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ABSTRACT: Rapid developments in cryogenic electron microscopy
have opened new avenues to probe the structures of protein assemblies
in their near native states. Recent studies have begun applying single
-particle analysis to heterogeneous mixtures, revealing the potential of
structural-omics approaches that combine the power of mass
spectrometry and electron microscopy. Here we highlight advances
and challenges in sample preparation, data processing, and molecular
modeling for handling increasingly complex mixtures. Such advances will
help structural-omics methods extend to cellular-level models of
structural biology.

With the sequencing of thousands of genomes, large
biological data sets (-omics data) have become

pervasive in most fields of biology, including development,1,2

the classification of organisms,3,4 and disease,5−7 among many
others. Disciplines embracing -omics strategies reach well
beyond the central dogma of biologygenomics, tran-
scriptomics, and proteomicsinto such areas as metabolo-
mics,8 epigenomics,9 pharmacogenomics,10 and interactom-
ics.11 As with these other endeavors, structural biology has also
expanded to embrace -omics approaches.
Major historic interactions of structural biology and -omics

approaches have included, for example, electron tomography12

to provide cellular context and spatial information to
complement proteomics and interactomics data,13−15 many
efforts at proteome-scale modeling of three-dimensional (3D)
structures and interactions,16−18 and the entire field of
structural genomics.19−22 Structural genomics has employed
techniques such as X-ray crystallography, NMR spectroscopy,
and electron microscopy (EM) to solve structures of purified
macromolecules in a high-throughput manner, targeting new
protein folds and entire proteomes, which have been
supplemented by molecular modeling and structure prediction
to extend structural insights to new molecules.

■ THE POTENTIAL OF SHOTGUN CRYO-EM
METHODS

More recently, advances in single particle cryogenic electron
microscopy (cryo-EM) have opened interesting new oppor-
tunities to connect -omics approaches and structural biology.
In particular, cryo-EM boasts several important features: it
requires only small amounts of sample, there is no requirement
for crystal screening and optimization, and as a result, it is
possible to capture several states of a macromolecular machine
of interest. Cryo-EM is also capable of imaging a large field of

individual macromolecular complexes in a single image. With
the advent of direct electron detectors, ultrastable electron
microscopes, automated data collection strategies,23 and real-
time data processing,24 the “resolution revolution” in cryo-EM
provides a definite route forward for increasing the throughput
of structural biology.25 We can anticipate that structures from
these methods, in combination with electron tomography, will
produce information-rich cell atlases capturing high-resolution
structures of the proteome and its spatial context that will
synergize with other -omics approaches. Here we focus
specifically on efforts to increase the applicability of single-
particle cryo-EM to increasingly complex and heterogeneous
samples, approaching cell lysates in complexity (as in shotgun
cryo-EM), thus furthering the transformation of cryo-EM into
a pipeline for structural-omics.
Mass spectrometry combined with electron microscopy has

been shown to be well-suited for characterizing the
architecture of protein complexes without purifying a specific
target molecule, as demonstrated in yeast,16 Desulfovibrio
vulgaris,26 macrophage cytoplasm,27 the nuclear pore com-
plex,28−30 and most recently Plasmodium falciparum.31

Protein−protein interactions identified through mass spec-
trometry in conjunction with advances in 3D structure
determination have been used to investigate the architecture
of multiple distinct protein complexes from mixtures such as
fractionated cell lysate or even single cells.32−34 To date, such
studies have largely been limited to the identification of protein
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complexes that were easily recognizable (e.g., the proteasome
and ribosome) or of high enough resolution to identify the
proteins by comparing contiguous stretches of highly resolved
amino acids to a reference proteome.31 Currently, the field
lacks robust and systematic computational pipelines for
sorting, identifying, and performing molecular modeling of
the myriad of structures that can potentially be solved from
mixtures. The question remains: how can we break through
these barriers?

■ CHALLENGES IN SAMPLE PREPARATION OF
HETEROGENEOUS MIXTURES

In fact, even before the challenges of molecular modeling of
mixtures of structures obtained from shotgun cryo-EM
methods, several challenges exist for high-throughput cryo-
EM data collection and processing of mixtures. Sample
preparation is often a major bottleneck in structural studies.
In our hands, finding suitable freezing conditions for
heterogeneous mixtures has proven equally difficult as for a
single purified sample,35 with the addition of several new
challenges. Notably, in the case of cell extracts, the presence of
dominating, highly abundant macromolecules can make
screening difficult, especially when the sizes and shapes of
other, less abundant proteins are unfamiliar. Although multiple
orthogonal chromatographic separations might help simplify
mixtures, we find that sample preparation with similar-sized
macromolecules improves the chances of success. We have also
found that different buffers in combination with different
support substrates such as graphene oxide can produce an
additional “purification” step, ultimately determining which
complexes are present on the grid. Furthermore, many 3D
reconstructions are built from large data sets containing
hundreds of thousands of particles per complex. Scaling this to
samples containing tens to hundreds of complexes, which may
be present in different quantities, could prove challenging
simply from a data collection perspective. It will also be
important to incorporate improved denoising and particle
picking algorithms to assist users in picking difficult to
recognize particles with multiple shapes and sizes.36−38 Despite
these challenges, several groups have already produced
multiple structures to <5 Å resolution from fractionated
lysates.31,32

While work on sample preparation methods for investigating
fractionated or whole-cell lysates is ongoing, there already exist
many approaches that can be used to reduce the complexity or
target specific molecules from a mixture. Modified grid surfaces
have been used for capturing proteins by His-tag,39,40 biotin,41

and antibody affinity.42 These approaches can alleviate the
need for purification, target low-abundance proteins, help with
orientation bias, and be readily integrated in combination with
clonal sets such as the ASKA library.43 Other approaches
include using microfluidic devices that can isolate and enrich
target molecules.44 To date, many of these studies have been
limited to identifying only a few symmetric molecules from a
mixture, and scaling these approaches for high throughput has
yet to be attempted.

■ ADVANCES IN DATA PROCESSING OF
HETEROGENEOUS MIXTURES

Apart from optimization of sample preparation and data
collection, new data processing schemes will also need to be
introduced. Currently, most cryo-EM data processing software
operates under the assumption that samples contain one
dominant structure that may contain conformational or
subunit heterogeneity. In order to adapt such software for
use on highly heterogeneous samples, we developed an
auxiliary algorithm based on the principles of the projection-
slice theorem to presort particles into homogeneous subsets
prior to conventional 3D classification and therefore avoid the
need to guess the number of underlying structures present in
the data.35 A subsequent challenge will be to identify the
resulting models, which can range from low to high resolution.
Recently, the cryoID software package was introduced, which
uses a unique approach to sequence by structure from highly
resolved, contiguous amino acids in a 3D reconstruction.31

However, the challenges from sample preparation suggest that
it is more likely that these studies will produce a number of
low- to mid-resolution maps, and there still remains a
significant challenge for identifying and modeling low- to
mid-resolution reconstructions from a mixture when their
identities are not known a priori.

Figure 1. A structural-omics pipeline. A broad goal in the field is to develop a high-throughput structural-omics approach for reconstructing
complexes from a heterogeneous mixture. For example, whole-cell lysates, organelle lysates, and heterogeneous mixtures might be analyzed by both
cryo-EM and mass spectrometry. Cryo-EM produces multiple 3D reconstructions of protein complexes, while mass spectrometry provides identity
and interaction information for the proteins present in the sample. To merge the two, even more efficient computational pipelines are needed to
build or retrieve individual structures of proteins, organize them by interactions, assemble them into complexes, and match them to their 3D
reconstructions obtained from a sample.
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■ APPROACHES FOR DOCKING ATOMIC MODELS
INTO LOW- TO MID-RESOLUTION
RECONSTRUCTIONS

Because of the likelihood that lower-abundance proteins in
mixtures will only achieve low- to mid-resolution 3D
reconstructions, if simply as a function of fewer particles,
there will continue to be a need to better leverage other
structural data. For this reason, an important focus remains
improving approaches for fitting both predicted and currently
available atomic structures into these lower-resolution 3D
reconstructions (Figure 1). These range from user-intensive to
computation-intensive approaches. Ideally, given the ambiguity
of fitting numerous subunits into 3D reconstructions of
unknown identity, one would prefer a quick, efficient, and
computationally driven method. The challenge of fitting
subunits into a 3D reconstruction becomes increasingly
difficult for multi-subunit complexes and may be additionally
complicated by considerations of symmetry. Techniques such
as MBP and Fab labeling of individual subunits have been used
to identify specific subunits within multi-subunit com-
plexes.45,46 While this would prove cumbersome for identifying
proteins in multiple complexes within a cell lysate, it may be
useful for targeting a specific complex of interest.
One commonly employed user-driven approach for fitting

atomic structures into 3D reconstructions involves segmenting
the maps either manually or using the Segger tool47 followed
by rigid-body docking using Fit-in-Map into these segmented
regions in UCSF Chimera.48,49 Scoring of this approach can be
optimized using a flexible fitting tool50,51 such as MDFF,50

which applies forces proportional to the density gradient of the
EM map, while conserving stereochemistry, to fit atomic
structures into EM maps with resolutions as low as 15 Å. While
these methods may work well if structural information is
known a priori, any manual approach of rigid docking faces the
possibility of getting caught in a local minimum, suffering from
user bias, and requiring numerous user hours. Furthermore,
fitting atomic models into complexes becomes extremely
challenging when their identities are incompletely known.
The development of integrative methods allows for a more

hands-off approach, eliminating some of these biases.52−54

These approaches combine data retrieved from various
experiments such as yeast two-hybrid (Y2H) assays, muta-
genesis, cross-linking, small-angle X-ray scattering, electron
microscopy, and X-ray crystallography to build the multi-
protein model.55,56 Such methodologies have been successful
in building models for a number of multiprotein complexes
such as the nuclear pore complex,57 16S rRNA complexed with
methyltransferase A small subunit,56 and the BBSome.58

Recently, several models predicted by integrative modeling
were validated against their experimentally determined high-
resolution structures.52 The results showed that for all atom
models the positions of subunit centers were within 5 Å of the
true model, demonstrating the power of this approach.59−64

For those structures with resolution higher than 10 Å, not only
can secondary structure elements be detected, but orientation
and connectivity may also be predicted to validate the
integrative models.65 While these methods are promising for
building a single multiprotein assembly with abundant data,
they are computationally intensive, and whether they will be
equally applicable to mixtures of multiple complexes from
structural-omics data remains untested. Methods that could
simplify model building by further constraining possible

orientations, interactions, or flexibility may help moving
forward.

■ APPROACHES FOR IDENTIFYING MOLECULAR
MACHINES WITHIN COMPLEX MIXTURES

Because of the size and complexity of the data that describe
extremely heterogeneous samples, corresponding mass spec-
trometry data become pivotal in identifying the proteins
present, estimating their relative abundances, and identifying
those that interact to form complexes in the sample. Previous
studies have shown that machine learning combined with co-
fractionation mass spectrometry can be used to detect proteins
that interact to form complexes on the basis of their elution
profiles from multiple separation techniques.66 These
predicted complexes can be prioritized by relative abundance
for modeling. Additionally, identification of previously solved
structures could reduce the number of 3D reconstructions that
need to be considered for subsequent modeling. Pipelines such
as GEM-PRO could accomplish this by streamlining rapid
searches of the Protein Data Bank by returning protein
structures given a gene or protein sequence, while also
evaluating the quality of the structures and preparing
sequences for comparative modeling for those that do not
have a known structure.67

Recently, improved shape-based searches for protein
complexes have been developed to better accommodate the
low- to mid-resolution EM data produced from tomography.68

Such shape-search tools might prove useful for searching 3D
reconstructions in order to identify those known from prior
structures. The 3D reconstructions that have been resolved
and identified could then be used to revisit raw micrographs
and pick specific particles with template matching ap-
proaches.69 The remaining 3D models would subsequently
have to be built de novo on the basis of, e.g., protein identities
from mass spectrometry performed on the same samples.
Importantly, beyond the structures of proteins already solved
and available in the Protein Data Bank,70 3D structural models
have now been computationally generated by many research
groups at the proteome scale, a success of the Protein Structure
Initiative (such as those indexed by the Uniprot71 database),
using techniques of comparative modeling,67,72 evolutionary
couplings,73 or even ab initio74 approaches.
Any structural modeling of native protein assemblies would

most likely require prior knowledge of which specific protein−
protein interactions were occurring75,76 as well as the
stoichiometries of the interacting subunits. The latter, if
unknown, might be obtainable using mass spectrome-
try.57,66,77−79 Other approaches to deciphering stoichiometry
might include using volume constraints, where volumes of
different numbers of individual subunits are compared to the
volume of a 3D reconstruction. Cross-linking mass spectrom-
etry, where large numbers of pairwise protein interactions may
be identified, can help in elucidating protein interaction
partners.80 Additionally, other pairwise restraints may be
added, such as protein docking predictions, to reveal new
assemblies.81−83 However, protein docking becomes signifi-
cantly more complex with more than two proteins and no
knowledge of interaction interfaces or order of assembly.

■ MOVING TOWARD STRUCTURAL-OMICS

Given knowledge of interacting subunits and their stoichio-
metries, the task becomes fitting them into the correct map in
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the correct assembly. The problem resembles a jigsaw puzzle,
where subunits must fit into the molecular envelope while
respecting mutual packing interfaces. In general, such packing
problems are known to be NP-complete84 and cannot be
solved computationally in polynomial time. Nonetheless,
additional restraints can be brought to bear to reduce the
search complexity. For example, like a puzzle, one might
determine interacting interfaces among the subunits, either by
docking18 or more approximate approaches, ideally algorithms
that are rapid and partner-specific. In our own work, we have
developed reduced representations of protein surfaces to help
predict complementary interaction interfaces, which add a
measure of robustness to minor structural deformations upon
binding.85 Combinations of such packing restraints could then
be employed to help pack and refine 3D protein structures to
EM maps. In parallel, researchers have improved computa-
tional search algorithms for packing problems by using
reduction or backtracking,86,87 and the potential exists to
crowdsource the problem, employing the visual acuity of
humans to manually fit subunits into 3D reconstructions.88

Structural-omics stands to benefit strongly from the cryo-
EM resolution revolution, and in turn these approaches have
the potential to greatly enhance our understanding of biology
from a systems perspective. Toward this end, it is already clear
that various low- to high-resolution complexes may be
reconstructed from a cell lysate using single-particle electron
microscopy. The development of new computational tools to
efficiently sort and build atomic models into these low- to mid-
resolution reconstructions or to solve the high-resolution
structures from mixtures of increasing complexity will certainly
help to further advance this field and put it on a path toward
even richer structural cell atlases.
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