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Abstract

Fibrosis is a key component in the pathogenic mechanism of a variety of diseases. These diseases involving fibrosis may
share common mechanisms and therapeutic targets, and therefore common intervention strategies and medicines may be
applicable for these diseases. For this reason, deliberately introducing anti-fibrosis characteristics into predictive modeling
may lead to more success in drug repositioning. In this study, anti-fibrosis knowledge base was first built by collecting data
from multiple resources. Both structural and biological profiles were then derived from the knowledge base and used for
constructing machine learning models including Structural Profile Prediction Model (SPPM) and Biological Profile Prediction
Model (BPPM). Three external public data sets were employed for validation purpose and further exploration of potential
repositioning drugs in wider chemical space. The resulting SPPM and BPPM models achieve area under the receiver
operating characteristic curve (area under the curve) of 0.879 and 0.972 in the training set, and 0.814 and 0.874 in the testing
set. Additionally, our results also demonstrate that substantial amount of multi-targeting natural products possess notable
anti-fibrosis characteristics and might serve as encouraging candidates in fibrosis treatment and drug repositioning. To
leverage our methodology and findings, we developed repositioning prediction platform, drug repositioning based on
anti-fibrosis characteristic that is freely accessible via https://www.biosino.org/drafc.
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Introduction
Fibrosis is defined as the process of excessive accumulation of
fibrous connective tissue in most tissues or organs, where nor-
mal cell injury, transdifferentiation and abnormal proliferation,
and deposition of extracellular matrix can disrupt tissue func-
tion. In the new era of 21st century, the morbidity and mortality
rates of various fibrotic diseases have increased progressively,
bringing an enormous global health burden. In developed coun-
tries, fibroproliferative diseases are responsible for nearly 45%
of deaths [1]. One of the well-known fibrotic diseases, idiopathic
pulmonary fibrosis (IPF), has a poor prognosis within the 5-year
survival rate less than 30% and median survival ranging from 3
to 5 years [2]. The situation of IPF patients is even worse than
those with various types of cancers [3]. As data obtained by
Clinical Practice Research Datalink revealed, the prevalence of
IPF patients in board case definitions has doubled from 19.94 per
100 000 patients in 2000 to 38.82 per 100 000 patients in 2012,
and a 80% increase in incidence was observed [4]. Another life-
threatening fibrotic disease, cardiac fibrosis, is one of the leading
factors causing heart failure [5]. A research from 2008 to 2014
revealed that in 318 patients with systolic dysfunction, 78% had
one type of myocardial fibrosis, whereas 25% had at least two
types [6].

The polypharmacology of most anti-fibrosis drugs could
improve therapeutic efficacy. Recent studies have found that,
firstly, fibrosis is the common pathogenic process in most
diseases. For example, there are multiple common cellular
processes between lung cancer and IPF, including inflammation,
cell apoptosis and tissue infiltration [7]. Secondly, fibrosis-
related processes have common mechanisms, targets and drugs
[8, 9]. A multi-organ fibrosis research discovered 90 common
differentially expressed genes across lung, heart, liver and
kidney. In the two most active gene networks generated by
ingenuity pathway analysis, these genes play a key role in
connective tissue disorders and genetic, skeletal and muscular
disorders [10]. Similarly, another multi-organ fibrosis research
also obtained 11 metzincin-related differentially expressed
genes across heart, lung, liver, kidney and pancreas including
THBS2, TIMP1, COL1A2, COL3A1, HYOU1, MMP2 and MMP7 [11].
Thirdly, fibrosis is a complicated pathological process involving
multiple pathways, thus multi-target drugs are more appropriate
for fibrosis-related diseases [9]. Different pathways interact
and counter-interact with each other to establish a ‘check-and-
balance’ system, for instance, the core regulators, transforming
growth factor-β and connective tissue growth factor signaling
pathways could collaborate to elicit pulmonary and renal fibrosis
[12, 13]. In summary, these evidences indicate that anti-fibrosis
intervention strategies and medicines may be applicable for
diseases that were not originally considered and targeted
through targeting their common fibrosis-related mechanisms.
Therefore, compounds that more specifically target anti-fibrosis
could have greater potential of repositioning and are more
applicable for drug repositioning research.

Drug repositioning or repurposing refers to the ‘reuse of
old drugs’, recycling existing drugs for new medical indica-
tions. Compared with de novo drug discovery, drug repositioning
has obvious advantages such that it could significantly shorten
drug development periods, reduce laboratory cost and minimize
potential safety risk. Nowadays, drug repositioning is one of
the most productive strategies in drug development [14]. With
the advancement of high-throughput sequencing technology
and deep learning, various data-driven computational predic-
tion and analytic models stand out [15, 16], including similarity

ensemble approach (SEA) [17] and connectivity map (CMap) [18].
SEA clusters ligands into sets and calculates the similarity scores
between ligand sets from ligand topology [17]. CMap computes
the similarity to ‘signatures’ deduced from compound-induced
gene profiles to quantify the biological functional relationships
between compounds. Moreover, the relationship between com-
pounds and diseases could also be quantified in reversed man-
ner [18]. However, with countless repositioning methods and
algorithms developed [19–21], there are still no attempts hitherto
in introducing anti-fibrosis characteristic into drug repositioning
strategy.

For the first time, we built the anti-fibrosis knowledge base
upon anti-fibrosis targeted research. Based on the knowledge
base, two repositioning models, Structural Profile Prediction
Model (SPPM) and Biological Profile Prediction Model (BPPM)
were constructed to achieve high prediction accuracy. Centered
on these two models, we then developed a repositioning
computing platform, drug repositioning based on anti-fibrosis
characteristic (Dr AFC), to accelerate the exploratory process of
repositioning drugs and contribute to the cutting-edge study of
its underlying mechanisms.

Materials and methods
Data sets

Anti-fibrosis knowledge base

Anti-fibrosis-related literatures were collected through key word
query ‘fibrosis AND target’ from PubMed from January 1 2000 to
October 31 2019. The compound–target interaction information
on ‘fibrosis’ were collected from Comparative Toxicogenomics
Database (CTD) [22] from January 1 2000 to October 31 2019.
Anti-fibrosis trials were collected from ClinicalTrials.gov [23]
from January 1 2000 to October 31 2019. Meanwhile, approved
anti-fibrosis drugs from DrugBank (Version 5.1.3) were collected.
Finally, anti-fibrosis treatments, targets and compound–
target interactions were extracted and aggregated into the
knowledge base.

Model construction

Structural and biological profiles of compounds were collected
from DrugBank [24] and CMap (build02), respectively, and used
for model construction. A total of 2408 approved drugs in Drug-
Bank and 1223 compounds in the anti-fibrosis knowledge base
served as the raw data for SPPM construction. In total, 6100
biological profiles (gene expression) of 1309 small molecules in
CMap served as the raw data for BPPM.

Case studies

A total of 20 263 natural products from Traditional Chinese
Medicine Integrated Database (TCMID) [25], 5968 DrugBank
experimental drugs [24] and 5000 random compounds from
ChEMBL [26] were collected as external validations and used
for SPPM case studies. And external biological profiles from
Gene Expression Omnibus database (GSE85871) that contains
transcriptomics perturbation profiles of 105 natural products
in Michigan Cancer Foundation-7 cell line were used for
BPPM case studies.

Methods

Pre-processing of modeling data

In raw chemical structures (from DrugBank approved drugs and
the anti-fibrosis knowledge base) and biological profiles (from

ClinicalTrials.gov
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Figure 1. The schematic of Dr AFC construction. Based on SPPM and BPPM, Dr AFC was constructed, which allows users to upload compound structures or compound-

induced biological profiles for repositioning potential prediction.

CMap) data, compounds that exist in the anti-fibrosis knowledge
base were labeled as positive candidates, whereas the rest were
labeled as negative candidates. Then, chemical structures were
converted into chemical fingerprints (166-bits MACCS keys) for
processing chemical information in a fast and convenient way
using RDKit [27]. As to biological profiles, Quantile Transformer
was used to transform biological profiles into ranking orders to
improve model generalizability and also made data sets from
different batches and platforms more comparable.

One-class support vector machine (nu = 0.3) was performed
to estimate sample quality, remove outliers and confirm final
positive and negative samples. In total, 70% of final samples were
used as training set for model selection and super-parameter
determination, whereas the remainder as testing set for model
validation.

Anti-fibrosis model construction and validation

Four different machine learning algorithms were selected for
modeling on training set, including logistic regression with
l1 and l2 penalties, decision tree, random forest and gradient
boosting. Among them, method with highest precision and area
under the curve (AUC) calculated by 5-fold cross-validation was
selected for subsequent analysis. Iterative feature elimination
(IFE) algorithm was performed to select optimal feature set
through one-by-one feature deletion. Finally, SPPM and BPPM
were constructed based on optimal modeling algorithm and
feature set, and further validated by testing set. The details of
model construction are shown in Supplementary Figure S1.

Drug repositioning mechanism analysis

Network-based inference approaches are wildly applied in the
realm of drug repositioning [20, 21]. Here, we infer the poten-
tial drug repositioning mechanism through compound–target–
disease network. Firstly, based on SPPM and BPPM, the repo-
sitioning characteristics of compounds were predicted through

their structural or biological profiles, in which compounds with
reposition score > 0.5 were considered as anti-fibrosis and hav-
ing repositioning potential. Next, the anti-fibrosis characteristic
and potential repositioning mechanisms of these candidates
were explored on the basis of compound-target-disease corre-
sponding information in the anti-fibrosis knowledge base. Sim-
ilar compounds that may interact with same targets and dis-
eases were calculated through Tanimoto similarity of chemical
structural fingerprints or Spearman’s rank correlation coeffi-
cient of biological profiles. Targets and disease information of
compounds reported in previous researches were refined from
the anti-fibrosis knowledge base to explore anti-fibrosis mecha-
nism of compounds. Finally, the potential mechanisms among
compounds in compound-target-disease network displayed in
drug repositioning analysis were used to help propose feasible
drug repositioning solutions.

Webserver construction of Dr AFC

Dr AFC was constructed through PostgreSQL database and
Django framework. This platform serves as a practical tool for
prediction of drug repositioning potential based on compound
structures (via SPPM) and biological profiles (via BPPM) as well
as displaying compound-target-disease network of drug reposi-
tioning mechanisms. Meanwhile, Dr AFC also integrated toolkits
such as quantitative estimate of drug-likeness from Silicos-it
[28], and similarity calculation and structure matching borrowed
from RDkit to provide convenient web-based calculations
for users.

The overall process is shown in Figure 1.

Results
SPPM and BPPM show high performances
for anti-fibrosis prediction

To construct the anti-fibrosis knowledge base, 7058 fibrosis-
related references from PubMed, 302 from CTD [22] and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa115#supplementary-data
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Figure 2. Feature selection and model performances. (A) Performances of top 30 features through IFE in BPPM. (B) The CTD inference networks of 47 gene features and

fibrosis-related diseases. (C) AUC of SPMM in testing set. (D) AUC of BPPM in testing set.

2664 fibrosis-related trials from ClinicalTrials.gov [23] were
collected through text mining. Finally, 1223 anti-fibrosis
treatments (containing 902 small molecules, including 386
approved drugs from DrugBank), 1067 fibrosis-related targets,
3096 fibrosis-related records from references and 1787 from
trials, and 507 anti-fibrosis compound-target interactions were
obtained and integrated into anti-fibrosis knowledge base
(Supplementary Figure S2).

In modeling session, 2885 compound structures (from
DrugBank approved drugs and anti-fibrosis knowledge base
compounds) [24] and 6100 biological profiles (from CMap)
were labeled as positive candidates or negative candidates
depending on their anti-fibrosis characteristic in the anti-
fibrosis knowledge base. After sanity check and outlier removal,
1701 compound structures and 2735 biological profiles were
filtered out for model construction (Supplementary Table S1).

Four different machine learning classifiers were evaluated
and compared to choose the most optimal modeling method
(Supplementary Table S2). Gradient boosting was eventually
selected according to its highest precision and AUC (structural
profile: precision = 0.737, recall = 0.608, AUC = 0.839; biological
profile: precision = 0.892, recall = 0.522, AUC = 0.912).

In the process of building SPPM and BPPM, we found that
even a small number of features could reach certain stabil-
ity and reasonably good performance (Supplementary Figure S3,

Figure 2A). Models based on top 38 features including CHARGE,
S and XA(A)A could reach the maximum cross-validation AUC
(0.879) in SPPM, whereas top 47 features including RPL30, MRM-
RPL5 and KPNB1 could reach the maximum cross-validation AUC
(0.972) in BPPM. We also discovered that 46 of the top 47 features
in BPPM were connected with fibrosis in CTD inference networks
(Figure 2B). Besides, several mapped genes were associated with
fibrosis-related indications like retroperitoneal fibrosis, keloids,
tissue adhesions and cicatrix.

Finally, SPPM and BPPM were built based on the most optimal
modeling method and the selected small feature subset (top 38
features in SPPM and top 47 features in BPPM). In testing set, the
average AUC for SPMM reaches 0.814 (Figure 2C) (recall = 0.512,
precision = 0.731), whereas the average AUC for BPMM reaches
0.874 (recall = 0.613, precision = 0.867) (Figure 2D).

Case studies

Anti-fibrosis drugs exhibit greater drug repositioning potential

We used SPPM to predict anti-fibrosis drugs from DrugBank
experimental drugs. The comparative analysis was performed
between the CTD compound–gene interactions of the predicted
anti-fibrosis and non-anti-fibrosis drugs. The results show that
the anti-fibrosis group accommodates stronger interactions,

ClinicalTrials.gov
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa115#supplementary-data
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Figure 3. Case studies of Dr AFC. (A) Comparison of the number of genes interacting with compounds predicted as anti-fibrosis and non-anti-fibrosis. (B) The distribution

of related genes, diseases and repositioning score for Drugbank experimental drugs. Compounds with repositioning score > 0.5 were considered as anti-fibrosis and

had repositioning potential. (C) The distribution of repositioning scores in different data sets. (D) Drug repositioning mechanism analysis of ginsenoside Re by Dr AFC.

(P-value was calculated by two-sided Wilcoxon rank sum test).

presumably more genetic effects thus greater repositioning
potential (Figure 3A).

In Drugbank experimental drugs, multiple drugs with great
repositioning potential (related genes > 500 and diseases > 20,
Figure 3B, Supplementary Table S3) were already developed for
fibrotic diseases and other diseases. Quercetin was discovered
to ameliorate liver fibrosis through regulating macrophage
infiltration and polarization, and it could alleviate IPF through
fibroblasts apoptosis [29, 30]. Based on our results, we confirm
that quercetin interacts with numerous genes and is strongly
linked to multiple diseases (repositioning score = 0.856, related
genes = 3938 and diseases = 150, Supplementary Table S3).
Another natural compound from turmeric (extracted from
turmeric plant), curcumin (repositioning score = 0.855, related
genes = 903 and diseases = 138, Supplementary Table S3), is also
believed for treating multiple fibrotic diseases. It could inhibit
fibroblast proliferation and myofibroblast differentiation in
IPF [31], whereas inhibit oxidative stress and exhibit anti-
inflammatory effect in liver fibrosis [32]. Apart from fibrosis,
curcumin has also been applied for osteoarthritis and rheuma-
toid arthritis treatment [33, 34]. Moreover, other drugs, such as
resveratrol also has great repositioning potential (repositioning
score = 0.821, Figure 3B).

Natural compounds are the better repositories for drug
repositioning

To expand the resources of potential repositioning drugs
and further explore the chemical space, we introduced two

external molecule sets, natural products from TCMID [25] and
random compounds from ChEMBL [26]. SPPM was used to predict
the repositioning potential of compounds from both external
molecule sets in a structural perspective. The results show
that 35.42, 77.26 and 37.04% of compounds could be potentially
repositioned from DrugBank experimental drugs, TCMID and
ChEMBL, respectively. The reserves in natural products from
TCMID are significantly higher than others, indicating that
natural products are promising repositioning repositories and
worth further investigations (Figure 3C).

From a genetic perspective, BPPM was used to predict the
repositioning potential of 105 natural products (GSE85871) using
their gene profiles. The results show that a total of 66 natural
products have anti-fibrosis characteristic and repositioning
potential, including ginsenoside Re (repositioning score = 0.979),
muscone (repositioning score = 0.974) and cinnamic acid
(repositioning score = 0.948) (Supplementary Table S4). Among
them, ginsenoside Re is potentially impacting HDAC2, HDAC9
and HMGCR and playing anti-fibrosis roles via ‘inflammation’,
‘preventing collagen deposition’ and ‘targeting myeloperoxi-
dase’, as reported by drug repositioning mechanism analysis
tools from Dr AFC (Figure 3D). Ginsenoside Re is the extract of
Panax ginseng, which exhibit protective effects in neural and
systematic inflammations through inhibiting the interaction
between LPS and TLR4 in macrophages [35]. It was reported
to exert anti-fibrosis effect on cardiac fibrosis through down-
regulating the expression of p-Smad3, collagen I and reducing
the augmentation of collagen fibers [36]. Apart from fibrosis,
ginsenoside Re could alleviate inflammation through inhibiting

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa115#supplementary-data
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Figure 4. Anti-fibrosis and repositioning computing platform (Dr AFC). (A) Dr AFC integrated two prediction models, SPPM and BPPM. (B) SPPM accepts SMILES strings

of chemical structures in text or file. (C) BPPM accepts biological profiles in file. (D) Repositioning score, label and functional network of compounds were displayed

in result. (E) Drug repositioning mechanism analysis was implemented to infer the drug potential repositioning mechanism through relationships among similar

compounds, fibrosis-related targets and diseases.

myeloperoxidase activity [37] and decrease fat accumulation
through inhibiting HMGCR and cholesterol biosynthesis [38].
Besides, other ginsenosides, like ginsenoside Rb1, ginsenoside
Rc, ginsenoside Rb3, ginsenoside Rb2, ginsenoside Rd and
ginsenoside Rg, also exhibit anti-fibrosis characteristic and
repositioning potential (Supplementary Table S4).

Dr AFC webserver

Based on SPPM and BPPM, we constructed a computing platform
for repositioning research purpose, named Dr AFC, the main
function and workflow of which is shown in Figure 4. Through Dr
AFC platform, anti-fibrosis and potential repositioning could be
predicted from compound structures and/or biological profiles.
The supported ‘drug repositioning mechanism analysis’ could
infer the relationships among compounds, fibrosis-related tar-
gets and diseases, which help researcher understand pathology.
Furthermore, drug-likeness estimation, chemical similarity cal-
culation and structure matching were integrated into Dr AFC to
provide useful information for drug development.

Drug repositioning analysis function

Dr AFC allows users to upload compound structures or
compound-induced biological profiles for repositioning poten-
tial prediction. As shown in Figure 4B, Dr AFC accepts sim-
plified molecular-input line-entry system (SMILES) strings of

compound structures for SPPM prediction and accepts gene
profiles with row names in the format of Affymetrix U133A
probe ID, Entrez ID or gene symbol for BPPM prediction. Both
methods support .txt, .csv and .xlsx files (Figure 4C).

After the required files are uploaded, the webserver would
perform corresponding prediction analysis automatically based
on the files and display the output on the result page from
three aspects (Figure 4D): (1) basic part including compound
ID, compound name, 2D compound sketch (only for SPPM) and
SMILES string (only for SPPM). (2) Prediction part including repo-
sitioning scores of anti-fibrosis characteristic and repositioning
potential prediction. The repositioning scores ranges from 0 to
1 and higher score indicates higher potential. If repositioning
score is ≥0.5 (the probability of existing anti-fibrosis property is
≥0.5), the compound is defined as an anti-fibrosis and potential
repositioning compound. (3) Drug repositioning mechanism
analysis part. This analysis infers the potential anti-fibrosis
and repositioning mechanisms of compound structures or
biological profiles uploaded by users via our anti-fibrosis knowl-
edge base. The reported potential mechanisms can provide
biological indications and mechanistic verifications for drug
repositioning efforts.

Other functions

Dr AFC also contains functionalities including drug-likeness
estimation, chemical similarity calculation and structure

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa115#supplementary-data
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matching tools. Users could upload their compounds in
SMILES and perform these ligand-based calculations. Drug-
likeness estimation could evaluate and score the compound
drug-likeness, ranging from 0 to 1 with higher score indi-
cating higher potential for lead compound. Chemical simi-
larity calculation and structure matching provide convenient
ways for users to search compound with similar structures,
same structures or substructures, supporting single com-
pound calculation and simultaneous calculation for multiple
compounds.

Discussion
Fibrosis is the common mechanism underlying diseases that has
attracted global attention. Anti-fibrosis characteristic of a com-
pound could essentially infer its great repositioning potential.
However, the anti-fibrosis characteristic has not been thoroughly
considered and extensively applied into the realm of drug dis-
covery till now. In this study, we first bridge the gap by developing
a platform that can provide intensive information conveniently
on Dr AFC data (https://www.biosino.org/drafc). This in silico
platform also provides a highly accurate way to generate data
for rational drug design via combining the advanced machine-
learning algorithm.

Dr AFC was built upon the anti-fibrosis knowledge base,
which pioneered the curation and deployment of fibrosis-related
studies over the past decade. Structural profile (SPPM) and bio-
logical profile (BPPM) that show extraordinary capabilities in
drug repositioning prediction (with AUC 0.814 and 0.874, respec-
tively) were integrated into Dr AFC. BPPM shows slightly higher
performance than SPPM based on AUC metric. The possible
reason could be that biological profile is more tolerant and
could contain information reflecting an overall effect of com-
pound in the body. Biological profile has shown its advantage
in multiple repositioning algorithms previously, such as CMap
[18], L1000CDS2 [39] and MANTRA [40]. Besides, certain therapies
without available structural profile such as biotech drugs or
cocktail therapies could also be studied in repositioning research
based on their biological profiles.

In BPPM, 47 biological markers exhibited strong prediction
capabilities. These genes are directly or indirectly linked to
various fibrotic diseases. Notably, ribosomal proteins including
RPL30, MRPL15, RPL32, RPS3A, RPLP0, RPL7, RPL23A and RPL13A
are the main part of these biological markers. Ribosomes serve as
significant regulators in immune signaling pathways, tumorige-
nesis pathways, and cardiovascular and metabolic diseases [41,
42]. For example, the expression of RPL30 is negatively correlated
with carcinogenesis process in medulloblastoma that is usually
accompanied by desmoplasia and could thus serve as a prog-
nosis biomarker [43]. Besides, the over-activation of ribonucleic
acid (RNA) polymerase in the biogenesis of ribosomes could
enhance protein synthesis and decrease translation accuracy,
in turn triggering cancers or exacerbating cancer processes [44].
Furthermore, some biological markers are associated with the
spliceosome formation including RBM8A, HNRNPA3, SNRPG and
DHX15. Spliceosome is a large molecular machine composed of
five small nuclear ribonucleic acids and many other proteins,
and serves as the catalyzer of pre-RNA introns that are crucial
for protein expression and function. It has been reported to
be closely associated with multiple diseases including cystic
fibrosis and pulmonary fibrosis [45, 46].

Based on external molecule sets, natural products are val-
idated to have the most appealing anti-fibrosis characteristics
and repositioning potential among chemicals from different

sources. Natural products provide a wealth of valuable natural
resources for modern medicine and are seen as promising
and popular candidates for drug repositioning studies [47].
Their natural scaffold novelty, structural complexity, abundant
stereochemistry and ‘metabolite-likeness’ mainly account for
their broad-spectrum of biological activities [48, 49]. The multi-
targeting and synergistic effects of natural products exhibit
great advantages in treating diseases undergoing sophisticated
mechanisms, such as fibrosis [50]. Our studies show that
natural products such as ginsenoside have great anti-fibrosis
characteristic and repositioning potential and should give top
priority to consider repositioned drug discovery. Additionally,
the natural products in Drugbank experimental drugs, such
as quercetin, curcumin and resveratrol, also highlight their
strong repositioning capabilities. Therefore, natural products
are a fruitful and promising source for future drug development
studies.

Conclusion
In summary, based on anti-fibrosis characteristics, we con-
structed two predictive repositioning models, SPPM and BPPM,
which predict the anti-fibrosis characteristics and repositioning
potential from compound structures and/or compound-induced
biological profiles. SPPM and BPPM take the advantage of
therapeutic commonality and universality of fibrotic diseases,
and dramatically increase the success rate of drug repositioning
predications. This study not only established a highly efficient
strategy of predicting repositioning, but also developed a con-
venient and user-friendly computing platform, Dr AFC (https://
www.biosino.org/drafc), for studying fibrosis mechanisms and
drug repositioning.

Key Points
• Fibrosis is the common mechanism of diseases, which

could be applied in drug repositioning.
• We developed a convenient and user-friendly com-

puting platform, Dr AFC, for studying fibrosis mech-
anisms and drug repositioning.

• Dr AFC shows high performance on both cross-
validation and external validation, which demon-
strates its potential applications in drug discovery.

• Natural compounds proved to be the better reposito-
ries for drug repositioning.
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c.oup.com/bib.

Funding

National Key R&D Program of China (2017YFC0907505,
2016YFC0901904, 2017YFC0908404 to G.Z.); National Natural
Science Foundation of China (81774152 to R.Z., 81770571 to
L.Z.); National Postdoctoral Program for Innovative Talents
of China (BX20190393 to N.J.); China Postdoctoral Science
Foundation (2019M651568 to D.W., 2019M663252 to N.J.);
Natural Science Foundation of Shanghai (16ZR1449800 to
R.Z.); Science and Technology Service Network Initiative
of Chinese Academy of Sciences (Y919C11011 to G.Z.);

https://www.biosino.org/drafc
https://www.biosino.org/drafc
https://www.biosino.org/drafc
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa115#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib


8 Wu et al.

University at Buffalo Community of Excellence in Genome,
Environment and Microbiome (to L.Z.).

References
1. Wynn TA. Cellular and molecular mechanisms of fibrosis. J

Pathol 2008;214:199–210.
2. Vancheri C, du Bois RM. A progression-free end-point for

idiopathic pulmonary fibrosis trials: lessons from cancer. Eur
Respir J 2013;41:262–9.

3. Homma S, Bando M, Azuma A, et al. Japanese guideline
for the treatment of idiopathic pulmonary fibrosis. Respir
Investig 2018;56:268–91.

4. Strongman H, Kausar I, Maher TM. Incidence, prevalence,
and survival of patients with idiopathic pulmonary fibrosis
in the UK. Adv Ther 2018;35:724–36.

5. Horn MA, Trafford AW. Aging and the cardiac collagen
matrix: novel mediators of fibrotic remodelling. J Mol Cell
Cardiol 2016;93:175–85.

6. Almehmadi F, Joncas SX, Nevis I, et al. Prevalence of myocar-
dial fibrosis patterns in patients with systolic dysfunction:
prognostic significance for the prediction of sudden car-
diac arrest or appropriate implantable cardiac defibrillator
therapy. Circ Cardiovasc Imaging 2014;7:593–600.

7. Ballester B, Milara J, Cortijo J. Idiopathic pulmonary fibrosis
and lung cancer: mechanisms and molecular targets. Int J
Mol Sci 2019;20:593.

8. Li X, Zhu L, Wang B, et al. Drugs and targets in fibrosis. Front
Pharmacol 2017;8:855.

9. Liu J, Sun D, Liu J, et al. FibroAtlas: a database for the explo-
ration of fibrotic diseases and their genes. Cardiol Res Pract
2019;2019:4237285.

10. Wenzke KE, Cantemir-Stone C, Zhang J, et al. Identifying
common genes and networks in multi-organ fibrosis. AMIA
Jt Summits Transl Sci Proc 2012;2012:106–15.

11. Rodder S, Scherer A, Korner M, et al. A subset of metzincins
and related genes constitutes a marker of human solid organ
fibrosis. Virchows Arch 2011;458:487–96.

12. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master
regulator of fibrosis. Nat Rev Nephrol 2016;12:325–38.

13. Wang Q, Usinger W, Nichols B, et al. Cooperative interaction
of CTGF and TGF-beta in animal models of fibrotic disease.
Fibrogenesis Tissue Repair 2011;4:4.

14. Xue H, Li J, Xie H, et al. Review of drug repositioning
approaches and resources. Int J Biol Sci 2018;14:1232.

15. Qiu TY, Qiu JX, Feng J, et al. The recent progress in pro-
teochemometric modelling: focusing on target descriptors,
cross-term descriptors and application scope. Brief Bioinform
2017;18:125–36.

16. Liu L, Tsompana M, Wang Y, et al. Connection map for
compounds (CMC): a server for combinatorial drug toxicity
and efficacy analysis. J Chem Inf Model 2016;56:1615–21.

17. Keiser MJ, Roth BL, Armbruster BN, et al. Relating pro-
tein pharmacology by ligand chemistry. Nat Biotechnol
2007;25:197–206.

18. Lamb J, Crawford ED, Peck D, et al. The connectivity
map: using gene-expression signatures to connect small
molecules, genes, and disease. Science 2006;313:1929–35.

19. Sam E, Athri P. Web-based drug repurposing tools: a survey.
Brief Bioinform 2019;20:299–316.

20. Wu Z, Cheng F, Li J, et al. SDTNBI: an integrated network and
chemoinformatics tool for systematic prediction of drug-
target interactions and drug repositioning. Brief Bioinform
2017;18:333–47.

21. Peng Y, Wang M, Xu Y, et al. Drug repositioning by prediction
of drug’s anatomical therapeutic chemical code via network-
based inference approaches. Brief Bioinform 2020;1–15. doi:
10.1093/bib/bbaa027.

22. Davis AP, Grondin CJ, Johnson RJ, et al. The Comparative
Toxicogenomics Database: update 2019. Nucleic Acids Res
2019;47:D948–54.

23. Zarin DA, Fain KM, Dobbins HD, et al. 10-year update on
study results submitted to clinicaltrials.Gov. N Engl J Med
2019;381:1966–74.

24. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major
update to the DrugBank database for 2018. Nucleic Acids Res
2018;46:D1074–82.

25. Huang L, Xie D, Yu Y, et al. TCMID 2.0: a comprehensive
resource for TCM. Nucleic Acids Res 2018;46:D1117–20.

26. Mendez D, Gaulton A, Bento AP, et al. ChEMBL: towards
direct deposition of bioassay data. Nucleic Acids Res 2019;47:
D930–40.
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