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Cellular senescence, a stable cell division arrest caused by severe damage

and stress, is a hallmark of aging in vertebrates including humans. With

progressing age, senescent cells accumulate in a variety of mammalian tis-

sues, where they contribute to tissue aging, identifying cellular senescence

as a major target to delay or prevent aging. There is an increasing demand

for the discovery of new classes of small molecules that would either avoid

or postpone cellular senescence by selectively eliminating senescent cells

from the body (i.e., ‘senolytics’) or inactivating/switching damage-inducing

properties of senescent cells (i.e., ‘senostatics/senomorphics’), such as the

senescence-associated secretory phenotype. Whereas compounds with seno-

lytic or senostatic activity have already been described, their efficacy and

specificity has not been fully established for clinical use yet. Here, we

review mechanisms of senescence that are related to mitochondria and their

interorganelle communication, and the involvement of proteostasis net-

works and metabolic control in the senescent phenotype. These cellular

functions are associated with cellular senescence in in vitro and in vivo

models but have not been fully exploited for the search of new compounds
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to counteract senescence yet. Therefore, we explore possibilities to target

these mechanisms as new opportunities to selectively eliminate and/or dis-

able senescent cells with the aim of tissue rejuvenation. We assume that

this research will provide new compounds from the chemical space which

act as mimetics of caloric restriction, modulators of calcium signaling and

mitochondrial physiology, or as proteostasis optimizers, bearing the poten-

tial to counteract cellular senescence, thereby allowing healthy aging.

Introduction

Aging is a complex process driving progressive decline

of functionality and regenerative potential of tissues.

One hallmark of aging is cellular senescence, a state of

stable cell division arrest caused by severe damage and

stress, leading to cellular dysfunctions among others in

metabolic signaling, intra-organelle signaling, pro-

teostasis, and mitochondria. Senescence is involved in

tissue homeostasis, embryonic development as well as

inhibition of tumor progression [1]. During aging,

senescent cells accumulate in multiple organs and com-

promise tissue function, essentially caused by the

unique property of senescent cells to secrete a bunch

of pro-inflammatory and damage-inducing molecules,

commonly referred to as the senescence-associated

secretory phenotype (SASP). SASP components are

causally involved in molecular and cellular changes

giving rise to pathological manifestations and frailty.

Hence, senescence is most likely a defining feature of

human age-related diseases, including obesity, diabetes

mellitus type 2, cardiovascular disease, skin aging, and

cancer [2,3] (Fig. 1).

Although considerable progress has been achieved in

the field of cellular senescence, it is still not clear

whether the appearance of senescent cells is causative to

or a mere consequence of the aging process. Elimination

of senescent cells has been shown to extend both lifes-

pan and health span of different organisms [2]. Still,
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there is an increasing demand for the discovery of new

classes of small molecules, which would either avoid or

postpone cellular senescence by selectively eliminating

senescent cells from the body (i.e., ‘senolytics’) or by

inactivating/modulating damage-inducing properties of

senescent cells (i.e., ‘senostatics/senomorphics’) [4,5],

such as the SASP.

Recent literature suggests that age-related dysfunc-

tions can be counteracted by senolysis in animal

models; accordingly, there are attempts to eliminate

senescent cells in order to delay aging. While there

is evidence in favor of this hypothesis, alternative

scenarios can be envisaged as well. An example

might be the activation of the p16/Rb and/or p21/

p53 stress response pathways, which boost key con-

served molecular mechanisms driving cellular senes-

cence. Still, one cannot exclude that in some

instances, the activation of the p16/Rb and p21/p53

pathways primarily serves as marker of dysfunctional

cells ready to be eliminated.

Blocking the mechanisms that cause senescence may

not resolve the dysfunction but just one of its conse-

quences. Thus, elimination of senescent cells can cause

detrimental rather than beneficial effects to the organ-

ism [6,7], which is not too surprising given the partici-

pation of cellular senescence in mammalian

development [8] and during wound healing [9], a pro-

cess driven by SASP components.

Several molecular and signaling pathways related to

cellular dysfunction (cell cycle arrest, DNA and pro-

tein damage response, etc.) that contribute to induc-

tion and maintenance of the senescent state are

conserved in evolution. Thus, simple and easy-to-ma-

nipulate model organisms such as the yeast Saccha-

romyces cerevisiae (S. cerevisiae) or the nematode

Caenorhabditis elegans (C. elegans) are frequently used

to elucidate fundamental aspects of cell damage and

disruption of homeostasis, which promote senescence

in vertebrates [10–15]. However, there is little evidence

for senescence in these simple models, which are evolu-

tionarily quite distant from humans. Consequently,

mammalian aging models, including mice, and human

organoids, such as human skin equivalents and adi-

pose spheroids, have to be used to gain insights into

the translatability from simple to more complex organ-

isms [16].

SASP

Healthy cell

CR Mimetics

Tissue remodeling

Cellular
aging

Age-associated
dysfunction and

disease

Senescence

Organismal aging

Tissue dysfunction

SASP

Small molecules/Senolytics/Senostatics

Fig. 1. The role of senescence and its reversion in healthy aging and age-related dysfunction and disease. With increasing age, senescent

cells accumulate in several human tissues, due to a process known as cellular aging. Senescent cells secrete a plethora of extracellular

proteins, lipids, and other bioactive material, collectively referred to as the senescence-associated secretory phenotype (SASP). SASP

components trigger changes in adjacent cells resulting in tissue remodeling and subsequently age-associated tissue dysfunction of human

organs, such as the kidney. Age-associated dysfunction in several tissues contributes to organismal aging. Currently, small molecules with

the potential to trigger the elimination of senescent cells (referred to as senolytics) or to dampen their detrimental influence on the

organism (referred to as senostatics) are under development. Such compounds, with a potential for tissue rejuvenation, may provide new

therapeutic opportunities for age-associated dysfunctions and diseases. Based on the beneficial effects of caloric restriction (CR) on human

healthspan, compounds which mimic beneficial effects of caloric restriction may be particularly suitable candidates for the development of

senolytics and/or senostatics.
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In order to overcome negative effects of cellular

senescence on human health [17], it is essential to

identify aging-related pathways and mediators to

elaborate senescence-associated mechanisms, including

maintenance of mitochondrial functions, interor-

ganelle communication, proteostasis, and metabolic

signaling in selected cellular and organismal aging

models. The identification of pathways and cellular

targets along with lead compounds may pave the way

for the development of treatment strategies to coun-

teract age-associated cellular dysfunction and, ulti-

mately, pathophysiological processes, to promote

healthy aging [18].

Mitochondria-related mechanisms of
senescence

Aside from being the cell’s power plants, mitochondria

serve as metabolic hubs, contributors to signal trans-

duction, autophagy, and programmed cell death, and

are in a unique position to mediate or modify aging-

associated processes, including cellular senescence. In

fact, it has been shown that impairment of mitochon-

drial function is sufficient to induce senescence in a

variety of cell types [19–21]. On the other hand, cells

lacking mitochondria do not respond to most senes-

cence-inducing stress factors [22], highlighting the key

role for mitochondria in senescence induction and exe-

cution.

Reactive oxygen species (ROS) are generated contin-

uously by mitochondria as the result of oxidative

metabolism [23] and are known to cause damage to

DNA, proteins, and lipid complexes, including mito-

chondria themselves [21], leading to impaired cellular

function and eventually cell death [24–27]. Besides

mitochondria, peroxisomes contribute to cellular ROS

levels (Fig. 2). A more detailed description of the

interactions between mitochondria and peroxisomes is

provided in chapter 3.

Mitochondrial DNA is highly vulnerable to oxida-

tive stress due to its proximity to the electron trans-

port chain (ETC) and due to the limited DNA repair

capacity within mitochondria [28]. Perturbation of

mitochondrial homeostasis induced by genotoxic

stress, ROS and defects in the ETC, among other fac-

tors, promotes cellular senescence by activating tumor

suppressor pathways like p16INK4a/Rb and p53/p21

[29]. Accordingly, senescent cells are characterized by

increased mitochondrial ROS production and by meta-

bolic changes related to mitochondrial metabolites and

dynamics, mainly attributed to accumulation of dys-

functional mitochondria [30] (Fig. 2).

Senescence caused by mitochondrial dysfunction dis-

plays a specific secretory profile, characterized by the

absence of factors related to interleukin-1 (IL-1), and

can be reversed by supplementation with pyruvate [20],

suggesting that shortage of oxidized nicotinamide ade-

nosine dinucleotide (NAD+) may impair the synthesis

of metabolites required for cell proliferation, thereby

inducing a specific subtype of senescence. Thus,

manipulation of mitochondrial metabolism through

the supplementation of intermediate compounds of the

respiration process represents a promising target to be

explored in order to counteract senescence.

Mitochondrial quality control is a key process for

maintenance of a functional mitochondrial network,

which in turn is necessary for adaptive metabolism

and survival in response to cellular stress (Fig. 2).

Besides fission and fusion cycles, a major component

of cellular control of mitochondrial integrity is a spe-

cialized form of macroautophagy, known as mito-

phagy, in which mitochondria are specifically targeted

for autophagic degradation [31–34]. A group of mito-

phagy receptors, including BCL2/adenovirus E1B

19 kDa protein-interacting protein 3 (BNIP3), BNIP3-

like (BNIP3L/Nix), PTEN Induced Kinase 1 (PINK1),

Parkin, and FUN14 Domain Containing 1 (FUNDC1)

has been described in recent years. However, more

research will be required to delineate redundant and

nonredundant functions of known mitophagy recep-

tors. It also seems conceivable that additional mem-

bers of this family are still to be discovered.

Mitophagy plays an important role in cellular home-

ostasis by eliminating dysfunctional mitochondria and

reducing mitochondrial mass as an adaptive response

to stress [35]. In mammals, this process is also impor-

tant during the differentiation of specific cell types

such as erythrocyte maturation, mediated by the mito-

phagy receptor BNIP3L/Nix [36] and for T-lympho-

cyte development [37].

A decline of mitophagic activity is related to aging

and neurodegenerative diseases, highlighting the piv-

otal role of mitochondria quality control in mainte-

nance of longevity [38,39]. In fact, the potential

involvement of dysregulated mitophagy in cellular

senescence has been suggested by several studies. For

instance, some authors have correlated the accumula-

tion of aberrant mitochondria in senescent cells to

insufficient turnover of mitochondrial population due

to decreased mitophagic activity and lysosomal dys-

function [30,40]. Likewise, dysfunctional Dnm1l (dy-

namin 1 like, also known as Drp1)-dependent

mitophagy triggers senescence and contributes to age-

related hearing loss in mice [41]. Yet, in a model of
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3D skin equivalents, pyruvate protected dermal fibrob-

lasts from senescence by improving mitophagic activity

and mitochondrial turnover [42]. Thus, mitophagy

seems to be an important factor for modulation by

senolytic and senostatic compounds.

It is important to note, however, that the reasons

for the decline in mitophagic activity during the senes-

cence process are not yet fully understood. In some

cases, for example, lysosomal dysfunction appears to

be related to the accumulation of damaged mitochon-

dria [40]. Others have reported that stabilization of

p53 in the cytoplasm during senescence increases its

interaction with Parkin and prevents priming of

damaged mitochondria, thereby reducing mitophagic

activity [43]. Considering that activation and control

of mitophagy depends on the specific stress to which

cells are subjected during the senescence process [44], it

seems to be crucial to understand the underlying

mechanisms of mitophagy in different types of senes-

cence and their contribution to the development of the

senescence phenotype in order to clarify whether mito-

phagy dysfunction is a cause or a consequence of

senescence.

Notably, parts of mitochondria are also found in

so-called ‘mitochondrial-derived vesicles’ (MDVs)

(Fig. 2). In addition to mitophagy, which is believed

ROS Lysosomes

Mitophagy

Peroxisome

Mitoph ome

MDV

Damaged
mitochondria

Fission

Fusion

Nucleus

Biogenesis

p53/p21p16INK4a/Rb

Cytosol

SASP

SASP ?MDV

Extracellular
Space

HEALTHY
CELLSenescence

Fig. 2. Mitochondrial transitions and interactions in cellular senescence. Mitochondria are dynamic organelles which act as the primary

energy-generating system in most eukaryotic cells. In addition, mitochondria are involved in various other vital processes, such as

intermediary metabolism, Ca2+ signaling, and apoptosis. The inevitable production of ROS by mitochondria induces mitochondrial and

nuclear DNA damage. Accumulation of damaged DNA and proteins in mitochondria threatens the physiological function of the cell and

provokes several defense mechanisms. By fission and fusion processes mitochondrial damage can be partially counteracted and healthy

mitochondria might remain functional despite continuous ROS production. Alternatively, damaged mitochondria release so-called

mitochondria-derived vesicles (MDV), which may be transported to other organelles, such as peroxisomes and lysosomes, in order to

restore mitochondrial activity. On the other hand, MDV can be released to the extracellular space as components of the SASP to signal

mitochondrial damage to surrounding cells. However, in case of excessive mitochondrial damage, eliminating parts of the organelle is not

sufficient and whole mitochondria have to be removed by mitophagy. Dysregulation of mitochondria quality control process leads to

accumulation of impaired mitochondria and induction of senescence via various mechanisms.
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to have evolved as a mechanism for degradation of

entire mitochondria, MDVs have been proposed as an

additional means of quality control for mitochondria

[45,46]. Although the mechanisms involved in the for-

mation and processing of MDVs are still poorly

understood, some studies speculate that these vesicles

may be part of the SASP and, thus, participate in the

processes of interorganelle and intercellular communi-

cation during cellular senescence [45] (Fig. 2). Other

aspects related to MDVs and senescence are covered

in chapter 3. An overview of mitochondria related

senescence pathways is given in Table 1.

Mechanisms of interorganelle
communication in cellular senescence

Mitochondria form a highly complex and dynamic net-

work throughout the cytoplasm. They continuously

move along microtubule tracks, alter their shape by

fusion and fission, and dynamically establish contact

sites with other compartments to meet metabolic

requirements of the host cell [47,48]. Apart from

changes in the extra- and intramitochondrial concen-

tration of signaling molecules, such as Ca2+ [49] or

ROS [50], the interplay between mitochondria and

other organelles occurs through physical proximity at

membrane contact sites or via vesicular transport [51]

(Fig. 3). For instance, there is evidence for regulatory

crosstalk between cytosolic and mitochondrial ribo-

somes leading to coordinated messenger RNA transla-

tion in both mitochondria and the cytosol.

Furthermore, the insulin/IGF/mTOR (mammalian tar-

get of Rapamycin) axis controls both mitochondrial

function and protein synthesis (Fig. 3, for details, see

chapter 4). The activity of mitochondria is governed

by various mechanisms. Among others, Ca2+ ions are

necessary for metabolic activation of mitochondria due

to the Ca2+ dependency of tricarboxylic acid (TCA)

cycle dehydrogenases. However, mitochondrial Ca2+

overload also triggers cell death pathways. Several

studies have revealed changes in the protein machinery

controlling mitochondrial Ca2+ uptake during aging.

For instance, the expression of the mitochondrial Ca2+

uniporter (MCU) was increased in long-term cultured

rat hippocampal neurons, leading to elevated mito-

chondrial Ca2+ levels [52]. Moreover, an increase in

MCU channel activity was found after oxidation of

MCU by ROS [53], commonly elevated during aging

[54]. In addition, enhanced ER to mitochondrial Ca2+

flux has been shown to boost mitochondrial metabo-

lism in aged endothelial cells, but also bears the risk

for mitochondrial Ca2+ overload [55].

Consequently, we assume that mitochondrial activity

is fine-tuned by mitochondrial Ca2+ homeostasis.

Proper mitochondrial Ca2+ uptake might be essential

to maintain cellular function, while elevated levels of

mitochondrial Ca2+ might trigger generation of ROS,

formation of the permeability transition pore, cyto-

chrome C release [56], and the cell’s susceptibility to

agents stimulating mitochondrial Ca2+ uptake [55].

However, mitochondrial Ca2+ overload might be bene-

ficial to overcome the resistance of senescent cells to

programmed cell death pathways, which is required

for normal cell turnover and tissue homeostasis [57].

Spatially separated cellular subdomains facilitate

interorganelle communication. For instance, mitochon-

dria-associated ER membranes (MAMs) stretch closely

to mitochondria to ensure locally restricted and pro-

tected ion and lipid transfer between these two orga-

nelles in eukaryotic cells [58]. Components of these

MAM regions are highly conserved throughout differ-

ent tissues and species [59]. For instance, a counterpart

of these contact sites, so-called ER-mitochondria

encounter structure (ERMES), was also found in yeast

[60–62]. MAM microdomains are established by rever-

sible tethering of proteins and are equipped with

highly specialized toolkits to modulate a variety of cel-

lular processes, including lipid transport and synthesis,

Ca2+ signaling, autophagy, and energy metabolism

[63]. Changes in the ER-mitochondrial crosstalk have

been associated with a reduced adaptive capacity of

cells in response to stress and with an increased vulner-

ability to age-related diseases [64], including neurode-

generative [65], cardiovascular and metabolic diseases

[66], and cancer [67]. Currently, it is a pressing ques-

tion how substructural composition, dynamics, and

function of MAM regions change during the process

of aging and which proteins might serve as targets to

Table 1. Main senescence-related processes and proteins covered

in the review.

Process Chapter Proteins/Protein complexes

ROS-driven pathways 2 p16/pRB, p53/p21

Mitophagy 2 BNIP3, BNIP3L/Nix, PINK/

Parkin, FUNDC1

Ca2+ signaling/ROS 3 MCU

Mitochondria–lysosome 3 AMPK, RAB7, vCLAMP,

Vps13-Mcp1, Vps39-ypt7-

Tom40

Mitophagy, autophagy,

and general

proteostasis

4 Insulin, IGF-1, DIRAS3, Akt,

mTORC1

Ribosome biogenesis

and protein synthesis

4 Pol I, mTOR, SirT1, eNoSC,

METTL5, 4EBP, elF4G,

Tumour suppressor loss,

oncogene activation

5 Sprouty1, Ras, DIRAS3, PI3K,

Akt, mTORC1
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potentially modulate age-related cellular dysfunction.

We assume that age-related alterations in the kinetics

and dynamics of mitochondrial–ER interaction con-

tribute to the development of cellular dysfunction

during senescence. Constant improvement of super-

resolution microscopy techniques may provide the nec-

essary tools to resolve the spatial mitochondrial–ER
interplay in real-time.

Besides ER-mitochondrial crosstalk, the bidirec-

tional communication between mitochondria and lyso-

somes has gathered special attention during the last

years. As executors and regulators of autophagy, lyso-

somes are in a crucial position to modulate age-related

pathologies. By preventing the accumulation of dam-

aged mitochondria through mitophagy, lysosomes

protect cells from detrimental mitochondria-derived

ROS and pro-apoptotic factors [68]. Mitochondrial

biogenesis was found to be transcriptionally repressed

in lysosomal lipid storage diseases, pointing to the

immense impact of lysosomal activity on mitochon-

drial function [69]. In turn, short-term mitochondrial

stress induces lysosomal biogenesis via the regulation

of transcription factors and AMP-activated protein

kinase (AMPK) signaling, while chronic mitochondrial

stress results in the impairment of lysosomal biogenesis

[70]. Moreover, mitochondrial respiratory chain defi-

ciency was found to inhibit lysosomal function via

AMPK deactivation and lysosomal Ca2+ accumulation

[69]. Besides various bidirectional signaling pathways,

direct contact sites between mitochondria and

Ca2+
Ca2+

OXPHOS
ROS

ΔΨm

Interorganellar
communication

Mitochondrial vs. cytosolic
translation

Mitochondrial
function

Ca2+ signaling &
homeostasis

Senescence

Insulin/IGF/mTOR
signalling

Mitochondrial vs. cytosolic
proteostasis

Ca2+

Mitochondria

ER

Fig. 3. Perturbations of interorganellar connectivity in senescence. Several interconnected processes are affected by cellular senescence,

and vice versa are impacting the induction and maintenance of the senescent state. These processes include interorganellar communication

at ER–mitochondria contact sites and spatially restricted Ca2+ signaling occurring at these contacts, as well as general Ca2+ homeostasis

and transport. The coordination of mitochondrial versus cytosolic translation output as well as the interconnected mitochondrial and

cytosolic proteostasis networks, all affected by general mitochondrial function and governed by the Insulin-, Growth Hormone (GH)/Insulin-

like Growth Factor-1 (IGF-1)-, and mechanistic Target of Rapamycin (mTOR)-signaling axis, act as determinants of senescence induction.
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lysosomes do exist too. The GTP-bound lysosomal

protein RAB7 was found to promote the formation of

these contact sites in healthy cells. Mitochondria tend

to undergo fission at lysosomal contact sites, while

lysosomal RAB7, in turn, gets regulated by mitochon-

dria [71]. Lysosome–mitochondria communication is

also conserved in yeast cells, where contacts between

mitochondria and the vacuole (the yeast equivalent of

the lysosome) have been described [72], referred to as

vCLAMP (vacuole and mitochondria patch). These

contact sites can be established by two distinct tether-

ing pairs: Vps13-Mcp1 or Vps39-Ypt7-Tom40 [73].

There is no doubt regarding the crucial impact of

mitochondrial–lysosomal interplay on the process of

aging as well as on the development of age-related dis-

eases. For instance, impaired mitochondria–lysosome

crosstalk was associated with neurodegenerative dis-

eases [74]. However, it has to be clarified how the com-

position and dynamics of the lysosomal–mitochondrial

contact and interaction sites change during the process

of aging and which proteins function as the key regu-

lators of this interplay. In this regard, the utilization

of newly developed lysosomally targeted biosensors

[75] might represent the key technology that will allow

progress in the respective research. Besides ER and

lysosomes, latest reports also suggest a direct commu-

nication of mitochondria with other cellular sites and

organelles, including plasma membrane [76], peroxi-

somes [77], and endosomes [78].

Mitochondria are frequently found in close proxim-

ity to the plasma membrane and contribute to the

ATP supply and Ca2+ signaling in these specific

regions [76]. For instance, mitochondria help to main-

tain and activate store-operated Ca2+ entry (SOCE),

by which depletion of ER Ca2+ stores induces Ca2+

influx through the plasma membrane [79]. Mitochon-

dria and peroxisomes are both characterized by great

plasticity and play a major role in cell metabolism and

ROS homeostasis [77]. Notably, direct interorganelle

crosstalk between mitochondria and peroxisomes has

been reported. For instance, enhanced ROS produc-

tion in peroxisomes disturbs mitochondrial ROS

homeostasis and causes mitochondrial fragmentation.

Moreover, peroxisomes and mitochondria share key

components of their fission machineries [80].

Recent research connects peroxisomal dysfunction

to fatal oxidative damage associated with aging-related

diseases. It is now widely accepted that mitochondria

and peroxisomes are required to maintain oxidative

balance in a cell. However, our understanding of the

interdependence of these organelles to maintain cellu-

lar homeostasis of ROS is still limited [81]. A direct

interaction between mitochondria and endosomes was

shown by super-resolution microscopy, suggesting

alterations in the dynamics of endosome–mitochon-

drial interaction by endosomal cargo and milieu [78].

However, age-related alterations in mitochondria’s

interaction with the plasma membrane, peroxisomes

and endosomes are still elusive and need to be charac-

terized.

Extracellular vesicles (EVs) are important mediators

of intercellular and potentially interorganellar commu-

nication. They transport their functional cargo, which

might be composed of proteins, lipids, DNA, and vari-

ous types of RNA to recipient cells, and thereby act in

a similar manner as hormones or cytokines [82].

Recently, small EVs containing miRNAs were identi-

fied as important components of the SASP, mediating

apoptosis and wound closure [83,84]. It has been

reported that MDVs can transport-specific mitochon-

drial proteins and lipids to peroxisomes or lysosomes

and act as a first line of defense against mitochondrial

damage and preventing complete elimination of the

organelle by mitophagy [46,51]. Hence, mitochondria

can be even found in the extracellular environment in

their free form, or surrounded by a membrane (like in

vesicles) [45,51,85]. Moreover, circulating cell-free

mitochondrial DNA has been found as well [46].

Notably, all forms of extracellular mitochondria have

been found to induce paracrine or endocrine responses

in various organisms. However, the effects of extracel-

lular mitochondria just start to be elucidated [46,51]

and their impact on processes of senescence is still elu-

sive. Now, latest developments in super-resolution

microscopy are allowing us to catch a glimpse of mito-

chondria’s versatile interaction with their cellular envi-

ronment and we might be curious what will be

unveiled in the following years. An overview of path-

ways related to disturbed interorganelle communica-

tion during senescence is given in Table 1.

Mechanisms of metabolic control and
proteostasis in cellular senescence

The energy status of a cell and the availability of

nutrients represent the most important upstream regu-

lators of mitochondrial dynamics and quality control.

These, as well as other processes of metabolism and

accumulation of biomass, are assured by the mam-

malian target of rapamycin (mTOR) pathway at the

nexus of nutrition, cell growth, and aging [86,87].

Metabolic interventions known to extend healthy life

span, such as caloric/dietary restriction, time-restricted

feeding, and intermittent fasting all affect the main

nutrient sensing pathways including mTOR. Therefore,

mTOR holds a central position to integrate aging-

3841The FEBS Journal 288 (2021) 3834–3854 ª 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

M. Cavinato et al. Innovative targets for anti-senescence therapies



associated processes. Over-activation of mTOR leads

to induction of cellular senescence, while repression of

mTORC1 by rapamycin or genetic interventions

blocks cellular senescence [88,89], attenuates the SASP

[90], and extends the life span of mice [91–93]. Besides
mitophagy [94], mTORC1 also regulates general

autophagy, as well as other processes of both the ana-

bolic and catabolic arm of cellular proteostasis. Of

interest, previous work from the Jansen-D€urr labora-

tory established a tight link between mitochondrial

dysfunction and functionality of the ubiquitin-protea-

some system. Thereby, a major mechanism of cata-

bolic proteostasis was found associated with human

skin aging, providing a mechanistic link between mito-

chondrial quality control and proteostasis [95].

Cellular proteostasis is guaranteed by the balance

between the synthesis of new proteins, the impact of

protein damaging mechanisms versus cellular defence

mechanisms, protein refolding by chaperones and

related pathways, and the clearance of damaged pro-

teins (Fig. 4). Thus, timely modulation in response to

extrinsic stimuli, and correct function of all four inter-

connected stages of protein turnover and quality con-

trol are essential for organismal health.

Accumulating evidence suggests all levels of pro-

teostasis to be altered when cells enter senescence. The

importance of protein misfolding, aggregation, and

subsequent clearance by the ubiquitin-proteasome sys-

tem or autophagy for healthy aging and senescence-re-

lated pathologies is widely recognized and extensively

reviewed elsewhere [96–98]. Although depletion of

ribosomal proteins and other factors involved in trans-

lation are known to extend the life span of yeast [99–
101] and C. elegans [102–104], their potential role in

mammalian cell senescence and the underlying molecu-

lar mechanisms are by far less understood than other

aspects of cellular proteostasis [105].

Current hypotheses postulate that decreased overall

translation conserves energy, which can then be

invested into maintenance and repair pathways [106]

or that reduced elongation speed minimizes translation

errors [107]. Both mechanisms, by increasing the over-

all protein repair capacity, may limit the age-related

accumulation of oxidized, misfolded and aggregated

proteins. At the same time, reduced amounts of mis-

translated polypeptides do not unnecessarily block

important refolding and degradation pathways [108].

Due to the high energy demands of protein synthe-

sis, it is not surprising that also ribosome biogenesis is

tightly controlled by nutrient sensing pathways. Again,

mTOR plays a pivotal role by repressing pre-rRNA

transcription by RNA Polymerase I (Pol I) when

nutrients are limited. SirT1 is another conserved

nutrient sensor linking aging to Pol I activity. Sir2, the

yeast orthologue of SirT1, was originally identified as

one of the first genes modulating cellular aging by

maintaining rDNA integrity [109]. Although the find-

ing that excision of rDNA repeats and the formation

of extrachromosomal rDNA circles limit replicative life

span is restricted to yeast, a large body of evidence

indicates that rRNA transcription by Pol I is also a

critical factor in aging of higher eucaryotes [110]. Par-

tial inhibition of Pol I extends life span of the fruit fly

and leads to shrinkage of nucleoli, which are clustered

around rDNA repeats and represent the sites of ribo-

some biogenesis [111]. Also, in senescent human cells

several small nucleoli fuse to one large nucleolus, indi-

cating profound changes in the chromatin organization

of rDNA repeats. Their silencing by the SirT1-contain-

ing eNoSC-complex and inhibition of Pol I is required

for maintaining the senescent state of A549 cancer

cells [112]. Interestingly, rDNA integrity is also tightly

linked to several human segmental progeroid syn-

dromes. Mutations in distinct RecQ helicases inflict

the respective pathologies characterized by high levels

of rDNA recombination and rearrangements [110].

Syndrome, for instance, is caused by recessive muta-

tions in five different nucleotide excision repair pro-

teins. Mutations in all five of these proteins cause

defects in Pol I-mediated transcription and transla-

tional fidelity, leading to elevated oxidative protein

damage [113]. Taken together, these data indicate a

striking connection between proteostasis, nutrient sens-

ing, DNA integrity, and mitochondria, which all repre-

sent different hallmarks of aging [114].

In addition to the outlined changes in their biogene-

sis, it is generally believed that ribosomes and other

components of the translation machinery deteriorate

with age, leading to decreased overall protein synthesis

and progressive loss of gene expression regulation at

the translation level. Indeed, an increasing number of

studies report certain discrepancies between the tran-

scriptome and the proteome, which indicates that pro-

found changes of translational regulation of gene

expression occur during aging [115].

We hypothesize that selection of different mRNAs

for translation occurs due to alterations in stoichiome-

try and modification patterns of several components of

the translation machinery, which might all be influ-

enced by aging and cellular senescence (Fig. 4). The

essential components include the ribosome itself, as

well as mRNAs, tRNAs, initiation, and elongation

factors. In addition, multiple ribosome-associated pro-

teins, miRNAs and ncRNAs, such as tRNA fragments

and rancRNAs, are described, which can modulate

translation by competing with essential components or
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by allosteric interactions [105]. Indeed, known inter-

ventions modulating aging, stress resistance, and cellu-

lar senescence alter the translational regulation of gene

expression. In flies, it was, for example, shown that the

life span extension by deletion of Thor (also known as

4E-BP) is modulated by the specific translation of

mRNAs associated with enhanced mitochondrial activ-

ity [116]. Similarly, in worms the translational regula-

tion of stress response genes is required for the life

span extension by deletion of eukaryotic translation

initiation factor 4G (eIF4G) [117]. In contrast to these

protein-based alterations in ribosome composition and

functionality, also lack of a single, conserved N5-cy-

tosine methylation of ribosomal RNA of the large sub-

unit extends the life span and stress resistance of yeast,

worms, and flies. Depletion of the corresponding

methyltransferase NSUN5 alters ribosomal structure

and thus translational fidelity, resulting in a ‘repro-

gramming’ of the ribosome towards translation of

mRNAs involved in cellular stress response [118]. Sim-

ilarly, N6-adenosine methylation of a specific residue

of 18S rRNA by methyltransferase like 5 (METTL-5)

modulates heat-stress resistance in C. elegans by alter-

ing translation of a specific mRNA involved in eicosa-

noid synthesis [119]. With the proof-of-principle that

already single modifications of rRNA alter the life

span and stress tolerance of organisms, it becomes

clear that a systematic analysis of global post-tran-

scriptional modification patterns of rRNA, including

pseudouridinylations, as well as base and sugar

protein refolding protein degradation

external translation regulators:
ribosome binding proteins,

miRNAs, ncRNAs

ribosome
composition:

RPs, rRNA, tRNA
(+ modifications) 

mRNA modifications
epitranscriptomics

mRNA regulatory elements:
3'- and 5'-UTRs, uORFs, IRES 

translation errors protein aggregation ubiquitin-proteasome
system

autophagyrefolding by
heat shock proteins

oxidation -
adduct formation

protein synthesis protein damage

ROS

ROS

Senescence

6m A
5m C

Fig. 4. The role of senescence in multilevel proteostasis—the four stages in the life of a protein. Cellular senescence and aging presumably

influence all four stages in the life of a protein, namely its synthesis by ribosomes, the accumulation of damage, refolding, and aggregation,

as well as its degradation. Protein synthesis is tightly controlled by the composition of ribosomes, association of the core translation

machinery with external regulators, mRNA modifications, and specific sequence elements of mRNAs, such as the 30 and 50 untranslated
regions (UTRs), short upstream open reading frames (uORFs), or internal ribosome entry sites (IRES). Translation errors and oxidation lead

to damaged and misfolded proteins, which are prone to aggregation. This process is counteracted by heat shock proteins or molecular

chaperones. Damaged and aggregated proteins are degraded by autophagy or via the ubiquitin-proteasome system. Both refolding and

degradation are impaired in cellular and organismal aging and are tightly interconnected with other stages of proteostasis.
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methylations [120], is of crucial importance to under-

stand the changes of the ribosome in terms of synthe-

sis, composition, structure, and function in the context

of aging. In a similar fashion to rRNA modifications,

also mRNA modifications influence translation [121]

and it is tempting to speculate that these might be reg-

ulated in cellular and organismal aging as well.

An additional layer of complexity is added by mito-

chondrial ribosomes contained in eukaryotic cells in

addition to the ribosomes in the cytosol. Both types of

ribosomes appear to be coordinated, and this balance

between cytosolic and mitochondrial translation may

be altered under stress, and in senescent cells in particu-

lar [122–125]. Methionine restriction, which increases

the replicative life span of human fibroblasts, differen-

tially affects the translation of selected mitochondrial

RNAs [126] and thereby demonstrates the complex

interplay between metabolic regulation, proteostasis,

and mitochondria. Thus, we hypothesize that certain

metabolic interventions might selectively target senes-

cent cells by altering coordinated multilevel proteostasis

of both cellular compartments. Moreover, a thorough

analysis of age-related alterations of the protein synthe-

sis machinery might provide us with promising novel

targets for anti-senescence therapies. An overview of

senescence pathways related to disturbed proteostasis

and metabolic regulation is given in Table 1.

Identification of dietary and
pharmacological interventions
modulating cellular senescence

Restoring normal cellular and tissue function in an

aged organism can be achieved by several strategies,

including counteracting senescence-inducing signals,

targeting of specific aging-related mechanisms, elimi-

nating senescent cells (senolysis), and suppressing or

switching senescence-associated phenotypes including

the SASP by senostatics/senomorphics [127–129].

Simple eukaryotic model organisms as potential

tools for senescence effector screening

Simple eukaryotic model organisms, including S. cere-

visiae and C. elegans, have been used as conventional

tools for genetic screens concerning senescence effec-

tors [130–132]. In S. cerevisiae, critical telomere short-

ening upon genetic inactivation of the telomerase, for

example, via depletion of one of its subunits (Est1,

Est2, Est3, or Tlc1), leads to an abrupt transit into

replicative senescence after about 50–80 cell divisions

(recently reviewed by [132,133]). Like in mammalian

cells, this is accompanied by a permanent activation of

the DNA damage checkpoint, reorganization of chro-

matin, and prominent changes in gene expression

[11,133,134]. Interestingly, genes related to mitochon-

drial energy metabolism, ranging from oxidative phos-

phorylation to TCA cycle, have been found to be

prominently upregulated in senescent yeast [135]. In

addition, mitochondrial proliferation is increased, indi-

cating that also in this unicellular eukaryote, mito-

chondrial metabolism and functionality may

contribute to the induction and/or maintenance of the

senescent state [135]. Although both yeast and C. ele-

gans lack complex traits associated with senescence,

these models contributed substantially to our current

understanding of fundamental molecular aspects asso-

ciated with aging and senescence [11,12,15,132]. Genes

identified in such screens were subsequently validated

in higher eukaryotic model systems, such as human

cultured cells [55,136,137], organoids [138,139], and

mice [140,141], and promoted the identification of

promising molecules for translational approaches [55].

It is conceivable that many more senescence effectors

from the chemical space can be identified by exploiting

existing and newly defined senescence regulators as tar-

get proteins in small-molecule screens.

CR mimetics as antisenescence drugs

The employment of caloric restriction (CR)/dietary

restriction (DR) mimetics [142] may represent one

promising strategy for pharmacological targeting of

senescent cells. The most robust procedure to counter-

act aging is CR, the reduction of dietary intake below

energy requirements while maintaining adequate nutri-

tion [143,144]. Although CR is a complex intervention

with many experimental variables, including sex, strain,

and level of CR, that can alter the CR response in

model organisms, it consistently improves health across

strains and sexes [145]. Molecular mechanisms underly-

ing CR are not completely understood. According to

the current model, the CR response is transduced via

modulation of nutrient- and energy-signaling pathways

mainly inducing a reduction of Insulin/growth hormone

(GH)/insulin-like growth factor 1 (IGF-1)/mTOR sig-

naling and an activation of AMPK-signaling and Sir-

tuin responses [146,147]. This drives many downstream

changes such as reduced oxidative stress and increasing

stress resistance leading to less damage of DNA [148–
150], proteins [151], and lipids [152] (for reviews, see

[153,154]). Most likely these events contribute to the

prevention of age-associated decline in genomic stabil-

ity, autophagy, and proteostasis. Additional beneficial

effects are that CR preserves mitochondrial function

with age by increasing mitochondrial biogenesis,
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reprogramming of metabolism to anaplerotic filling of

the TCA cycle and activation of fatty acid oxidation in

mitochondria [155]. While there is consensus that CR

increases health span in a wide variety of animal mod-

els, evidence from observational and randomized con-

trolled clinical studies conducted in the last two

decades suggests that CR can not only extend the

healthy life span of obese and overweight people [156]

but also of normal weight persons and might have the

potential to induce longevity in humans under CR

[157,158].

Given the importance of CR for human health,

translational research into screening for and develop-

ing of CR mimetics, compounds that mimic the posi-

tive effects of CR on health and life span without

actual food restriction [159], is an appealing strategy.

While CR works most likely on several different levels

[160], the question whether and how CR antagonizes

cellular senescence is one current focus of aging

research [161]. Evidence supporting the hypothesis that

CR mitigates or reduces cellular senescence comes

from studies showing that under CR senescence mark-

ers are reduced in mouse and human organs [89,162–
170]. As it is well known that CR protects against cel-

lular damage induced by oxidative stress and other

adverse influences [147,155], and cellular damage is a

major cause for the induction of cellular senescence

[171], it is quite likely that CR counteracts the genera-

tion of senescent cells by reducing cellular damage. It

has been demonstrated that CR ameliorates senes-

cence-associated DNA damage and induces a decrease

of the number of senescent cells in several tissues of

mice [162–164,169,172]. The Zwerschke-lab has shown

that weight-loss (WL) interventions including CR pro-

tects human adipose stem/progenitor cells (ASCs)

against DNA damage and prolongs their life span by

postponing the onset of cellular senescence [164].

Moreover, they identified WL/CR target genes,

DIRAS family GTPase 3 (DIRAS3) and Sprouty1,

that protect against the induction of cellular senes-

cence [89,166,167,170]. Mechanistically, DIRAS3 and

Sprouty1 act by reducing signaling from the two main

aging inducing signal transduction pathways, insulin/

phosphoinositide 3 kinase (PI3K)/Akt/mTOR signal-

ing, and IGF-1/ras/mitogen-activated protein kinase

(MAPK) signaling, leading to protection against cellu-

lar senescence. Moreover, the activity of the PI3K

inhibitor DIRAS3 leads to downregulation of mTOR

activity and in turn to the stimulation of autophagy, a

process that is well known to recycle damaged cellular

components [170]. Thus, one could refer to the CR

target gene DIRAS3 as a recycling and/or a cellular

rejuvenation gene postponing cellular senescence

(Fig. 5). Given that the induction of DIRAS3 and

Sprouty1 in response to CR is sufficient to turn off

signaling from the central Insulin/IGF-1/mTOR pro-

aging program, one could speculate that at least some

cell types in given tissues or organs are protected by

cell intrinsic antisenescence mechanisms, which might

act in combination with or independent of Insulin and

IGF-1. It has also been shown that CR in humans

protects against cellular deterioration via decreasing

oxidative stress and eliminating present damage by

increasing the expression of genes encoding for heat

shock proteins and proteins involved in autophagy

[173,174]. Moreover, it was previously shown that CR

inhibits mTOR activity and hence abrogates the

mTOR-dependent pro-inflammatory phenotype of

senescent cells including factors that induce bystander

senescence [90,175], underscoring that CR could pre-

vent the activation of primary and secondary senes-

cence by inhibiting mTOR.

It is well accepted that genetic or pharmacological

inhibition of mTORC1 by rapamycin or rapamycin-

derived compounds (rapalogs), postpones aging and

increases the life span of a wide variety of animals

including mice [91,176–181]; and although there may

be exceptions [182], our understanding of the current

literature is that rapamycin and the majority of related

compounds (rapalogs) are actually dampening the

senescence response. Additional mechanisms by which

CR can prevent cellular senescence are the elimination

of dysfunctional mitochondria by mitophagy [183] and

activation of DNA repair mechanisms [184,185].

Thus, there is overwhelming evidence supporting the

hypothesis that CR mimetics can counteract cellular

senescence. Our recent studies showing that WL inter-

ventions, including CR, postpone the onset of replica-

tive senescence of ASCs in humans [164,186] and

identifying CR target genes in these cells that are

involved in the regulation of cellular senescence path-

ways [89,166,167,170] provided novel candidate mole-

cules for the development of CR mimetics. We

hypothesize that CR mimetics identified in such an

approach are also active in modulating cellular senes-

cence. Such compounds should have the potential to

counteract senescence-inducing signals and to suppress

and/or modulate senescence-associated signaling,

thereby protecting cells and tissues in our body and

maintaining physiological functions longer.

Calcium signaling and mitochondria as targets

for antisenescence interventions

Another promising strategy to target senescent cells is

the manipulation of mitochondrial Ca2+ homeostasis.
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The tight linkage between mitochondria and the ER

strongly impacts the susceptibility of aged endothelial

cells to the cytotoxic effects of agents inducing mito-

chondrial Ca2+ overload, such as polyphenols [55].

Studying this mechanism might lead to a potentially

new class of senolytics based on mitochondrial Ca2+

overload. In a similar way, compounds previously

selected for regulating mitochondrial activity in vari-

ous senescence models have the potential to modulate

mitochondrial physiology in order to overcome/target

specific types of senescence, such as mitochondrial dys-

function-associated senescence. In such settings, phar-

macological modulation of mitochondrial fitness can

be evaluated by analysis of mitochondrial fragmenta-

tion, mitophagy, and ROS production. Both

approaches bear the promise to develop novel senoly-

tic and or senostatic drugs (Fig. 5).

Proteostasis optimizers for antisenescence

interventions

Dampening of protein synthesis may represent another

promising strategy for pharmacological targeting of

senescent cells. As many antibiotics targeting eukary-

otic cells selectively inhibit different steps of cytosolic

or mitochondrial translation [187,188], we hypothesize

that at least some of these compounds may postpone

senescence and mitigate adverse effects of the SASP by

reducing protein synthesis (Fig. 5). However, whether

promising drug candidates act via repression of global

protein synthesis, via promoting the selective transla-

tion of specific anti-senescence mRNAs, or via so far

unknown mechanisms, will also remain to be eluci-

dated.

Conclusions and perspectives

The discovery in genetically modified mice that senes-

cent cells drive aging in animal models [189] has

spurred huge research attempts to find pharmacologi-

cal tools that may promote healthy aging by elimina-

tion of senescent cells (‘senolysis’) or disabling/

switching their function in human tissues (‘senostasis’,

‘senomorphism’). In parallel, enormous research

efforts with the goal to understand the biology of cel-

lular senescence have highlighted relevant molecular

pathways of senescence. These discoveries may lead

the way to unveil potential pharmacological targets.

Maintaining cells in various human tissues healthy and

fully functional seems to require a sophisticated inter-

play between various cellular organelles, highly effi-

cient quality control of mitochondria, functional

interorganelle communication, and a tight regulation

of proteostasis at various levels. This fragile system is

challenged by internal and environmental stress factors

causing failures of single components of this network

that may be sufficient to drive a cell into a pathologi-

cal state known as cellular senescence. A better under-

standing of the hierarchy of and synergy between the

various signaling pathways of senescence bears the
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Fig. 5. Potential dietary and pharmacological compounds modulating cellular senescence. Mitigating the induction and propagation of

cellular senescence by (A) caloric restriction (CR)-mimetics and (B) antibiotics targeting cytoplasmic and mitochondrial translation. Both

compound classes counteract senescence-inducing signals. (C) Mitochondrial Ca2+ homeostasis manipulators (MCHMs) could act senolytic.

AMP-activated protein kinase (AMPK), ER = Endoplasmic Reticulum, Insulin-like growth factor-1 (IGF-1), mechanistic target of rapamycin
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promise to identify new critical targets for antisenes-

cence interventions.
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