the list of GOs associated with a disease. The En-
richr was used to find GO terms enriched by shared DEGs. Enrichr introduces biological
processes (BP-2016) that are linked to DEGs so that they can be grouped into functional
categories [63,64]. Hence, this helps us learn more about the molecular processes and
biological relevance of DEGs. It was then narrowed down to only those processes and
terms with a relative p-value below 0.05. Between GBM and mm, 503 GO terminologies are
shared, where 138 are significant GO terms (p-value < 0.05). Likewise, GBM and I. stroke
have 652 shared GO terms, among which 193 are significant. Tables 4 and 5 summarize the
biological processes discovered, representing only the top 15 GO terms of BP-2016 for both
pairs (a) GBM and I. stroke and (b) GBM and mm.

Table 4. List of significant GO terminologies that are common between GBM and I. stroke.

Biological Process p-Value GO Id

Platelet degranulation 0.0000000607 GO:0002576

Regulated exocytosis 0.000000204 GO:0045055

Cytokine-mediated signaling pathway 0.00000144 GO:0019221

Extracellular matrix organization 0.00000383 GO:0030198

Regulation of endopeptidase activity 0.0000421 GO:0052548

Neutrophil degranulation 0.0000602 GO:0043312

Neutrophil activation involved in immune response 0.0000638 GO:0002283

Neutrophil mediated immunity 0.0000676 GO:0002446

Replicative senescence 0.000432 GO:0090399

Neutrophil migration 0.000606 GO:1990266

Positive regulation of DNA damage response,
signal transduction by p53 class mediator 0.00071 GO:0043517

Negative regulation of peptidase activity 0.000737 GO:0010466

Interferon-gamma-mediated signaling pathway 0.001049284 GO:0060333

Positive regulation of signal transduction by p53 class mediator 0.00105588 GO:1901798

Defense response to fungus 0.00105588 GO:0050832
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Table 5. List of significant GO terminologies that are common between GBM and moyamoya.

Biological Process p-Value GO Id

B cell activation involved in immune response 0.000469 GO:0002312

Post-transcriptional gene silencing by RNA 0.000913 GO:0035194

Gene silencing by miRNA 0.002719256 GO:0035195

Fatty acid biosynthetic process 0.006162594 GO:0006633

Cell morphogenesis 0.009570011 GO:0000902

Regulation of viral genome replication 0.010854501 GO:0045069

Monocarboxylic acid biosynthetic process 0.012560892 GO:0072330
Lipid biosynthetic process 0.014004804 GO:0008610

Positive regulation of action potential 0.014908285 GO:0045760

Positive regulation of cardiac muscle contraction 0.014908285 GO:0060452
Astrocyte activation 0.014908285 GO:0048143

Negative regulation of type I
interferon-mediated signaling pathway 0.014908285 GO:0060339

Acetyl-CoA biosynthetic process 0.014908285 GO:0006085

Regulation of hematopoietic stem cell differentiation 0.015517163 GO:1902036

Regulation of hematopoietic progenitor cell differentiation 0.015905777 GO:1901532

3.3. Protein–Protein Interactions (PPIs) Analysis

With the use of online-based tools such as STRING and Network Analyst, we built
putative PPI networks utilizing our enriched common disease genes. PPIs try to compen-
sate for the organism’s so-called interactomics, in which abnormal PPIs cause numerous
illnesses. One or more typically linked protein subnetworks are reported to be represented
by two diseases. PPI analysis revealed strongly interacting proteins employing topological
criteria, such as a degree higher than 15°. Figure 2A shows the PPI network between GBM
and mm. The network includes 59 nodes (genes) and 29 edges; the PPI network’s enriched
p-value is 0.232. Figure 2B demonstrates the PPI network for GBM and I. stroke, where
there are 55 nodes and 65 edges, where the PPI-network’s enriched p-value is 1.11 × 10−16.

Figure 2. Protein–protein interactions found using the shared significant genes. (A) PPI between
Glioblastoma and moyamoya. (B) PPI between glioblanstoma and Ischemic stroke.

The cytoHubba module was used to explore the most significant hub-proteins based
on the simplified PPI networks developed previously [65]. We found 14 hub proteins
between GBM and mm using four cytoHubba algorithms, and they are MCC, DMNC,
Degree, and EPC (as shown in Figure 3, 11 hub proteins are shared by all the algorithms:
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CASP1, PSMA3, PSMA4, TNPO1, PSMA2, MEFV, PSMA6, PSMB9, PSMB1, PYCARD, and
YME1L1, and three are shared by Degree and MCC: AK7, POLR3B, and POLR3E.
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Figure 3. Hub proteins identified using four different cytoHubba algorithms between Glioblastoma
and Moyamoya.

Similarly, we found 26 hub proteins between GBM and I. stroke, as shown in Figure 4.
All the four cytoHubba algorithms share 21 hub proteins: COL1A1, ANXA2, PPBP, SPARC,
TIMP1, SERPINE1, PECAM1, HLA-DRA, CXCR4, ALOX5AP, S100A12, BCL2A1, HLA-
DQA1, LCP2, GNB5, S100A8, PLEK, ARHGEF9, LCP1, IL2RG, and SLA; two are shared by
Degree, MCC, and EPC: TREML1 and F11R; two are shared by Degree, EPC, and DMNC:
SERPINA1 and NCF2; and only one is shared by Degree and EPC: ANKRD1. Although
further research into the activities of these newly discovered hub proteins is needed, they
might be potential therapeutic targets.
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Figure 4. Hub proteins identified using four different cytoHubba algorithms between glioblastoma
and Ischemic stroke.
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3.4. Determination of the DEGs’ Transcriptional and Post-Translational Regulators

Transcription factors (TFs) are nothing but proteins that govern the expression of the
identified significant genes in our case. In other words, the transcriptional process converts
genes into RNA or protein products. Transcription factors are found in all living organisms
and regulate gene expression. TF genes are significant because they regulate a variety of
biological processes [66,67]. miRNA plays a vital role in cellular processes and biochemical
and molecular functions [68]. As a result, changes in miRNA levels (enriched miRNA)
may affect metabolic processes, signal transmission, and transcription [69]. According to
this study, microRNAs play a role in various diverse biological characteristics related to
glioblastoma, such as cell growth, incursion, glioma stem cell activity, and angiogenesis
(blood vessel formation) [70]. Additionally, miRNA functions may aid in elucidating
the dysregulated signaling pathways and provide insight into the development of novel
therapeutic and diagnostic procedures [71].

In Figure 5, we visualize the DEGs-TFs and DEGs-miRNAs that controlled the gene
expression and multiple BP in a patient with glioblastoma and/or moyamoya. The
transcription- and post-transcription-level regulatory genes between GBM and mm in-
clude PCCA, YME1L1, PEX26, XYLT2, ZNF71, POLR3E, ZNF76, NRF1, TFDP1, ZNF610,
ZNF101, TNPO1, CNOT7, TMCO3, TGIF2, CEP57L1, IRF1, MAPK13, CREB3L1, SOX13,
LIMD1, RNF8, PSMB9, and FAM111A. The miRNAs, non-coding gene products, similar
for GBM and mm include: miR-522-5p, miR-1-3p, miR-146a-5p, miR-6499-3p, miR-34a-
5p, miR-7977, miR-6778-3p, miR-107, miR-374a-5p, miR-16-5p, miR-27a-3p, miR-124-3p,
miR-128-3p, miR-155-5p, miR-92a-3p, miR-24-3p, and miR-455-3p. Figure 6 represents
the TF-gene and gene-miRNA that regulate mechanisms of gilobastoma and I. stroke. TF-
genes that are included between GBM and I. stroke are PPARG, TGIF2, NFIC, SRF, IRF2,
GATA3, GABPA, GATA4, NCF2, MT2A, HOXA5, ALOX5AP, KDM1A, MLKL, SSRP1, S100A8,
NFKB1, GABRA1, CXCR4, TMEM71, YY1, RCOR2, HS3ST3B1, BAZ1A, F11R, PCSK5, E2F1,
SERPINA1, SREBF2, PRRC2A, LIMS1, GATA2, FOXA1, ARHGEF9, TP53, CREB1, ZEB1,
GNB5, FOXC1, SMAD5, PSMB9, ARL17A, IRF1, PNP, MLX, ANXA2, HMG20B, SERPINE1,
FOXL1, TFDP1, MTHFD2, COL1A1, HDGF, ZNF76, ATF1, and CREB3L1. The miRNAs are
miR-27a-3p, miR-6817-3p, miR-124-3p, miR-1-3p, miR-16-5p, miR-129-2-3p, miR-129-5p,
miR-26b-5p, miR-122-5p, miR-355-5p, miR-6778-3p, and miR-192-5p.

IRF1

TNPO1

NRF1

PCCA

MAPK13

PSMB9

TFDP1

ZNF76

LIMD1

RNF8

SOX13

YME1L1 CNOT7

TMCO3

PEX26

POLR3E

ZNF71
TGIF2

FAM111A

XYLT2

CREB3L1

ZNF101

ZNF610

CEP57L1

IRF1

TNPO1

NRF1

PCCA

MAPK13

PSMB9

TFDP1

ZNF76

LIMD1

RNF8

SOX13

YME1L1

CNOT7

TMCO3

PEX26 POLR3E

ZNF71

TGIF2

FAM111A

XYLT2

CREB3L1
ZNF101

ZNF610

CEP57L1

B. TF-gene from ENCODEA. TF-gene from JASPAR

C. Gene-miRNA from TarBase D. Gene-miRNA from miRTarBase

Figure 5. Visualization of the DEGs-TFs and miRNAs interactions between glioblastoma and moy-
amoya using various databases: JASPER and ENCODE for TF-gene; TarBase and miRTarBase
for gene-miRNA.
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Figure 6. Representation of the DEGs-TFs and miRNAs interactions between glioblastoma and I.
stroke using various databases: JASPER and ENCODE for TF-gene; TarBase and miRTarBase for
gene-miRNA.

3.5. Analysis of the Predicted Drugs

We predicted drugs using shared proteins that resulted from our analysis. A web
tool called Network Analyst was employed, which collected data from the DrugBank 5.0
database. We utilized 26 hub proteins shared between GBM and I. stroke to
discover the drugs as represented in Figure 7B. The protein–drug interaction
(Figure 7A) has ten nodes, including two genes (ANXA2 and SERPINE1) and eight chemi-
cal compounds (Alteplase, Tenecteplase, Urokinase, Plasmin, Troglitazone, Drotrecogin
alfa, Anistreplase, and Reteplase). Similarly, we used 14 shared hub proteins from GBM
and mm for drug prediction, as shown in Figure 7A. It involves nine nodes, including
CASP1 gene and eight chemical compounds (VX-765, IDN-6556, LAX-101, Pralnacasan,
Minocycline, 3-[6-[(8-HYDROXY-QUINOLINE-2-CARBONYL)-AMINO]-2-THIOPHEN-2-
YL-HEXANOYLAMINO]-4-OXO-BUTYRI ACID, 3-[2-(2-BENZYLOXYCARBONYLAMINO-
3-METHYL-BUTYRYLAMINO)-PROPIONYLAMINO]-4-OXO-PENTANOIC ACID, and 1-
METHYL-3-TRIFLUOROMETHYL-1H-THIENO[2,3-C]PYRAZOLE-5-CARBOXYLIC ACID
(2-MERCAPTO-ETHYL)-AMIDE).

ANXA2

Alteplase

CASP1

3-{6-[(8-HYDROXY-QUINOLINE-2-CARBONYL)-AMINO]-2-
THIOPHEN-2-YL-HEXANOYLAMINO}-4-OXO-BUTYRI ACID

3-[2-(2-BENZYLOXYCARBONYLAMINO-3-METHYL-BUTYRYLAMINO)-
PROPIONYLAMINO]-4-OXO-PENTANOIC ACID

1-METHYL-3-TRIFLUOROMETHYL-1H-THIENO[2,3-C]PYRAZOLE-
5-CARBOXYLIC ACID (2-MERCAPTO-ETHYL)-AMIDE

VX-765

IDN-6556

LAX-101

Pralnacasan

Minocycline

B. Glioblastoma and Ischemic StrokeA. Glioblastoma and Moyamoya

Tenecteplase

Drotrecogin alfa

Anistreplase

Reteplase

SERPINE1

Troglitazone

Plasmin

Urokinase

Figure 7. This figure shows the drug–protein interaction. (A) Glioblastoma and moyamoya.
(B) Glioblastoma and ischemic stroke.
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3.6. Validation of Transcriptomic Potential DEGs

We validated our potential DEGs of transcriptomic analysis by using literature-based
disease-gene association datasets such as DisGeNET [72], dbGaP [73], and Rare-Diseases-
AutoRIF. The data were created and validated using the previous study, including the
biomarker genes corresponding to diseases. In order to assess the shared genes’ statistical
significance and validate our findings, we employed EnrichR [41], an online program.
EnrichR utilized the shared genes with the disease-associated gene database to discover
the relevant data. Even though EnrichR gives disease-gene information for a variety of dis-
orders, we only take into account the information pertaining to the diseases we identified.

We further confirmed our findings by reviewing previous publications that discovered
biomarkers for the diseases. The literature associated with each gene is included in Tables 6
and 7. Ultimately, we created a diseasome network of GBM and its associated neurological
and vascular disorders, as shown in Figure 8. We developed this association map from the
gold benchmark database and previous literature review using Cytoscape [58].

Table 6. Transcriptomic analysis identifies potential target genes in GBM and mm that have been
verified by previous research.

Gene Gliobastoma Moyamoya

CASP1 Chen et al., [74]—2022 Kang et al., [75]—2010

GABRA1 D’Urso et al., [76]—2012 -

MLYCD Avsar [77]—2021 -

CARD14 - Constantin et al., [78]—2010

RNF213 Bao et al., [79]—2014 Fujimura et al., [80]—2014

LOXL2 Zhang et al., [81]—2020 -

HCAR1 Longhitano et al., [82]—2021 -

FPR2 Yang et al., [83]—2020 -

Table 7. Transcriptomic analysis identifies potential target genes in GBM and I. stroke that have been
verified by previous research.

Gene Gliobastoma I. Stroke

SPARC Golembieski et al., 1999 [84] Baumann et al., 2009 [85]

C1R Ma et al., 2021 [86] Mitaki et al., 2021 [87]

PPBP Lei et al., 2021 [88] Katnik et al., 2016 [89]

PECAM1 Warrier et al., 2021 [90] Beom et al., 2015 [91]

TIMP1 Aaberg-Jessen et al., 2009 [92] Worthmann et al., 2010 [93]

COL1A1 Sun et al., 2018 [94] Choi et al., 2019 [95]

FCAR Hassan et al., 2017 [96] -

MT2A Sun et al., 2018 [94] -

MTHFD2 Han et al., 2019 [97] Kasiman 2012 [98]

LCP2 Li et al., 2016 [99] Li et al., 2021 [100]

ALOX5AP Liu et al., 2020 [101] Bie et al., 2021 [102]

F11R Hattermann et al., 2014 [103] -

CXCR4 Cornelison et al., 2018 [104] Bang et al., 2012 [105]

ANXA2 Tu et al., 2019 [106] Li et al., 2021 [107]
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Table 7. Cont.

Gene Gliobastoma I. Stroke

IL2RG Ogawa et al., 2018 [108] -

PSMB9 - Chen et al., 2021 [109]

PLEK Hoelzinger et al., 2005 [110] Zeng et al., 2015 [111]

SERPINE1 Seker et al., 2019 [112] Bruno et al., 2021 [113]

BIRC5 Kim et al., 2016 [114] Chon et al., 2016 [115]

HLA-DQA1 Urup et al., 2016 [116] Zou et al., 2002 [117]

BCL2A1 - Lin et al., 2021 [118]

NCF2 Wang et al., 2020 [119] Zhou et al., 2021 [120]

GNB5 Xie et al., 2018 [121] Jung et al., 2018 [122]

GABRA1 D’Urso et al., 2012 [76] Feng et al., 2021 [123]

PLA2R1 Maruyama et al., 2021 [124] Berchtold et al., 2021 [125]

HLA-DRA Basta et al., 1998 [126] Liu et al., 2021 [127]
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Figure 8. Diseasome network for our study, where rectangle nodes define the diseases and ellipses
nodes define the genes associated with corresponding disease. (A) Diseasome network between GBM
and MM. (B) Diseasome network between GBM and I. stroke.

4. Discussion

According to current research, it is clear that glioblastoma is the most aggressive type
of brain cancer. It is also known that glioblastoma is responsible for an increased risk of
developing ischemic stroke [9]. Similarly, moyamoya disease develops in brain tumor
patients due to cranial irradiation during radiation therapy [128]. Thus, it is possible that
ischemic stroke and moyamoya may be formed in glioblastoma patients.

Hence, our study aims to identify genetic relationships between glioblastoma and
ischemic stroke as well as glioblastoma and moyamoya. Thus, doctors should be con-
cerned about ischemic stroke and moyamoya in glioblastoma patients. The bioinformatics
approach may comprehensively understand the molecular mechanisms in the specified
disease progression. In this study, we carried out an investigation on transcriptomic pro-
files of ischemic stroke, moyamoya, and glioblastoma (as shown Figure 1). Moreover, we
predicted the therapeutic drugs for the associations.

To determine if any significant dysregulation existed, we performed differential expres-
sion analysis (DEA) followed by identifying shared genes for glioblastoma, moyamoya, and
glioblastoma, ischemic stroke (as shown in Figures 9 and 10, respectively). We also demon-
strated diseasome network (in Figure 8), pathways (represented in Tables 2 and 3), Gene
Ontology (GO) (as shown in Tables 4 and 5), protein–protein interactions (in Figure 2), hub–
protein interactions (in Figures 3 and 4, respectively), drug–protein interactions (shown in
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Figure 7), and transcription factor gene interactions and gene miRNA interactions (repre-
sented in Figures 5 and 6 separately). In addition, a transcriptomic dataset (RNA-Seq) was
collected from ischemic stroke, moyamoya, and glioblastoma patients and healthy indi-
viduals (as shown in Table 1). We also verified our candidate genes by previous literature
published in various journals (as shown in Tables 6 and 7, respectively). The flow diagram
of our methodology is visually represented and outlined with proper direction in Figure 1.
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Figure 9. Representation of the significant genes found to be common for glioblastoma and moy-
amoya by transcriptomic-based investigation. (A) Venn diagram shows the significant common
biomarker genes. (B) Log-fold changes and p-value combined to generate a bubble plot for the com-
mon significant genes. (C) Heatmap that demonstrates the LogFC. (D) Heatmap that demonstrates
the p-value.
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Figure 10. Representation of the significant genes found to be common for glioblastoma and I. stroke
by transcriptomic-based investigation. (A) Venn diagram shows the significant common biomarker
genes. (B) Log-fold changes and p-value combined to generate a bubble plot for the common
significant genes. (C) Heatmap that demonstrates the LogFC. (D) Heatmap that demonstrates the
p-value.

At first, we focused on eight hub genes, named CXCR4, ANXA2, SPARC, SERPINA1,
NCF2, COL1A1, LCP2, and IL2RG, that are highly expressed in glioblastoma and ischemic
stroke (as shown in Figure 4). Astrocytes, neurons, bone marrow-derived cells, neural
progenitor cells, and microglia1 all have CXCR4, and CXCR4 expression is regulated
in a variety of clinical situations, including brain I. stroke [129]. There are many other
elements of brain tumor biology where CXCR4 is responsible for developing glioblastoma,
including cancer-related cells’ ability to resist radiotherapy and chemotherapy, and there
are migration and production of the blood supply to the tumor [130]. As a potential
candidate for invasion-boosting, and enriched in its initial stage of developing a brain
tumor, SPARC has been found and described [84]. SERPINA1 was shown to be expressed
in glioma tissue samples [131]. The latest study demonstrated six-fold enrichment of
SERPINA1 in human atherosclerotic in contrast to healthy ones to verify the involvement
of SERPINA1 in atherosclerosis [132]. SERPINE1 has been discovered as a regulator of
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GBM cell dispersion. Prevention of GBM tumor growth and invasiveness in the brain
was achieved by knocking down the SERPINE1 [112]. Both the CGA cancer database and
clinical evidence reveal that relatively high enrichment of NCF2 genes is associated with a
bad outcome in glioblastoma patients [119]. Overexpression or knockdown of COL1A1 was
used to examine the effect on glioma cell proliferation of COL1A1 [133]. LCP2 and IL2RG
are not reported. In future research, these genes can be further studied to prevent ischemic
stroke in GBM patients. Similarly, a hub gene named CASP1 was found between GBM
and moyamoya, as shown in Figure 3. CASP1 plays an important role in upregulating the
development of glioma [134,135]. Researchers can work on this gene to avoid developing
moyamoya disease in GBM patients.

For pathways, there are two pathways, named antigen processing and presentation
and serotonin and anxiety, that are common in glioblastoma, ischemic stroke, and moy-
amoya. In IDH-wildtype gliomas, the antigen processing and presentation (APP) score
is linked with the immunological score [136]. Antigen processing and presentation, DC
pathway, cytokine pathway, and IL-12 pathway were increased in the intracranial arteries
of patients with mm in this study [137]. The serotonin and anxiety pathway is known as
the monoaminergic system [138]. In addition, ischemic brain injury alters this route, and
the monoaminergic system may be a potential therapeutic target for stroke [139]. Therefore,
these four pathways can be a therapeutic target in order to prevent ischemic stroke and
moyamoya associated with glioblastoma patients. In addition, a pathway named leukocyte
transendothelial migration is activated, which is validated by a previous study between
glioblastoma and ischemic stroke. It is possible that an aberrant immunological condition
and the development of GBM are associated, and the leukocyte transendothelial migratory
pathway might be an indicator of that [140].

According to the information presented above, our technique has the potential to
disclose some of the essential mechanisms that underlie disease, as well as generate unique
theories about disease mechanisms and identify new biomarkers for disease. Genetic data
analysis is expected to be crucial for improving predictive medicine and uncovering path-
ways connecting with glioblastoma, ischemic stroke, and moyamoya, as well as identifying
potential therapeutic targets.

We made an effort to use prior research to validate each of our findings. However,
there is still a need for more in vivo and in vitro research. Due to their complexity, the
doctor must be concerned about ischemic stroke and moyamoya in glioblastoma patients.
Moreover, the prevention of ischemic stroke and moyamoya can be made possible by
inactivating mentioned pathways using the predicted drug.

A few limitations open the way for further research, such as the availability of brain-
related data from living organisms. Moreover, more specific clinical- and gene-level research
is required to better understand the complications by analyzing the candidate biomarkers
found in this work.

5. Conclusions

The current study used a statistical technique on the transcriptomic data to uncover
the shared significant genes that are highly enriched among glioblastoma, ischemic stroke,
and moyamoya patients. The study of the significant gene sets revealed the associated
dysregulated pathways that were also highly enriched. Protein–protein interactions, reg-
ulatory TFs from the survey of TF–gene interactions, and miRNAs from gene–miRNA
interactions were obtained by comparing the overlapped DEGs with distinct biomolecular
interaction networks and databases. Most of the transcription factors and microRNAs dis-
covered in this study are novel; no prior studies have implicated these genes or pathways
in developing these disorders or their connections. More studies still need to be performed
to validate these molecular signature biomarkers. This study looked at candidate genes
at protein and RNA levels, such as TFs, mRNAs and miRNAs, the pathway, and the GO
terminologies. Finally, we predicted the potential drugs for the associations. Moreover, the
results were validated using gold benchmark databases and published literature. These
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results show that genes in glioblastoma are more or less active in people with ischemic
stroke and moyamoya, which could help explain these diseases. It also demonstrates how
to find functional relationships between ischemic stroke and moyamoya, explaining why
they are linked to glioblastoma.
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