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Abstract

Ovarian cancer stands as the most lethal gynecologic malignancy and remains the fifth most 

common gynecologic cancer. Poor prognosis and low five-year survival rate are attributed to 

nonspecific symptoms at early phases along with a lack of effective treatment at advanced stages. 

It is thus paramount, that ovarian carcinoma be viewed through several lenses in order to gain a 

thorough comprehension of its molecular pathogenesis, epidemiology, histological subtypes, 

hereditary factors, diagnostic approaches, and methods of treatment. Above all, it is crucial to 

dissect the role that the unique peritoneal tumor microenvironment plays in ovarian cancer 

progression and metastasis. This short communication seeks to underscore several important 

aspects of the PI3K/AKT/mTOR/NFκB pathway in the context of ovarian cancer and discuss 

recent advances in targeting this pathway.
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Phosphoinositol 3 Kinase (PI3K)

Phosphoinositol 3 kinase (PI3K) defines a class of lipid kinases that have the ability to 

phosphorylate the inositol ring 3′-OH group in inositol phospholipids and therefore produce 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) [1]. PI3K encompasses a family of 

enzymes divided into: Class IA PI3K which includes three isomers (α, β, δ) and Class IB 

which include the group (γ) [2,3]. PI3K Class IA is comprised of a regulatory subunit p85 

along with a catalytic p110α subunit [4]. Mutations in the gene encoding the catalytic 

subunit of PI3K p110α, PIK3CA, are found in nearly 33% of clear-cell carcinoma cases 
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[5,6], 20% of endometrioid and clear-cell carcinomas [7], 18–28% of cases of serous 

cystadenocarcinoma, with enhancement of the signature of activated PI3K in the majority of 

ovarian cancer cases irrespective of the subtype [8]. PIK3CA mutations are considered 

driver mutations that provide transformative advantages for high grade serous cancer 

(HGSC) [9]. Multivariate survival analysis revealed that PI3K protein expression was 

associated with poor survival in advanced HGSC [10]. In addition, several studies have 

shown that the rate of mutations in the PI3K pathway, especially in AKT and p70S6K, 

including missense mutations and amplifications, is correlated with higher rates of 

chemoresistance [11,12]. Chemo-sensitization could be achieved via downregulation of 

PI3K and/or its downstream effectors, AKT and mTORC1 [13–15]. The increased activation 

of PI3K in OvCa and its role as a hub for several cancer-promoting pathways, explain its 

many implications in cancer progression including oncogenic transformation, cell 

proliferation, adhesion, and apoptosis, as well as multiple metabolic pathways, thus aptly 

positioning it as a target for therapeutic advancement [16–19].

Protein Kinase B PKB/AKT

The AKT/PKB family comprises a group of serine threonine kinases, which are cAMP- and 

cGMP-dependent [20]. Three AKT isoforms have been identified: AKT1 (PKBα), AKT2 

(PKBβ), and AKT3 (PKBγ) [1,21]. AKT1 is involved in cellular growth, angiogenesis, and 

tumor cell invasiveness. AKT is the main kinase which integrates upstream signals from 

PI3K and mammalian target of rapamycin complex 2 (mTORC2) with downstream signals 

to mTORC1 with subsequent activation of downstream substrates that induce cell cycle 

progression, protein synthesis, and cell growth [21], and dictate several cellular activities 

such as survival, proliferation, and migration [18,20,22]. Moreover, AKT promotes protein 

synthesis and cell growth through inhibition of tuberous sclerosis complex 2 (TSC2), and 

4E-binding protein 1 (4E-BP1), that inhibit cell growth in various cancer types, and regulate 

mRNA translation and cellular proliferation, respectively [17,21,23–25]. AKT is inhibited 

by tumor suppressors including phosphatase and tensin homolog (PTEN) and inositol 

polyphosphate 4-phosphatase type II (INPP4B). In ovarian cancer, AKT1 is mutated and 

AKT2 is amplified in about 40% [17,26]. Overexpression of AKT in OvCa is associated 

with advanced stage-platinum resistance [12,27]. Furthermore, data curated from The 

Cancer Genome Atlas (TCGA) revealed that the expression of AKT1, AKT2, and AKT3 

was associated with poor patient survival [28].

Mammalian Target of Rapamycin (mTOR)

mTOR comprises two biochemically and functionally independent catalytic complexes, 

mTORC1 and mTORC2. Both mTOR complexes are implicated in the induction of 

angiogenesis, proliferation, and cellular survival [2,29]. Phospho-mTOR activates two 

downstream targets: 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase (S6K). 

In aggressive cancers, 4E-BP1 functions as a hypoxia-inducible switch, allowing for 

translation of factors, and hence facilitating angiogenesis and anti-apoptotic cell growth 

[25,30]. Phosphorylated S6K is required for cell growth and G1 cell cycle progression 

[31,32]. mTORC1 is activated and overexpressed along with its downstream effectors, 

4EBP1 and p70S6K, in advanced HGSC [8,33] warranting the use of mTOR inhibitors as 
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targeted therapies in several clinical trials [34–37]. Consistently, analysis of TCGA data 

indicated that high expression of mTOR is associated with poor survival rates in patients 

with advanced stage HGSC.

Nuclear factor-κ light chain enhancer of activated B cells (NFκB)

Nuclear factor-κ light chain enhancer of activated B cells (NFκB) encompasses a group of 

transcription factors that are divided into two classes: Class I, which include NFκB1 or p50/

p105, and NFκB2 or p52/p100. Class II includes RelA/p65, RelB, and c-Rel [38,39]. The 

NFκB canonical pathway includes NFκB, IkBα, and RelA/p65. IkBα is phosphorylated by 

the Inhibitor of Nuclear Factor Kappa B Kinase (IKK) [40,41]. Upon phosphorylation of 

NFκB1, the IkBα subunit undergoes ubiquitination and subsequent proteasomal 

degradation. This allows p50 and p65/RelA to dimerize and translocate to the nucleus where 

the heterodimer induces transcription of genes involved in inflammation, cell growth, 

chemoresistance, and apoptosis [42–44]. Alternatively, the non-canonical pathway is 

activated when inflammatory cytokines, TNF and IL1, bind to their respective receptors and 

subsequently signal to NFκB inducing kinase (NIK) to activate the IKK complex [45]. High 

expression of the p65/RelA subunit of NFκB, along with cleaved caspase 3 confers poor 

outcomes in OvCa patients [46]. Jinawath et al., [44] demonstrated that inhibition of NFκB 

resulted in enhanced efficacy of cisplatin in vitro and in vivo OvCa models. Upregulation of 

the p65/RelA subunit of NFκB increased the resistance of OvCa to carboplatin [44], and 

significantly enhanced the aggressiveness of OvCa cells [47]. Our earlier report [28] showed 

that in HGSC data from TCGA, the expression of NFκB subunits, p65RelA, NFκB1 and 

NFκB2 as well as IKKβ were associated with poor patient survival.

PI3K/AKT/mTOR/NFκB Axis

The PI3K and NFκB pathways are involved in a complex crosstalk (Figure 1) which results 

in decreased survival rates in OvCa patients [48]. The PI3K catalytic subunit p110α and its 

regulatory subunit p85 have been shown to directly activate NFκB [49–51]. Overexpression 

of the p110α subunit induces p65/RelA activation and nuclear translocation. PI3K activation 

also phosphorylates AKT with subsequent activation of the p65/RelA subunit of NFκB via 

phosphorylation through the IKK complex. Phospho-AKT mediates the phosphorylation of 

IKKα allowing for it to phosphorylate IkB, and hence allowing NFκB to translocate into the 

nucleus [52]. Moreover, AKT can activate NFκB independently of IKK by directly 

phosphorylating the p65/RelA subunit [53]. Importantly, analysis of TCGA data revealed a 

positive correlation between the transcripts of PIK3CA, AKT1/2/3, as well as NFkB 
subunits [28].

Recent Advances in Targeting PI3K/AKT/mTOR/NFκB Axis

Several therapeutics are being developed in pre-clinical models to target PI3K/AKT/mTOR/

NFκB axis in ovarian cancer. A seminal study by Yoon et al., recently reported that methyl 

lucidone (ML) from the dried fruit of Lindera erythrocarpa makino (Lauraceae) exerted 

cytotoxic effects in the OvCa cell lines, SKOV3 and OVCAR3. Specifically, ML inhibited 

cell proliferation with significant cellular morphological changes, and apoptosis in SKOV3. 
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Mechanistically, ML induced apoptosis through cleavage of caspase-3/9 and Poly (ADP-

Ribose) Polymerase (PARP), allowing for the release of cytochrome C from the 

mitochondria, decreased expression of Bcl-2 and Bcl-xL, and prompted cell cycle arrest in 

the G2/M phase. ML also led to the repression of cyclin-A/B expression and stimulated 

cyclin-dependent kinase inhibitors p21 and p27. Importantly, ML exerted its inhibitory 

downstream effects by blocking the PI3K/AKT/mTOR/NFκB axis, manifested by 

significant downregulation of the levels of PI3K and phosphorylated AKT concomitant with 

nuclear translocation of NFκB and the total level of p-IkBα [54]. Another study reported 

that inhibition of YAP significantly suppressed the malignant behavior of OvCa cells, via 

regulation of the PI3K/AKT/mTOR pathway. Interestingly, a YAP inhibitor, peptide 17, 

inhibited OvCa progression by inhibiting the PI3K/AKT/mTOR pathway in vitro and in vivo 
[55]. In addition, Diaz-Cueto et al., [56] reported that pharmacologic inhibition of 

PI3K/AKT/mTOR, and ERK1/2 significantly reduced progranulin (PGRN) expression with 

subsequent inhibition of cell proliferation and survival in platinum-resistant TOV-21G cells 

[56]. Interestingly, a recent study reported that PI3K/AKT/mTOR/NFκB axis is activated by 

ghrelin, an endogenous ligand for growth hormone secretagogue receptor (GHSR), 

promoting ovarian cancer cell survival and cisplatin resistance [57]. Targeting the ghrelin/

ghrelin receptor pathway by ghrelin receptor antagonist, [D-Lys3]-GHRP-6 or the PI3K 

inhibitor, LY294002 significantly inhibited OvCa cell survival and sensitized them to 

cisplatin [57].

Clinically, a phase 2 clinical trial (NCT04055649), is ongoing using an orally active small 

molecule dopamine receptor D2 antagonist, ONC201, in combination with paclitaxel for the 

treatment of patients with platinum-resistant refractory or recurrent epithelial ovarian, 

fallopian tube, or primary peritoneal cancer. ONC201 was originally identified as a small 

molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and 

subsequently kills cancer cells by activating TRAIL death receptors [58]. Further 

investigation of the mechanism of action of ONC201 revealed that it acts through dual 

inhibition of AKT and ERK, [59], inhibition of NFκB and STAT3 [60] as well as inhibition 

of PI3K/AKT/mTOR [61] in a multitude of solid and hematologic malignancies, including 

ovarian cancer.
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Figure 1: 
PI3K/AKT/mTOR/NFκB Pathway in Ovarian Cancer. (Created with Biorender)
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