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With the rapid advancement of spatial multi-omics technologies, the simultaneous analysis of
molecular profiles and spatial locations has provided unprecedented insights into cellular
heterogeneity and tissue microenvironments. However, data sparsity and the diversity of data
distributions hinder the effective integration and analysis of spatial multi-omics data. In this study, we
propose a novel ensemble learning framework based on dual-graph regularized anchor concept
factorization, named SMODEL, for detecting spatial domains from spatial multi-omics data. SMODEL
employs an element-wise weighted ensemble strategy to integrate multiple base clustering results,
and leverages anchor concept factorization and dual-graph regularization to learn robust spatial
consensus representations. We evaluated the performance of SMODEL on both real and simulated
spatial multi-omics datasets, encompassing various technologies, tissue types, and species.
Experimental results demonstrate that SMODEL not only outperforms existing methods in spatial
domain identification but also effectively captures tissue structure, thereby enhancing the

understanding of cellular heterogeneity.

Cell heterogeneity is a fundamental characteristic of the tissue micro-
environment and plays a key role in physiological and pathological
processes'. Accurate identification of cell types is a crucial step in under-
standing cell heterogeneity and serves as the foundation for downstream
analyses. With the development of single-cell sequencing and spatial omics
sequencing technologies, we can use clustering analysis methods to cate-
gorize cells in tissues into different clusters based on their molecular char-
acteristics. These advanced techniques enable us to systematically reveal the
distribution patterns of cells within tissues and their potential biological
significance’.

The advancement of single-cell sequencing techniques has enabled the
simultaneous analysis of multiple molecular modalities, including mRNA,
chromatin accessibility, and DNA methylation, within individual cells®.
Compared to single-cell mono-omics data, single-cell multi-omics data
provide a more comprehensive view of cellular heterogeneity, offering
valuable insights into the complexity of biological systems"’. Different
omics data provide complementary insights on cells and their micro-
environments. For example, transcriptomics focuses on gene transcription
levels, including mRNA and non-coding RNA, reflecting the gene expres-
sion status of cells. Proteomics analyzes the composition, abundance,
modifications, and interactions of proteins, elucidating protein functions.

Metabolomics investigates the types and quantities of small molecular
metabolites within cells, reflecting the metabolic state of cells and their
responses to environmental stimuli. Epigenomics, on the other hand,
explores DNA methylation, histone modifications, and chromatin accessi-
bility, revealing the regulatory mechanisms of gene expression. However,
relying solely on single-omic data often fails to comprehensively and
accurately capture the subtle differences and heterogeneity among cells.
Researchers have developed various computational methods for clus-
tering multi-omics data, which can be broadly categorized into traditional
methods and deep learning-based methods. Traditional methods primarily
rely on statistical models for modeling. For example, MOFA+ is a statistical
framework designed for integrating single-cell multimodal data, using
variational inference to reconstruct low-dimensional representations of the
data, thereby enabling joint modeling of variations across multiple sample
groups and data modalities’. Seurat v5 leverages graph theory to connect
cells with similar patterns by learning cell-specific weights, constructing a
weighted nearest-neighbor graph to achieve multi-omics data fusion®. Other
traditional methods include GRMEC-SC’ and Mowgli'’. On the other hand,
deep learning has emerged as a powerful tool for integrating multi-omics
data. For instance, totalVI uses a modeling strategy similar to scVI'' to
integrate CITE-seq data, which encompasses both RNA and cell surface
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protein information, providing a comprehensive and scalable framework
for multi-omics data integration through variational inference'”. MultiVI
integrates multimodal information from single-cell transcriptomics, chro-
matin accessibility, and other molecular characteristics based on deep
generative modeling principles, creating a joint latent space for paired and
unpaired samples"”. scMIC integrates cell attribute information and struc-
tural relationships between cells from both local and global perspectives
based on deep multi-level information fusion principles, reducing redun-
dant information between different omics at the cellular and feature levels'.
Other deep learning-based methods for multi-omics data integration
include scMDC'®, BABEL', and scMM"". However, these methods are
designed for single-cell multi-omics data and overlook the crucial spatial
information related to tissue structure and the microenvironment context.

Spatial location information plays a critical role in cell type
identification, as cells of the same type often exhibit specific spatial
distribution patterns closely related to particular functional
domains'®. These spatial distribution patterns, known as spatial
domains, are regions within a tissue where cells with similar mole-
cular profiles and functions are spatially organized””. Spatial
domains can reflect the functional states of cells and their interac-
tions within the tissue microenvironment. For example, in the
immune microenvironment, the spatial distribution patterns of dif-
ferent immune cell subpopulations may directly reflect their func-
tional states. Compared to single-cell sequencing technology, spatial
multi-omics sequencing integrates molecular profiles with spatial
location, enabling researchers to investigate cellular heterogeneity
within the spatial context of tissues*". Currently, various technologies
can simultaneously measure spatial multi-omics data on the same
tissue section, such as DBiT-seq”?, CUT&Tag-RNA-seq”, SPOTS™,
MERSCOPE”, and Nanostring CosMx™. Recently, various compu-
tational methods have been developed for cell clustering and spatial
domain identification in spatial multi-omics data. For example,
SpatialGlue uses graph neural networks with dual attention
mechanisms to integrate data modalities and reveal histologically
relevant structures”’. PRAGA uses dynamic graphs and prototype
contrastive learning for spatial data integration”. COSMOS utilizes
graph neural networks to extract complementary information from
two omics, enabling the integration of spatial multi-omics data to
identify spatial domains®. MISO can integrate multiple modalities
from various spatial omics datasets and serves as a versatile algorithm
for feature extraction and clustering™. However, despite the progress
made by these methods, finding a single approach that consistently
performs well across all scenarios remains challenging. While
ensemble learning shows promise for improving algorithm perfor-
mance and stability, existing approaches rarely consider the
reliability of results from different clustering methods, leaving them
susceptible to being influenced by the outcomes of poor-performing
methods™.

To address these challenges, we propose a novel ensemble learning
framework, named SMODEL, for identifying spatial domains from spatial
multi-omics data. First, to ensure robust performance across diverse sce-
narios, we introduce an element-wise weighted ensemble strategy that
comprehensively integrates the results from multiple base clustering
methods, enhancing the accuracy and robustness of spatial domain iden-
tification. To reduce excessive reliance on base clustering outcomes, we
project multi-omics data with varying features into a shared low-
dimensional representation using anchor concept factorization. This
approach reduces redundant information caused by noise and adaptively
captures the diversity and complementary relationships among different
data modalities. Finally, to address the complex manifold structure of spatial
data and the nonlinear relationships between cells”*, we incorporate high-
order information between cells and preserve the geometric structure of the
original data manifold through graph regularization. This effectively miti-
gates issues related to spatial smoothing and ensures the integrity of spatial
relationships.

We evaluated the robustness and versatility of SMODEL on diverse
spatial multi-omics datasets from various platforms, including spatial
transcriptomics, proteomics, and epigenomics. Experimental results
demonstrate that SMODEL outperforms existing methods in identifying
medullary structures within human lymph node datasets. By effectively
leveraging complementary information from spatial proteomics and tran-
scriptomics, SMODEL provides deeper insights into the tissue micro-
environment, particularly in applications such as breast cancer tissue
analysis. In addition, SMODEL enhances the interpretation of spatial gene
expression patterns in spatial epigenomic-transcriptomic datasets and
effectively integrates spatial triple-omics data while maintaining interpret-
ability. It excels at uncovering consistent and complementary information
across different omics. These results highlight the remarkable capability of
SMODEL in integrating spatial multi-omics data, revealing cellular het-
erogeneity, and advancing our understanding of tissue structure and
function.

Results

Overview of the SMODEL framework

In this study, we developed SMODEL, an ensemble learning algorithm that
integrates spatial multi-omics data in a spatially informed manner to ana-
lyze cellular heterogeneity. The schematic representation of SMODEL is
illustrated in Fig. 1 (detailed descriptions are provided in the “Methods”
section). SMODEL is based on the ensemble learning framework,
employing the spatial neighborhood structure between cells and the clus-
tering results of various methods as graph constraints, thereby enabling low-
dimensional embeddings to effectively preserve positional information as
well as base clustering results. The input data for SMODEL comprise the
expression matrix of spatial multi-omics data, spatial coordinates, and
multiple base clustering results, which are utilized to construct the dual-
graph regularized anchor conceptual decomposition integration model. To
ensure optimal performance across diverse scenarios, we employed a dual-
graph regularization that simultaneously incorporates multiple base clus-
tering results and spatial location information. This approach guarantees
that the learned spatial consensus representations integrate the strengths of
different methodologies while preserving the geometric structure of the
original data manifold. Based on the Euclidean distance between any two
points in low-dimensional representation, the spatial pseudo-expression
(SPE) can be calculated using the 15 nearest neighbors*. SMODEL can be
applied to a variety of downstream analysis tasks, which facilitates the
elucidation of organizational heterogeneity.

Benchmarking SMODEL against existing methods on the human
lymph node dataset

To evaluate the spatial domain identification performance of SMODEL, we
applied it on human lymph node datasets that contain spatial transcriptomics
and protein expression profiles of two samples. The datasets were generated
from 5-pm thick sequential sections of formalin-fixed, paraffin-embedded
(FFPE) lymph nodes using the CytAssist Visium platform by 10x Genomics.
Ground truth annotations from SpatialGlue” were employed to assess spatial
domain identification accuracy and compare SMODEL against seven
representative multi-omics methods (Supplementary Note 1).

The manual annotations for human lymph node sample Al encom-
passed 10 structural categories, including the pericapsular adipose tissue and
capsule as the outer layers, and the cortex and medulla along with their
associated sinuses, cords, and vessels as core internal structures (Fig. 2A).
The visualization of spatial domain identification results across the eight
methods for sample Al (Fig. 2B) highlights the robust performance of
SMODEL. The capsule, a fibrous and collagenous membrane enclosing the
lymph node, was identified by all algorithms except for scMIC and COS-
MOS. The cortex, which is critical for immune responses mediated by B cells
and T cells, was accurately recognized by SpatialGlue, Seurat, totalVI,
PRAGA, and SMODEL, whereas scMIC and MOFA+ failed to detect it.
SMODEL effectively discriminated between these spatial domains, thereby
enhancing our understanding of their distinct biological roles and spatial
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Fig. 1 | Schematic overview of SMODEL. SMODEL is a novel dual-graph reg-
ularized ensemble learning algorithm designed for integrating spatial multi-omics
data. It integrates anchor bases learning, ensemble learning, and spatial consensus
representation learning into a unified model. Additionally, SMODEL incorporates
high-order information between cells, thereby preserving the local and global

ensemble matrix E

similarities of the original data in the low-dimensional manifold. Finally, an
element-wise weighting ensemble strategy is employed to integrate multiple base
clustering results, achieving optimal performance in multiple scenarios. The output
of SMODEL can be readily utilized for various downstream analysis tasks.

organization. Medulla cords are deeply embedded in the innermost region
of the medulla of the lymph node, while medulla sinus is a luminal space
similar to blood vessels in the medulla, and the two are intertwined with each
other in a staggered layout, which makes it difficult to distinguish between
them morphologically””. SMODEL effectively distinguished between these
spatial domains, thereby enhancing our understanding of their distinct
biological roles and spatial organization.

To quantitatively assess the clustering performance, we employed
multiple quantitative metrics™. These metrics included five supervised
evaluation methods: accuracy (ACC), Normalized Mutual Information
(NMLI), Purity, F-score, and Adjusted Rand Index (ARI)”. Higher values of
these metrics indicate better performance of the method for spatial domain
identification. In Fig. 2C, we can see that SMODEL outperforms other
methods on all the supervised metrics, and its position in the radar graph is
closest to the edge, which indicates that it achieves high scores on all these
supervised metrics. In addition, we introduced two unsupervised evaluation
metrics: the Average Silhouette Width (ASW) and the Davies-Bouldin
Index (DBI). ASW evaluates clustering quality by measuring the intra-
cluster cohesion of data points and their separation from other clusters™. A
higher ASW value indicates a better clustering performance. DBI quantifies
the ratio between the tightness and separation of clusters, with lower DBI
values implying better clustering”. Figure 2D further demonstrates the
superior performance of SMODEL on the ASW metric, with a value of
0.184, which is the highest among all the baseline methods, implying that
SMODEL performs the best in maintaining cluster tightness and separation.
Meanwhile, SMODEL achieves the lowest DBI value of 1.457 among all
baseline methods, further confirming its superiority in spatial domain
identification (Fig. 2E).

Similar results were obtained by applying the same method to another
human lymph node sample D1 (Supplementary Fig. 1-3), indicating the
generalization ability and robustness of SMODEL. Overall, these results
demonstrate that SMODEL can efficiently identify medullary structures in
human lymph node datasets and outperform the existing methods.

Dissecting breast cancer tissue microenvironment

using SMODEL

To test whether SMODEL can fully utilize the complementary information
provided by spatial proteomics and spatial transcriptomics to deepen the
understanding of the tissue microenvironment. We evaluated SMODEL
against seven baseline methods (SpatialGlue, scMIC, totalVI, Seurat,
MOFA+, PRAGA, and COSMOS) using spatial multi-omics data from
mouse breast cancer, comprising 1978 spots, 18,932 genes, and 32 proteins.
From Fig. 3A, we can observe that SpatialGlue and PRAGA exhibited strong
spatial consistency during clustering but showed considerable noise in
boundary transition areas. scMIC displays numerous discontinuous regions
and fails to effectively capture the spatial integrity of individual domains.
The clustering results of totalVI were spatially more dispersed compared to
other methods. The clustering results produced by Seurat exhibit overly
uniform cell population distributions at tissue boundaries, failing to accu-
rately capture boundary-specific cellular characteristics. MOFA+ demon-
strates good regional continuity in spatial clustering, but struggles with
unclear boundaries in transitional areas. The results of COSMOS reveal
relatively regular, block-shaped spatial domains. Notably, SMODEL exhi-
bits a significant advantage in terms of clustering performance. Compared
to other methods, SMODEL can clearly identify Cluster 1 (purple) and
Cluster 2 (green). This suggests that SMODEL can reveal specific features
that other methods fail to identify, which may be crucial for understanding
the biological properties and functions of cell groups.

To further investigate the biological significance of the clusters iden-
tified by SMODEL, we conducted differential gene expression analysis to
identify spatially variable genes (SVGs) within each cluster (Fig. 3B). Using
the Wilcoxon rank sum test in combination with the FindAllMarkers
function, we identified SVGs with a log, fold change threshold of 0.25.
Further filtering of the marker genes was conducted based on an adjusted
p-value threshold of p < 0.05. The volcano plot revealed that Argl, which
encodes arginase 1, was significantly upregulated in cluster 1. The gene
expression signature of cluster 1 aligns with the established transcriptional
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Fig. 2 | SMODEL improves the spatial domain detection performance on the
human lymph node dataset. A Ground truth annotation of human lymph node
sample A1l. B Spatial plots generated by SpatialGlue, scMIC, total V1, Seurat, MOFA
+, PRAGA, COSMOS, and SMODEL in lymph node sample Al. C Radar chart of
the Accuracy, NMI, Purity, F-score, ARI for lymph node sample A1 predicted by
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SpatialGlue, scMIC, totalV1, Seurat, MOFA+, PRAGA, COSMOS, and SMODEL.
D Bar plots displaying ASW values, where a higher value indicates a better spatial
domain detection accuracy. E Bar plots displaying DBI values, where a lower value
indicates a better spatial domain detection accuracy.

profile of M2 macrophages, which is characterized by high levels of Argl
expression (Supplementary Fig. 4). The pronounced expression of Argl
within this cluster not only serves as a molecular marker of M2 macrophage
polarization but also underscores its potential as a therapeutic target for
modulating the immunosuppressive components of the tumor
microenvironment®. Fig. 3A also shows that cluster 1, as M2 macrophages,
may establish an immunosuppressive boundary at the tumor edge, which is
related to immune depletion and the inability of the body to effectively fight
the tumor, which is consistent with the results of previous studies*’. The
boxplot shows the average log, fold change in the SVGs for Cluster 2,
comparing the data before and after SMODEL denoising. Notable differ-
ences are observed between the two conditions. The average log, fold change
after denoising with SMODEL showed improved performance compared
with the raw data (Fig. 3C), higher average log, fold change values suggest
that genes are more easily detectable. SMODEL increased the fold change
between genes, enabling the identification of additional differential genes
that would otherwise remain undetected. This highlights SMODEL’s
potential to reveal biomarkers that may be overlooked by other methods.
Kaplan-Meier plots for Svopl and Serpinil showed significant differences in
overall survival between high-expression and low-expression groups.
Patients with high Svopl expression, identified as an optimistic prognostic

biomarker, exhibited better survival outcomes (p < 0.05) (Fig. 3D), whereas
high Serpinil expression, considered a pessimistic prognostic biomarker,
correlated with worse survival (p < 0.05) (Fig. 3E). We also performed
functional analysis of the SVGs (Supplementary Table 1), which were
enriched in pathways closely related to macrophage polarization and cell
state transitions.

Additionally, these SVGs are significantly enriched in the JAK/
STAT signaling pathway, which is closely associated with macrophage
polarization and interactions within the tumor microenvironment.
Tumor-associated macrophages, one of the most common immune
infiltrating cells in the tumor microenvironment, play a pivotal role in
tumor initiation and progression. MO macrophages can differentiate into
the classically activated pro-inflammatory M1 phenotype and the alter-
natively activated anti-inflammatory M2 phenotype®. M1 macrophages
collaborate with Th1 cells and innate lymphoid cells (ILCs) to drive the
type 1 immune response. This response mechanism involves the release
of cytokines, such as tumor necrosis factor-alpha (TNF-«), activation of
cytotoxic T cells to produce reactive oxygen species (ROS), induction of
antibody-mediated cytotoxic responses, and direct phagocytosis of tumor
cells, demonstrating significant anti-tumor effects”™*. After M1 macro-
phages release anti-inflammatory cytokines in damaged areas, M2
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Fig. 3 | SMODEL can reveal heterogeneity of tissue microenvironment in breast
cancer samples. A Spatial plots generated by SpatialGlue, scMIC, totalV1, Seurat,

MOFA+, PRAGA, COSMOS, and SMODEL in a tissue section of MMTV-PyMT
breast cancer, with each color representing a cluster. B Volcano plot displaying the
significantly upregulated and downregulated genes, with the top three markers per
cluster highlighted. Upregulated genes are shown in red, while downregulated genes

are marked in blue. C Boxplot comparing the average log, fold change values of
SVGs before and after SMODEL denoising. D, E Survival curves of SVGs identified
by SMODEL in breast cancer samples obtained from the TCGA database.

F Schematic of the macrophage polarization mechanism in breast cancer. Some
icons were created by https://biorender.com/.

macrophages are attracted to the primary tumor site, where substances
produced by type 2 ILCs and Th2 responses, such as interleukin (IL)-10,
are present. These substances further trigger a type 2 immune response,
activate M2 macrophages, promote the accelerated growth, invasion, and
metastasis of tumor cells, increase angiogenesis and lymphangiogenesis,
and enhance the immunosuppressive state of the tumor®. Further
investigation of the underlying signaling mechanisms showed that the
STAT3 pathway plays a critical role in M2 polarization. SMODEL
uncovered Lepr as an upstream regulator of the STAT3 pathway, crucial
for M2 macrophage polarization (Fig. 3F). Specifically, activation of Lepr
leads to the phosphorylation of JAK2, which then phosphorylates and
promotes the dimerization of STAT3 protein, activating the STAT3
pathway and boosting cell growth, survival, migration, and invasion. The
increase in IL-10 induced by Lepr signaling contributes to the formation
of an immunosuppressive microenvironment that facilitates tumor
immune evasion. These findings indicate that Lepr could serve as a
potential therapeutic target, as inhibiting this signaling pathway may

counteract the pro-tumor effects of M2 macrophages and boost anti-
tumor immunity.

In conclusion, SMODEL not only shows superior performance in
spatial domain identification but also offers mechanistic insights into tumor
microenvironment heterogeneity. The ability of SMODEL to integrate
spatial transcriptomics and spatial proteomics provides a robust framework
for the identification of clinically relevant biomarkers. It offers valuable
insights into the complexity of the tissue microenvironment and holds
significant potential for advancing targeted clinical therapies and improving
prognostic assessments.

SMODEL enhances gene expression patterns in spatial
epigenome-transcriptome data

We applied SMODEL to the epigenomic-transcriptomic dataset of mouse
brains at postnatal day 22, derived from spatial-ATAC-RNA-seq”. This
dataset demonstrates a high degree of consistency with anatomical anno-
tations based on Nissl staining, accurately reflecting the regional
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Fig. 4 | Integration results of SMODEL on samples with spatial epigenome-
transcriptome data from the mouse brain dataset. A Anatomically annotated
mouse brain images were obtained from the Allen Mouse Brain Atlas. B Spatial plots
generated by SpatialGlue, scMIC, MultiVL, Seurat, MOFA+, PRAGA, COSMOS,

and SMODEL for the P22 mouse brain sample acquired using spatial-ATAC-RNA-
seq, with each color representing a distinct cluster. C Spatial distribution of layer-
specific genes in the coronal section of the P22 mouse brain identified using
SMODEL, alongside raw data for comparison.

characteristics of the mouse brain. In this study, we referenced the adult
mouse coronal brain anatomical annotations provided by the Allen Brain
Atlas”, which primarily encompasses key brain regions such as the cortex
(CTX), corpus callosum (CC), lateral ventricle (VL), striatum (Str), anterior
commissure (aco), and lateral septal nucleus (LS) (Fig. 4A). To visually
compare the performance of the different methods in integrating the mouse
brain epigenome-transcriptome dataset, we visualized the results of Spa-
tialGlue, scMIC, MultiVL, Seurat, MOFA+, PRAGA, COSMOS, and
SMODEL (Fig. 4B). It was observed that, except for MultiVI, all other
baseline methods were able to identify some major regions, such as the core
structure (CP) of the striatum in CTX and Str. However, not all methods
perfectly corresponded with the anatomical annotations from Allen Brain.
In contrast, SpatialGlue and SMODEL could clearly distinguish different
layered structures in CTX, which was highly consistent with the anatomical
annotations.

The development of the mouse brain is a highly complex and finely
regulated biological process that depends on the coordinated expression and
precise silencing of numerous genes. During this developmental process,
distinct spatial domains are established within the brain, reflecting not only
the functional differentiation of brain regions, but also the spatial patterns of
gene expression. To further understand and validate the potential of
SMODEL in revealing the spatial patterns of gene expression, we analyzed
the spatial expression patterns of specific marker genes. SMODEL com-
puted the 15 nearest neighbor cells for each cell based on the spatial con-
sensus representation P, and the average gene expression data of these
nearest neighbor cells were used as SPE for that cell. Compared with the raw

expression data, SPE significantly enhanced the expression levels of certain
layer-specific genes (Fig. 4C). In the Str, we found that the expression level of
Pdel0a was significantly higher than in other brain regions, and the role of
this gene in the striatum is closely related to neuronal signaling and reg-
ulation. PdelOa affects neuronal excitability by regulating intracellular
cAMP levels*. The CC contains structures such as the genu of the cgenu of
corpus callosum (ccg) and the external capsule (ec), serving as the primary
connection pathway between the two hemispheres of the brain®. The high
expression of Mbp and Tspan2 is closely associated with the myelination
process in this region. Mbp plays a crucial role in the stability and function of
myelin, while Tspan2 may be involved in intercellular interactions and
signaling’””". The CTX, located in the peripheral area of brain tissue and
occupying the largest area, is the center of higher cognitive functions,
exhibiting significant organizational layering characteristics”. We found
that the expression pattern of Mef2c in CTX was particularly distinct. The
VL isa cavity structure filled with cerebrospinal fluid, and the distribution of
cell types within its cavity and surrounding areas provides valuable infor-
mation for studying gene expression in the regions surrounding the
ventricles™. Notably, the expression pattern of DixI exhibited clear regional
specificity for VL.

Using SMODEL, we significantly enhanced the quality of spatial
transcriptomics data by improving marker expression levels, enabling a
more accurate representation of expression profiles across different brain
regions. In summary, these findings highlight the remarkable ability of
SMODEL to effectively integrate spatial epigenomic-transcriptomic data
and improve the visualization of spatial expression patterns.
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Performance on spatial triple omics integration

Leveraging the anchor concept factorization framework for multi-omics
integration, SMODEL is capable of processing not only spatial data from
two omics but also extending its functionality to more than three omics. Asa
case study, we applied SMODEL to integrate spatial triple-omics data
simulated using nonnegative spatial factorization decomposition across
three omics modalities: RNA, ATAC, and ADT.

Compared to the baseline methods (SpatialGlue, scMIC), SMODEL
demonstrates superior performance in matching the ground truth (Fig. 5A).
Individual modalities (modality 1, modality 2, and modality 3) exhibited
incomplete or noisy patterns. Specifically, the determination of factor 1 was
facilitated by the synergistic contributions of modality 1 and modality 3.
Factor 2 was identified through a composite analysis involving modality 1,
modality 2,and modality 3. Factor 3 was exclusively identified by modality 2,
and factor 4 was uniquely identified by modality 3. The imputed modality,
derived from the sparse RNA modality, improves the initial patterns, but
does not match the accuracy and resolution of other methods. Among the
baseline methods, SMODEL is one of the two methods that can accurately

identify four factors with minimal noise. The poor performance of scMIC
may be attributed to its failure to leverage spatial information, underscoring
the importance of spatial information in spatial multi-omics analysis. A
radar plot summarizing the evaluation metrics, including NMI, AR, purity,
accuracy, and F-score, showed that SMODEL generally outperformed
SpatialGlue, scMIC, and other modalities. Notably, the performance of
SMODEL across these metrics highlights its superior clustering and spatial
integration capabilities (Fig. 5B). We quantified the contribution of each
modality to the final integration results (Fig. 5C). SMODEL assigns weights
to each modality, with modality 2 contributing the most (50.5%), followed
by modality 3 (30.7%), modality 1 (9.5%), and imputed modality (9.3%).
This distribution highlights the ability of SMODEL to effectively prioritize
relevant information across modalities. The bar plot illustrates the weights
assigned to each modality for different factors (Fig. 5D). Modality 3
maintained a relatively balanced weight across all factors, with a slight
increase in factor 5, suggesting that this modality provides complementary
information that enhances the accuracy of the integrated dataset. This
adaptive weighting mechanism ensures that the integrated results capture
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the essential spatial patterns embedded in the spatial triple omics data.
Moreover, to evaluate noise robustness, we introduced varying levels of
sparsity (0.1-0.9) to the non-zero elements of simulated RNA, ADT, and
ATAC. As shown in Supplementary Fig. 5, SMODEL demonstrated
superior stability characteristics under sparse conditions when compared to
other methods.

Overall, these results highlight the robustness and interpretability of
SMODEL in integrating spatial triple-omics data to uncover spatial
relationships.

Evaluation of Hyperparameter Selection and Ablation Analysis

To evaluate the impact of hyperparameters on the performance of our
method, we conducted sensitivity analyses and ablation experiments.
Ablation studies further assess the contributions of individual components,
providing insights into the reliability and robustness of the computational
model. The 3D hyperparameter landscape (Fig. 6A) reveals significant
variations in the NMI score across different values of A and 8, with moderate
values indicating a region of stability. Based on a comprehensive analysis of
the hyperparameter landscape, it is recommended to set A to 1 and f3 to 0.9
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for datasets with fewer than 1500 cells. Conversely, for datasets with more
than 1500 cells, the default parameters should be adjusted to A = 10 and
B =0.2. This differentiation is critical to accommodate the increased com-
plexity and variance associated with larger datasets, thereby ensuring that
the model maintains its effectiveness and efficiency. Furthermore, the loss
curve (Fig. 6B) demonstrates a rapid decline in the objective value during the
initial optimization steps, with convergence occurring within 40 iterations.
This highlights the efficiency and stability of the SMODEL optimization
process. Building on this, an analysis of the NMI performance across varying
anchor numbers underscores the impact of anchor selection on clustering
accuracy. The results indicate that an anchor number of 100 offers the best
trade-off between the accuracy and computational efficiency (Fig. 6C). As
the number of anchors increases, the computational time increases sub-
stantially, with 200 anchors significantly increasing the time costs compared
with 100 anchors (Fig. 6D). This trade-off highlights the importance of
selecting an appropriate anchor number to balance performance and effi-
ciency in spatial domain reconstruction. Therefore, we recommend a
default anchor value of 100. The evaluation of performance metrics across
different numbers of neighbors (Fig. 6E) reveals a consistently stable per-
formance, with the best results achieved when using three neighbors. Fur-
thermore, the ablation study (Fig. 6F) highlights the importance of each
component within the SMODEL framework, as the complete model con-
sistently outperforms all ablated versions across all metrics.

In conclusion, we recommend a default parameter configuration
(A =10, =0.2, anchor = 100, KNN = 12), which is generally suitable for a
wide range of data types and applications. Users may further adjust these
parameters based on specific requirements to achieve optimal performance.

Discussion

Spatial multi-omics sequencing technology enables the simultaneous ana-
lysis of multiple omics data, such as transcriptomics, proteomics, and
chromatin accessibility, within individual cells. This approach provides a
comprehensive molecular view of tissues while revealing the spatial loca-
tions of cells, offering a more complete representation of cellular states.
Spatial domain identification is a critical step in uncovering cellular het-
erogeneity from spatial omics data, facilitating a deeper understanding of
tissue organization and functional distribution. With the accumulation of
spatial multi-omics data, integrating various types of omics data for spatial
domain identification has become essential for systematically elucidating
the molecular mechanisms underlying cellular heterogeneity. However,
developing a universally optimal method for spatial domain identification
remains challenging due to the diverse distributions of data, which can
significantly affect model performance across different scenarios.

In this study, we introduce SMODEL, an ensemble learning framework
designed to integrate spatial multi-omics data for spatial domain identifi-
cation. Through extensive analysis on five spatial multi-omics datasets,
including real and simulated data across different techniques, tissues, and
species, we demonstrate the effectiveness of SMODEL in identifying spatial
domains. The results highlight the robustness and interpretability of
SMODEL in capturing complex spatial relationships while fully leveraging
the complementary information provided by spatial multi-omics data. This
capability enables in-depth analysis of tissue microenvironments and
enhances the understanding of spatial gene expression patterns.

Unlike graph neural network models commonly used for analyzing
spatial multi-omics data” ", SMODEL leverages anchor concept factor-
ization to extract low-dimensional manifold features. This approach
emphasizes the semantic relevance between anchor bases and cell cluster
centers, enabling projection learning of concepts defined by the association
matrix derived from omics expression data with varying adaptive con-
fidence levels. This process yields a unified spatial consensus representation.
Furthermore, SMODEL integrates spatial location information and spatial
domain identification results from existing methods, demonstrating
exceptional performance across diverse scenarios. Specifically designed for
spatial multi-omics data, SMODEL incorporates preprocessing techniques
tailored to the unique characteristics of spatial multi-omics data and is

extensible for analyzing additional omics types in practical applications. Its
key advantages include modularity, interpretability, robustness, and flex-
ibility, making it a powerful tool for spatial multi-omics data analysis. While
SMODEL demonstrates superior performance in terms of accuracy and
robustness, we acknowledge that its iterative optimization framework
introduces additional computational cost compared to some deep learning-
based methods. Spatial domain identification is typically performed as an
offline analysis task, where the primary objective is to achieve high accuracy
in delineating biologically meaningful domains. Given its non-real-time
nature, improving the accuracy of domain identification has been our main
focus. However, improving computational efficiency remains an important
direction for future research.

The rapid advancement of spatial multi-omics technologies has
enabled the acquisition of multi-dimensional data, offering diverse and
complementary views of the same cell at an unprecedented resolution and
scale. We plan to extend SMODEL to integrate additional types of omics
data, thereby enabling more comprehensive biological insights and
improving its scalability to large-scale and high-resolution datasets. Building
on this foundation, we will incorporate image data generated by spatial
sequencing technologies, particularly hematoxylin and eosin (H&E) stain-
ing images, to integrate spatial multi-omics data from a high-resolution
perspective. Additionally, we will develop algorithms for integrating spatial
multi-omics data across continuous tissue sections, thereby improving the
efficiency of spatial domain identification and enhancing the potential to
uncover cellular heterogeneity.

Methods

Data preprocessing

Spatial multi-omics datasets were downloaded from the Gene Expression
Omnibus (GEO) Data Center (https://www.ncbi.nlm.nih.gov/geo/). The
data were preprocessed using the SCANPY package™. For all datasets, cells
outside the primary tissue region were removed. For the spatial tran-
scriptome, raw expression data were filtered and log-transformed based on
library size. Only the top 3000 genes were retained for downstream analysis
based on the differences in gene expression. For the spatial epigenome, latent
semantic indexing (LSI) dimensionality reduction was performed. Spatial
proteomes were preprocessed by normalization and scaling. The expression
matrix of different omics is denoted by X" e RP 1"y = 1,2, V), the
spatial position coordinates are denoted by Y € R™*2. Detailed descrip-
tions of each dataset are provided in Supplementary Note 2 and Supple-
mentary Table 2.

The sparse omics imputation

Due to technical limitations, most spatial transcriptomics technologies still
result in incomplete expression measurements and a high number of
missing values. To address these issues, imputation methods are essential for
filling in missing data, thereby improving the overall interpretability of the
data. The expression of gene j within cell i can be estimated through a
process that considers both the spatial proximity to neighboring cells and
the expression similarity to nearby genes. Specifically, the imputed
expression value X7, is calculated using the spatial similarity between cells
based on Euclidean distance, effectively reflecting the spatial relationships
among cells:

P
LSy BX. ifX;=0
dz::l/jd d ij (1)

xe =79
X otherwise

y
ij

Here, the weight f; is determined by the decay factor p, which ranges
from 0 to 1 with a default value of 0.5, and the cell spatial similarity G* based
on Euclidean distance:

By =P X G(Xy, Xig) (2)
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and Q normalization terms:
j4
Q=) G(X;Xy) 3)
d=1

In addition to spatial similarity, gene expression similarity is also considered.
X‘fj is the imputed expression value based on the cosine similarity G* between
genes, which accounts for the genetic relationships that may not be captured
by spatial proximity alone.

Finally, the imputed value for gene jin cell i is selected as the maximum
of the cell-based imputation Xj; and the gene-based imputation Xf;, ensuring
that the most reliable estimate is used:

X;; = max(X§, X§) 4)

Anchor concept factorization

Spatial multi-omics data offer a comprehensive view of individual cells,
revealing their intricate biological processes from multiple perspectives. To
extract the intrinsic consistency within these spatial multi-omics datasets
and obtain a more accurate spatial consensus representation for cell het-
erogeneity analysis, we introduce an anchor concept factorization™:

4
Sa, xW —A(")W(V)PHIZ;

min
AV, WO P o, v=1 )
T
st. AV AW =

where a, can adaptively learn the corresponding weights from the spatial
multi-omics data®. || - || is the Frobenius norm. A® € RP*™ is the
anchor base of a specific omic, on which orthogonality constraints are
applied to make different omics anchor bases independent from each other
and more discriminative. Anchors are strategically chosen as the cluster
centroids derived from the original data space through the execution of the
k-means algorithm, ensuring that they encapsulate the inherent structure of
the data. W® € R™*¥ denotes the association matrix with conceptually
related anchor bases, a connector between spatial multi-omics data, anchor
bases, and spatial consensus representation that collects interaction
information and correctly indicates semantic cues. P € R**" is the spatial
consensus representation matrix of cells, recording cell expression to the
conceptual projections defined by W". The anchor concept factorization
represents each individual concept as a linear combination of cells, which in
turn allows each cell to be expressed as a linear combination of concepts”’.
Due to the clear semantics of the linear coefficients, it is straightforward to
learn the consensus information of the same cell across multi-omics
datasets. According to equation (5), this framework can simultaneously
investigate three key components: a high-quality set of anchor bases, a set of
coefficient representations that elucidate the correlations between these
anchors and the underlying concepts, and a spatial consensus representa-
tion that integrates the diverse contributions of spatial multi-omics data. Itis
important to note that these components are not operating in isolation;
rather, they are interwoven in a way that fosters a synergistic interaction.
This interplay is crucial as it allows the framework to leverage the collective
strength of each component, enhancing the overall analytical power and
providing a more comprehensive understanding of the complex biological
systems under study.

Element-wise weighted ensemble strategy

In order to utilize the different clustering results obtained from the currently
available models, we introduce an ensemble learning strategy, and denote
the result of the d-th base clustering as B= {rr", --- , 7}, with cls(x;) denoting
the category that the i-th cell belongs to in the d-th cluster, and construct the

initial ensemble matrix E of the d-th base clustering as:

1, dsy(x;) = clsy(x;
o ) = elsy(x) ©
y 0, clsy(x;) # clsy(x;)
The ensemble matrix E, is constructed by averaging over E:
1L
Ey =+ > E 7)
d=1

Considering the remarkable diversity among cells, we have found that
different basic clustering methods perform unevenly when dealing with
different types of cells. Some methods may outperform on some types of
cells, but not as well on others. In order to more fully exploit the advantages
of each base clusterings, we decided to weight the base clusterings element by
element at the cell level. We construct the set of 7 nearest neighbors of cell i
for the ensemble matrix E, as follows:

T =A{x;, %} ®)

where ij, -+ , i, are the column numbers corresponding to the largest T
elements in the i-th row of E,,.

A high similarity between the set of T-nearest neighbors of a cell and the
cluster to which the cell belongs may imply that the algorithm used is able to
accurately identify similarities and differences between cells, thus effectively
grouping similar cells together. This similarity may reflect cellular interac-
tions, common biological processes, or similar microenvironments. We use
the Jaccard coefficient to obtain the correlation weight matrix w;; to analyze
the similarity between the 7-neighborhood sets and clusters of cells, which
helps to gain a deeper understanding of the biological properties and
functions of cells.

_ |7, N clsy(x;)]
il lesy ()] = |7 0 clsg(xy)

Wid )
where || represents the number of elements in the set. The better the d-th
base clustering is for the i-th cell, the larger the w;;. The element-weighted
ensemble graph E is calculated as:

D 1
E= Z (wawhy © E4,
d=1

(10)

where © represents the matrix dot product. To achieve a stable repre-
sentation of E, we iteratively update the weighted matrix
W, = {wy, wy, ==+ , wp}. This process involves following the procedures
outlined in equation (8) through equation (9), which guide the generation of
the updated weight matrix and its corresponding values. The iterative
updating continues until the condition y < 107, where:

| Eipy — Eillp
— il F (1)
“ I E;lI»

The element-wise weighted ensemble strategy in SMODEL is inher-
ently flexible and modular, allowing users to select and combine base
clustering methods based on dataset characteristics and specific analytical
objectives. There are no strict requirements on which methods must be used,
aslong as they generate valid clustering results that can be incorporated into
the ensemble graph (Supplementary Note 3). Notably, SMODEL does not
depend on any single base method. Instead, it leverages the diversity and
complementarity of multiple methods, with the ensemble mechanism
effectively integrating their strengths while compensating for individual
method limitations.
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Construction of spatial location graph

Valuable insights into high-dimensional data can be derived by analyzing
samples embedded within lower-dimensional manifolds. Consequently, it is
essential to thoroughly consider the geometric structure of the data within
these manifolds. The Euclidean distance effectively captures the spatial
relationships among data points and is less influenced by outliers. We use
the Euclidean distance to compute the similarity matrix K of cell i at spatial
location coordinates (Y;,, Y;,).

(12)

In manifold learning and spectral graph theory, local invariance is
simulated by discretizing the near-neighbor selection of data points to
efficiently capture local geometries. Employing the p-nearest neighbor
graph(p-NNG) approach™ to get similar cells close enough in cell space to
obtain the cell space network G. This approach ensures that similar cells
remain proximate, thereby preserving the intrinsic structural information of
the dataset.

1, if i € NP(j) andj € NP(i)
N; =1 o, if i¢ N?(j) and j ¢ N? (i) (13)
0.5, otherwise
G; = N; XK, (14)

where N°(i) and N’(j) denote the sets of p nearest cells to cell i and cell j,
respectively.

In order to explore the global information between cells on the basis of
local information, we constructed a global co-correlation matrix to describe
the higher-order similarity between cells. In the real world, if two people
have a lot of common friends, it is very likely that these two people are
acquaintances. Inspired by this phenomenon, We use the Pointwise Mutual
Information (PMI) matrix™ to capture the high-order topological structure
M among cells in the network G, Specifically, the element 1;; of M is defined
as follows:

Gy,
——— —logx

ij = o8 (15)
d d,-dj

where Gj; represent the weight between the i-th and j-th cells in the cell
spatial network G. d; denote the degree of the I-th cell in the network (i.e.,
the number of edges connected to it). d; and d; are the degrees of the i-th
and j-th cells, respectively. The parameter « is typically set to 1 by default.
The construction of the PMI matrix is based on the statistical analysis of
co-expression patterns among cells, which allows us to identify cell pairs
that influence each other not just directly, but through a series of
intermediate steps. M as a higher-order topology of the network G
enhances the representation of similar relationships between cells. This
provides a more accurate characterization of the topology of the
network.

Dual-graph regularization

To achieve optimal results across multiple scenarios, we construct an
element-weighted ensemble graph E which integrates clustering results
from multiple methods, and a higher-order network graph M which cap-
tures the high-order relationships in spatial multi-omics data. These two

obtain the final objective function:

\4
min > a, || X — AW p|2
A‘V’,W(""P‘av y=1

+ATr(P(BLy + (1 = B)Ly)PT)
st AW AV =]

(16)

where L and L, are the graph Laplacian matrices of E and M, respectively.
For example, Ly = Dy — W, where D, is the degree matrix and Wg is the
adjacency matrix. These Laplacian matrices serve to preserve the local
geometry of each graph structure in the spatial consensus representation P
by penalizing large variations between connected nodes, thereby enforcing
local smoothness and structural coherence. The parameters A and /3 are
hyperparameters that control the strength of the regularization and the
balance between the two graph structures, with values ranging between 0
and 1. This problem can be addressed using an alternating optimization
algorithm, which iteratively optimizes each variable while keeping the others
fixed. After learning the final spatial consensus representation P, k-means is
applied to identify specific cell types, thereby facilitating a deeper
understanding of the functional relationships and heterogeneity within
tissue regions.

SMODEL optimization
We employed an alternate minimizing algorithm strategy to address the
problem in equation (16) mentioned above. Specifically, we decomposed the
entire objective function into several subproblems and optimized one
variable individually, while keeping the other variables fixed.
AY-subproblem: To isolate the impact of A’ on the objective function,
we fixed all other variables at a constant level. Under these controlled
conditions, the objective function can be reformulated in terms of A" alone
as:

\4
min Y, || X — AVWOP|Z
AV 21

17)
st. AW AW =]

Given that each individual A® is independent with respect to different
spatial omics, the equation (17) can be reconstructed as:

max Tr(AVTBY), st

AMT A0 1
AW m

(18)

where B” is defined as BY) = X" pTwT = X(V)[W(V)P]T. By employing
the Singular Value Decomposition (SVD) method®, B*) is expressed as
UpZ5VE. Consequently, A is then computed as follows:

W®-subproblem: By maintaining the other variables constant, W’
can be updated through the solution of the following problem:

\4
min ) a, || X¥ — AYW"p|2 20
mir ; I I (20)

Similarly, the optimization problem with respect to each independent
W® can be reformulated to:

min Tr(PT WO W P) — 2Tr (PT WWTAWT X))

graphs jointly guide the learning of the spatial consensus representation P. A W (21)
dual-graph regularization term is added to the initial objective function to
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By taking the derivative of equation (21) with respect to W and setting
it to zero®™, we derive the subsequent update rule for W®:

w® — (A(V)TX(V)PT) (PPT)—l (22)

P-subproblem: By maintaining the other variables constant, P can be
updated through the solution of the following optimization problem:

\4
min > a, | XY = AYWYP|E 4+ A Tr (PBLg + (1 — B)Ly)P")
v=1
(23)

To obtain the update rule for P, we calculate the derivative of equation
(23) with respect to P and equate it to zero. The detailed derivation is
presented in the Supplementary Note 4, resulting in the following:

\4
> a, WOTAVTAYWOP 4 PABL, + (1 — B)Ly]
v=1

) 24)
— Z a, WWT AWT )

v=1

Equation (24) can be rewritten in the standard form of the Sylvester
equation as follows:

XP+PY =2 (25)
where
\4
X = Z a, WWT AWMT 40 ()
v=1
= MBLg+ (1 —P)Ly] (26)
7 = XV: «, WOT AT x ()
v=1

When there are no shared eigenvalues between X and Y, equation (26)
has a unique solution®. Thus, the update for P can be expressed as:
P = sylvester (X, Y, Z) 27)
Here, the sylvester (-) function solves the Sylvester equation and
returns matrix P as the solution.
a,-subproblem: To quantify and optimize the adaptive confidence
level weights «,, we consider the reconstruction error of each omic. Initially,
the weights for each omic «, are set to be equal, i.e., &, = %, where Vis the
total number of omics. With the weights «, fixed, the objective function is
optimized by minimizing the weighted reconstruction error for each omic.
The weights are updated based on the inverse of the reconstruction error,
ensuring that omics with lower reconstruction errors receive higher weights.
Specifically, the weights are updated as follows:

1
&, =
v x™ _A(V)W(V)p”F

(28)

where || - ||z is the Frobenius norm.

According to the nature of the alternating optimization process, the
objective function value decreases monotonically with each iteration. This
equation (28) implies that if the reconstruction error || X*) — AYW®YP||is
small, indicating that the v-th omic is reliable and informative, the corre-
sponding weight «, will be large. Conversely, if the reconstruction error is
large, suggesting that the v-th omic is less informative or noisy, a smaller
weight will be assigned to it™.

Complexity Analysis

Time complexity. The computational complexity of SMODEL con-
sists of three parts, corresponding to the optimization of its key
components. The first part is anchor concept factorization. For the v-
th omic, computing the reconstruction term AYW"P involves
O(p,mk + mkn) operations. Updating A" with orthogonality con-
straints requires O(p,m?), updating W costs O(m?k), and updating a,
requires O(1). The second part is ensemble learning, which involves
constructing an ensemble similarity matrix using d base clustering
results and deriving a corresponding Laplacian matrix. This
step requires O(dn?) operations. The third part is dual-graph reg-
ularization. Computing the manifold Laplacian incurs O(nk)
operations, and combining Laplacians as well as solving for the con-
sensus representation P adds another O(kn®+ k*n) operations.
Therefore, the total time complexity of SMODEL over T iterations is
given by:

O(T(V(paxmk + mkn + p. . m* + m’k) + dn® + kn?)),

where T denotes the number of iterations, p, is the feature dimension of the
v-th omic, p,.. = max(p,,p,,...,py)), m is the number of anchors, k
denotes the latent dimensionality of the spatial consensus representation P,
and n is the number of cells. Since typically # > p,, m, k, the time complexity
is dominated by O(T(d + k)n?).

Space complexity. The main memory consumption of SMODEL comes
from storing the input omic matrices X' ™ ¢ RP**" the anchor matrices
AW ¢ RV the weight matrices W® e R™** and the low-
dimensional representation P € R¥*", contributing a total of
O(VP ot + VDo + Vimk + kn) in space. Additional memory is
required to store the ensemble similarity matrix E and the Laplacian
matrices Lg and Ly, each of size n x n, contributing an additional O(n?)
space. Thus, the total space complexity is:

O(Vp it + Vpooum + Vimk + kn + n?),

which is dominated by the O(r*) term when dealing with large-scale datasets
where the number of cells # is significantly larger than other dimensions.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

All data analyzed in this paper are available in publicly available datasets.
The in-house human lymph node datasets and spatial triplet omics data
were acquired from SpatialGlue. The MMTV-PyMT breast cancer datasets
can be found in the GEO repository (GSE198353, https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE198353).  The  spatial-epigenome-
transcriptome mouse brain datasets can be downloaded from AtlasXplore
(https://web.atlasxomics.com/visualization/Fan). The source data of the
main figures are at Supplementary Data 1.

Code availability

The code for the SMODEL algorithm is implemented in MATLAB, and the
source code is accessible online at https://github.com/liying-1028/
SMODEL. The SMODEL code has been archived on Zenodo and is also
available at https://doi.org/10.5281/zenodo.15598653%.
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