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Abstract: Deep learning has recently been gaining attention as a promising technology to improve
the identification of lesions, and deep-learning algorithms for lesion detection have been actively
developed in small-bowel capsule endoscopy (SBCE). We developed a detection algorithm for
abnormal findings by deep learning (convolutional neural network) the SBCE imaging data of
30 cases with abnormal findings. To enable the detection of a wide variety of abnormal findings, the
training data were balanced to include all major findings identified in SBCE (bleeding, angiodysplasia,
ulceration, and neoplastic lesions). To reduce the false-positive rate, “findings that may be responsible
for hemorrhage” and “findings that may require therapeutic intervention” were extracted from the
images of abnormal findings and added to the training dataset. For the performance evaluation, the
sensitivity and the specificity were calculated using 271 detectable findings in 35 cases. The sensitivity
was calculated using 68,494 images of non-abnormal findings. The sensitivity and specificity were
93.4% and 97.8%, respectively. The average number of images detected by the algorithm as having
abnormal findings was 7514. We developed an image-reading support system using deep learning
for SBCE and obtained a good detection performance.

Keywords: video-capsule endoscopy; deep learning; obscure gastrointestinal bleeding; angioectasia;
tumor

1. Introduction

Small-bowel capsule endoscopy (SBCE) is an easy and non-invasive procedure that
allows observation of the whole small bowel, which is difficult to achieve with conven-
tional endoscopes. However, SBCE takes more than 50,000 images, and reading such a
large number of endoscopic images imposes a large burden on physicians. To shorten the
reading time and reduce the misreading of lesions, several capsule-endoscopy-reading
algorithms have been developed that detect red-colored images [1,2] and reduce the num-
ber of capsule-endoscopic images by discarding similar images [3,4] or assist in detecting
abnormal candidate images. Since various findings (such as vascular, inflammatory, and
neoplastic lesions) are observed in the small bowel, there is a need to create an effective
lesion-detection algorithm that has a minimal false-positive rate and can detect a variety
of abnormalities with high sensitivity. Deep learning has recently been gaining attention
as a promising technology to improve the identification of lesions, and lesion-detection
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algorithms using deep learning have been developed. For example, lesion-specific algo-
rithms have been created for bleeding [5], hookworm [6], angioectasia [7,8], and mucosal
breaks [9,10]. More recently, studies have shown that various lesions in the small bowel
can be detected with high sensitivity by deep learning; however, there is no report of
the false-positive rate [11–13]. Moreover, most developed algorithms use the Medtronic
platform [7,8,10,11,13–16].

In the present study, we developed a lesion-detection algorithm for the Olympus plat-
form, using deep learning in collaboration with Olympus, and evaluated its performance
by assessing the sensitivity and the false-positive rate, which are important in achieving a
reduction in reading time.

2. Materials and Methods
2.1. Study Design

We conducted a retrospective study of 172 cases in which SBCE was performed by
the EndoCapsule 10 system (Olympus Corp., Tokyo, Japan). We assumed that the lesion-
detection algorithm had a mean sensitivity of 90% and followed the t-distribution, and
we set the number of cases for the validation so that the lower limit of the 95% confidence
interval was more than 80%. According to this calculation, 35 cases were required for the
validation dataset. In addition, we estimated that at least 30 cases would be required for
the training dataset, based on our experience in the development of a lesion-detection
algorithm using deep learning. Informed consent was obtained from all patients enrolled
in the study.

The validation dataset and training dataset comprised images selected from the 172 in-
cluded cases and were classified so that the findings were equally represented in each
dataset. To avoid biases in the validation result through the data selection, each case was
randomly allocated to either the training or validation dataset, by lesion category. More
specifically, the cases with abnormal findings were selected from the 172 cases and were
categorized into four lesion categories usually seen in SBCE (bleeding, angiodysplasia,
ulcer, and other). Cases within each lesion category were then equally and randomly allo-
cated to either the validation or training dataset. This resulted in 68 cases with abnormal
findings that were classified as bleeding (n = 17), angiodysplasia (n = 19), ulcer (n = 18), and
other (n = 14). Thirty-five cases were assigned to the validation dataset, and the remaining
thirty-three cases were assigned to the training dataset. An approximately equal number of
cases in each lesion category were allocated to the validation and training datasets. If the
number of cases in a lesion category was not divisible by two, the extra case was allocated
to the validation dataset (Figure 1).
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2.2. Training Dataset for the Lesion-Detection Algorithm with Deep Learning

To specify the image data to be used for training, 33 cases assigned to the training
dataset were re-read and abnormal findings were detected. If the lesion-detection algorithm
is trained using images with a negligible level of minor findings, the sensitivity of the
detection of minor abnormal findings will be improved. However, the false-positive rate
would likely worsen because slight changes in the endoscopic images would also be
detected, even though they were not abnormal. Therefore, to eliminate such drawbacks
and minimize the false-positive rate, we defined abnormal findings as a “finding that may
be a lesion responsible for bleeding” and a “finding that requires therapeutic intervention”.
Subsequently, three cases in the “other” lesion category were excluded from the training
dataset after re-reading.

The resultant training dataset consisted of 49,180 images with abnormal findings and
30,012 images without abnormal findings. The training dataset included 18 images of
bleeding, 70 of vascular lesions, 133 of ulcerative lesions, and 35 of neoplastic/other lesions.
A total of 256 findings were used for the training dataset.

2.3. Lesion-Detection Algorithm with Deep Learning

Recently, deep learning has shown a high level of performance for various image-
recognition tasks. In clinical research, deep learning has spread rapidly, and the convolu-
tional neural network (CNN) is most-used. The CNN is a very popular algorithm for image
classification and typically comprises convolution layers, activation-function layers, and
max-pooling layers. In the first convolution layer, each pixel value of the input images was
translated to the feature maps by multiplying the filter weights and sliding the filter over
the input images (Figure 2). After the first convolution layer, the subsequent convolution
layers were inputted into the feature map of the previous layer instead of the input image.
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In the algorithm we developed, ERFNet is used to automatically detect lesion images.
The CNN of ERFnet has a novel layer that uses residual connections and factorized con-
volutions in order to remain highly efficient while still retaining remarkable performance.
ERFNet is a deep network with hundreds of layers. The architecture and parameters such
as the number of layers, the channels, and the input/output size of each layer are used
without any particular modifications [17]. Using ERFNet, segmentation is performed on
capsule-endoscopic images to assign a lesion label or a non-lesion label to all pixels in each
image. To minimize the influence of misidentified pixels, after segmentation, if there are
more than a threshold number of lesion-label pixels in the image, the image is judged as a
lesion image.

2.4. Validation

The primary evaluation points were the sensitivity, specificity, and number of images
detected by the CNN algorithm as having abnormal findings. We considered that both
the specificity and the number of detected images (images detected by the algorithm as
having abnormal findings) were significant indicators to evaluate the effect of the decreased
false-positive rate in terms of reducing the burden of reading.

Regarding specificity, to confirm the effect of the decreased false-positive rate, normal
images were identified from the validation dataset. The criterion for detecting normal
images was defined as “images without either an abnormality or minor finding such
as small red spot or small lymphoid follicles”. Specificity was calculated based on the
number of images detected by the CNN algorithm as a percentage of the total number
of normal images that were identified. Although SBCE cases involve many images taken
throughout the gastrointestinal tract other than the small bowel, the present study focused
on small-bowel evaluation. Hence, the number of images detected by the CNN algorithm
was counted within the small-bowel section predefined in the validation dataset, and the
detection rate was calculated by dividing the number of detected images by the average
number of images taken in the small-bowel section.

In some patients with overt bleeding, blood covers most of the images taken after the
origin of bleeding. We assumed that the reader would not usually observe these images
in detail when reading such cases and that the number of detected images would not be
an appropriate indicator of the burden of the reading. Therefore, we also evaluated the
average number of detected images and the detection rate in the small bowel of only the
cases without massive bleeding.

Sensitivity was calculated based on the agreement rate between the images with
abnormal findings identified in the validation dataset and the detection result of the CNN
algorithm. The criteria for identifying abnormal findings were the same as for the training
dataset, as the detection targets of the lesion-detection algorithm were the images with
abnormal findings that directly contributed to the diagnosis.

3. Results

For the images in the validation dataset, the mean patient age was 69.3 years, and
there were 22 men and 13 women (Table 1). The major indication for SCBE was obscure
gastrointestinal bleeding, which accounted for 57% (20 cases), followed by anemia (14%).
A total of 271 findings were identified, consisting of 30 findings of bleeding, 46 of angiodys-
plasia, 153 of ulcers/erosions, and 42 of neoplastic lesions, including polyps and lymphoma
(Table 1). The total number of images without abnormal findings in the validation dataset
was 68,494.
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Table 1. Characteristics of the validation dataset.

Number of cases 35
Number of abnormal findings 271
Age, mean ± SD 69.3 ± 14.3
Gender male/female 22/13
Indication

OGIB 20
Anemia 5
Abdominal pain 2
Lymphoma 3
Polyp 2
FAP 1
Other 2

Abnormal findings
Bleeding 30
Angiodysplasia 46
Ulcer 110
Erosion 43
Polyp 12
Others 4
Lymphoma 26

OGIB; obscure gastrointestinal bleeding, FAP; familial adenomatous polyposis.

Regarding the performance of the algorithm, the specificity was 97.8%, and the average
number of images in the small-bowel section detected as having abnormal findings was
7514 per case. Among the 31 cases without massive bleeding, the average number of
detected images was 3576 per case. The average-detection rate (i.e., the number of detected
images divided by the average number of images taken in the small-bowel section) was
16.3% for the total 35 cases and 7.8% for the 31 cases without massive bleeding.

The sensitivity for each finding was 100% (30/30) for bleeding, 100% (46/46) for
angiodysplasia, 92.7% (102/110) for ulceration, 93.0% (40/43) for erosion, 83.3% (10/12)
for polyps, and 57.7% (15/26) for lymphoma (Table 2). Figure 3 shows examples of
images correctly detected by the CNN algorithm (true-positive images), while Figure 4
shows images incorrectly detected as having abnormal findings (false-positive images).
Representative false-negative images and the training data for the neoplastic lesions are
shown in Figure 5. All polyp images missed by the current algorithm were white polyps
(upper left, Peutz-Jeghers syndrome; upper middle, Peutz-Jeghers syndrome; upper right,
FAP). All of the malignant-lymphoma images missed by the developed algorithm in this
study were follicular lymphomas with white-lymph follicle-like bumps. In contrast, the
polyp training data were red polyps with pyogenic granuloma. The tumor image in
the training data used in this study was covered with bubbles and was very difficult
to distinguish.

Table 2. Performance of the CNN algorithm.

Sensitivity, % 93.4
Bleeding 100.0
Angiodysplasia 100.0
Erosion 93.0
Ulcer 92.7
Polyp 83.3
Lymphoma 57.7
Others 100.0

Specificity, % 97.8
Number of detected images 7514
Number of detected images excluding massive bleeding cases 3576
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Figure 4. Representative false-positive images detected by the CNN algorithm among the normal
image group. (A) White debris mistakenly identified as an ulcer, (B) normal blood vessel mis-
takenly identified as angiodysplasia, (C) dark part of a surface depression mistakenly identified
as angiodysplasia.

All polyp images missed by the current algorithm were white polyps (upper left,
Peutz-Jeghers syndrome; upper middle; Peutz-Jeghers syndrome; upper right, FAP). All
of the malignant lymphoma images missed by the developed algorithm in this study
were follicular lymphomas with white-lymph follicle-like bumps (middle left, follicular
lymphoma; middle center, follicular lymphoma; middle right, follicular lymphoma). In
contrast, the polyp training data were red polyps with pyogenic granuloma. The tumor
image in the training data used in this study was covered with bubbles and was very
difficult to distinguish.
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4. Discussion

We developed a CNN algorithm to detect a variety of clinically significant lesions
on images obtained by SBCE. Since the training dataset included images with abnormal
findings that contributed to diagnosis, the CNN algorithm developed in the current study
realized a high specificity and a relatively small number of detected images.

Previous reports have showed that lesion-specific algorithms have high sensitivity
and specificity for angioectasia (approximately 98%–100%) [7,8], erosion (88.2%), and
ulceration (90.9%) [10]. A meta-analysis showed that the pooled sensitivity and specificity
for the detection of ulceration are 95% (95% confidence interval [CI], 89–98) and 94%
(95% CI, 90–96), respectively [18]. Thus, CNN algorithms show high levels of diagnostic
performance for angioectasia and erosion and ulceration in SBCE. In contrast, the lesion-
detection performance of a previous CNN algorithm for polyps is relatively low (sensitivity
90.7%, specificity 79.8%) [19]. Similarly, our CNN algorithm developed to detect various
lesions had a relatively low sensitivity for polyps (83.3%), although the overall sensitivity
was relatively high (93.4%). The CNN algorithm developed in the current study also
showed a lower sensitivity for lymphoma than for the other findings. After reviewing the
images of neoplastic lesions in the training dataset, we assumed that the reason that our
CNN algorithm had a decreased sensitivity for polyps and lymphoma was because the
training dataset did not include images with similar characteristics to the false-negative
images (Figure 5). In SBCE, the prevalences of polyps and lymphoma are relatively low;
however, there is a variety of abnormalities such as vascular and neoplastic lesions in the
small bowel. Hence, for use in clinical practice, it is important to develop an algorithm that
can effectively detect polyps and lymphoma, with increased sensitivity for detecting all
small-bowel lesions. To improve the CNN algorithm developed in the present study, there
is a need for additional training data including cases with polyps and lymphoma.

The present results show that high specificity can be achieved by appropriately se-
lecting training data; however, we consider that further improvements can be made in the
future by examining the false-positive images (examples of which are shown in Figure 3).
The main findings incorrectly judged by the CNN algorithm (i.e., the findings seen in the
false-positive images) were the assessment of white debris as an ulcer, a normal blood vessel
as angiodysplasia, and a dark part of the surface depression as angiodysplasia (Figure 4). If
the algorithm results in many false-positive images (e.g., normal vessels identified as abnor-
mal findings), this may greatly increase the reading time because inexperienced physicians
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may need to spend a lot of time determining whether such findings are normal or abnormal.
It is necessary to contrive ways to further improve the specificity of the algorithm, while
maintaining the high sensitivity; this may be achieved by training the CNN algorithm with
normal images rather than only adjusting the training dataset of abnormal findings, as this
could cause a decrease in sensitivity.

The conventional-reading method takes around 30 to 75 min to observe all the images
taken in the small bowel [3,20,21]. The CNN algorithm developed in the present study
reduced the number of small-bowel images requiring reading to 7.8%, excluding cases
with massive bleeding. It is not easy to estimate the reading time directly based on the
number of reading images because the reading time varies depending on the experience
of the reader and the diseases of the patient being examined. However, if we assume that
the number of detected images is substitutable for the number of images requiring reading
in the small bowel, the reading could potentially be completed within 10 min with the
CNN algorithm. Two comparative studies demonstrated that the reading time of SBCE is
around 3 to 5 min using a CNN algorithm in the clinical setting [12,14]. In daily practice, a
reduction in reading time will enable a quick diagnosis and notification of the results to
the patient, which is especially important for patients requiring urgent treatment. From
this perspective, it is very important to prove the effectiveness of the CNN algorithm in the
actual clinical setting. Therefore, it is necessary to demonstrate the effect of the reduced
reading time by conducting further study to compare the detection rates between the
conventional reading method and the reading using the CNN algorithm.

5. Conclusions

In the present study, we developed a lesion-detection algorithm with a high specificity
and a reduced number of detected images, which may contribute to a shortened reading
time. By conducting appropriate extra training with neoplastic lesions, it is expected that
the proposed algorithm can be applied to a SBCE-reading-support system to assist in
detecting images of lesions in the future.
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