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Abstract

The biological effects of chronic ionizing radiation exposure can be difficult to study, but

important to understand in order to protect the health of occupationally-exposed persons

and victims of radiological accidents or malicious events. They include targeted effects (TE)

caused by ionizations within/close to nuclear DNA, and non-targeted effects (NTE) caused

by damage to other cell structures and/or activation of stress-signaling pathways in distant

cells. Data on radiation damage in animal populations exposed over multiple generations to

wide ranges of dose rates after the Chernobyl nuclear-power-plant accident are very useful

for enhancing our understanding of these processes. We used a mechanistically-motivated

mathematical model which includes TE and NTE to analyze a large published data set on

chromosomal aberrations in pond snail (Lymnaea stagnalis) embryos collected over 16

years from water bodies contaminated by Chernobyl fallout, and from control locations. The

fraction of embryo cells with aberrations increased dramatically (>10-fold) and non-linearly

over a dose rate range of 0.03–420 μGy/h (0.00026–3.7 Gy/year). NTE were very important

for describing the non-linearity of this radiation response: the TE-only model (without NTE)

performed dramatically worse than the TE+NTE model. NTE were predicted to reach ½ of

maximal intensity at 2.5 μGy/h (0.022 Gy/year) and to contribute >90% to the radiation

response slope at dose rates <11 μGy/h (0.1 Gy/year). Internally-incorporated 90Sr was pos-

sibly more effective per unit dose than other radionuclides. The radiation response shape

for chromosomal aberrations in snail embryos was consistent with data for a different end-

point: the fraction of young amoebocytes in adult snail haemolymph. Therefore, radiation

may affect different snail life stages by similar mechanisms. The importance of NTE in our

model-based analysis suggests that the search for modulators of NTE-related signaling

pathways could be a promising strategy for mitigating the deleterious effects of chronic

irradiation.
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Introduction

Chronic ionizing radiation exposure can affect human health and ecosystem functioning [1–

3]. For example, nuclear power industry workers, miners, pilots, astronauts, and some medical

professionals are faced with protracted occupational exposures to ionizing radiation [4–6].

Nuclear power plant accidents (e.g. Chernobyl, Fukushima) dispersed radionuclides over wide

areas inhabited by humans and wildlife. Potential stored radioactive waste leakage events and

terrorist attacks involving radioactive materials (e.g. radiological dispersal device, so called

“dirty bomb”) can also result in large-scale radioactive contamination. However, despite its

importance, chronic radiation has been under-studied because protraction of irradiation over

time scales of days to years can be difficult due to resource and time constraints [7, 8].

In general, reduction of the radiation dose rate reduces the deleterious effects per unit dose

[9, 10]. In other words, a dose delivered over a few hours often causes less toxicity (e.g. clono-

genic cell death) than the same dose delivered over a few minutes. This sparing effect is

believed to occur because radiation-induced damage repair can proceed throughout the expo-

sure period. The repair rate counteracts the damage induction rate, reducing the amount of

simultaneously present damage (e.g. DNA double strand breaks) and the probability of dam-

age interactions (e.g. chromosomal aberrations caused by incorrect DSB rejoining).

However, if the exposure is protracted over very long times such as multiple cell cycles or

multiple organism generations, additional phenomena come into play: metabolism, reproduc-

tion, developmental pathways and cell proliferation/differentiation programs must operate

under continuously stressful conditions, and susceptibility to radiation effects often changes

with the organism’s age/stage. In other words, the biological responses to acute and chronic

irradiations can be qualitatively different because radiation acts as a transient stressor in the

first scenario and as a continuous one in the second [11, 12].

The ability of a given organism to resist one type of radiation stress does not necessarily cor-

relate with its ability to resist the other. Examples of poor correlations between resistance to

acute and chronic irradiation have been found in prokaryotes [13–15] and in mammalian cell

lines [16]. Factors such as radiation-induced division delay (e.g. the duration of temporary

proliferation arrest caused by the DNA damage response) and cell cycle redistribution (e.g.

accumulation of irradiated cells in sensitive or resistant phases of the cell cycle) can play an

important role in these phenomena. At the level of multicellular organisms, reproductive per-

formance and embryonic development are often much more radiosensitive endpoints than

adult mortality [17, 18]. Consequently, continuous chronic irradiation could permanently

compromise a population’s self-renewal capacity and therefore could be much more deleteri-

ous to a population than a single acute exposure.

Ionizing radiation acts on cells through multiple mechanisms. Ionizations in or very close

to DNA (e.g. in the first hydration layer) can produce DSBs and other forms of DNA damage

which can kill the cell or potentially transform it into a pre-malignant state [10, 19]. These phe-

nomena can for convenience be called targeted effects (TE). Importantly, damage to nuclear

DNA and to other cell structures (e.g. mitochondria) as well as radiation-induced changes in

the redox balance (e.g. production of reactive oxygen species, ROS) can activate intra-cellular

and inter-cellular signaling pathways [20]. Those cells which have not themselves been tra-

versed by ionizing radiation tracks, but have received signals from cells which have been tra-

versed, can experience non targeted effects (NTE) of radiation. Such effects, often called

bystander effects, include altered differentiation, proliferation and migration, altered redox

status (e.g. persistent oxidative stress) and gene expression, cell death (e.g. apoptosis), as well

as various forms of genomic damage and instability (e.g. increased frequencies of micronuclei,

mutagenesis, chromosomal aberrations) [20–24]. Adaptive responses (e.g. upregulation of
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antioxidant defense mechanisms and DNA repair) can also be induced by NTE [25, 26].

Therefore, NTE can maintain a whole organ (or even an entire organism) in an altered (e.g.

stressed) state even when not all the cells in the organ have been traversed by ionizing tracks.

The signaling pathways involved in NTE are complex and incompletely understood. How-

ever, their consequences can be quantitatively modeled in a simple and tractable manner by

using the following assumptions: (1) Irradiated cells “activate” nearby cells in an “on-off”

(binary) manner. (2) Activated cells accumulate DNA damage (e.g. chromosomal aberrations)

at an elevated rate. Eventually they can revert to the background state, but this process may be

very slow in some cases (e.g. require years-decades). (3) If the radiation dose is protracted,

cells remain activated longer. The result is an increased yield of damaged cells–an inverse

dose-rate effect, where chronic irradiation becomes more effective per unit dose than acute

irradiation. Such effects have been observed after exposure to densely ionizing radiation, e.g.

for lung cancer in radon-exposed miners [27–29]. (4) Activation-induced damage adds to the

damage produced by direct traversal of targets by radiation, i.e. both TE and NTE contribute

to the radiation response.

We previously applied models based on these assumptions to in vitro and in vivo data [21,

22]. Here we used the same approach to analyze a large published data set on chromosomal

aberrations in pond snail (Lymnaea stagnalis) embryos collected over 16 years (1998–2014)

from 6 water bodies contaminated by Chernobyl fallout, and from 2 control locations with

background radiation levels [30, 31]. L. stagnalis is a useful model system because it is a com-

mon aquatic invertebrate throughout the contaminated area and in adjacent areas with back-

ground radiation [30]. It has a high reproduction rate, and both adult individuals and egg

masses can be easily collected from studied water bodies [30, 32]. Consequently, Gudkov et al.

[31] were able to analyze a total of 307,540 snail embryo cells for the presence of chromosomal

aberrations. They also performed detailed radiation dosimetry calculations at all studied loca-

tions, estimating total dose rates and contributions of various radionuclides [30, 31]. The frac-

tion of snail embryo cells with�1 chromosomal aberrations increased strongly (>10-fold)

over a dose rate range of 0.03–420 μGy/h (0.00026–3.7 Gy/year).

The resulting data set, which is very large and combines dose rate estimates with radiation-

induced damage measurements (chromosomal aberration frequencies), contains valuable

quantitative information about chronic radiation effects over multiple generations and under

natural (rather than laboratory) conditions. In addition to the embryo data, Gudkov et al. per-

formed hematological studies on the haemolymph of adult L. stagnalis, measuring young

amoebocytes, dead and phagocytic cells [31]. These studies provide data for a different end-

point, allowing radiation response shapes for different endpoints in embryos and adults to be

compared. For example, similarity of response shapes for both endpoints can be interpreted as

evidence for similarity of the biological effects of radiation on different life stages of L.

stagnalis.
We analyzed the data using our model to: (1) determine whether or not a simple modeling

approach could describe the main features of the responses to chronic irradiation in animal

populations under natural conditions; (2) quantify the magnitude of potential NTE contribu-

tions to these radiation responses. The latter point is important because NTE, which are driven

by intra- and inter-cellular signaling pathways, can potentially be modulated by exogenously

administered chemical agents. If the NTE contribution to the effects of low dose rate chronic

irradiation is large, then development of such agents could be a promising strategy for protect-

ing human health from chronic radiation exposures.
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Materials and methods

Data sets

The main features of the data set on the radiation responses of pond snails (Lymnaea stagnalis)
collected from water bodies with various amounts of radioactive contamination after the Cher-

nobyl nuclear power plant accident, which was published by Gudkov et al. [30, 31], were

described above. There were two studied water bodies (Opechen and Vyrlitsa lakes) where

snails were exposed to near-background radiation dose rates of 0.03–0.04 μGy/h (2.6–3.5×10−4

Gy/year) and six water bodies (Glubokoye, Dalyokoye and Azbuchin lakes, Yanovsky crawl,

Pripyat and Uzh rivers) where dose rates were much higher: 0.2–420 μGy/h (1.8×10−3–3.68

Gy/year) [31]. Data were collected over 16 years, from 1998 until 2014.

Gudkov et al. [31] scored the following types of chromosomal aberrations were scored in

anaphase and telophase snail embryo cells: single fragments; twin fragments; single bridges;

single bridges with fragments; single bridges with two fragments; twin bridges; twin bridges

with single fragments; twin bridges with two fragments; and multiple aberrations (more than

four abnormalities per cell). For these studies, snail egg masses were preserved in Carnoy’s

fluid. For staining of cytological preparations, 1 g orcein dissolved in 45 mL of boiling acetic

acid was used, and 55 mL of distilled water were added. Each sample consisted of 10 eggs in a

watch glass containing 5mL of orcein, maintained at 4 degrees C for 24 h [31].

The observed fractions of snail embryo cells with�1 chromosomal aberrations at each

studied water body and sampling year were presented graphically in Fig 2 of Gudkov et al.

[31]. We digitized these data using the GetData Graph Digitizer software (http://www.getdata-

graph-digitizer.com/). We assumed that the point estimates from Gudkov et al. [31] repre-

sented mean values, and that error bars represented standard errors. Using this information

and the total number of analyzed snail embryo cells reported by Gudkov et al. [31], we recon-

structed the estimated number of analyzed cells (N) for each water body and year. This recon-

struction was based on the assumption that the fraction of cells with aberrations was a

binomial proportion, so that N = Fobs ×(1 –Fobs)/SEobs2, where Fobs is the observed fraction of

cells with aberrations and SEobs is the standard error. The results of this data set reconstruction

are listed in S1 Data. The second analyzed data set on the fraction of young amoebocytes in

adult snail haemolymph was reconstructed by digitizing the data from Fig 7 of Gudkov et al.

[31]. Error bars were not provided for these data, and therefore we estimated the numbers of

analyzed cells from each water body by dividing the total number of analyzed cells by the num-

ber of studied water bodies.

Radiation dose response model

The main assumptions about the role of NTE in our radiation dose response model were

described above and in previous publications [21, 22]. Briefly, we assumed that traversal of a

cell by radiation can cause the release of NTE-mediating signals. The signal concentration

reaches a steady-state equilibrium value in the target organ(s), which is proportional to the

radiation dose rate. The equilibrium signal concentration determines the equilibrium proba-

bility (Pe) for a cell in the organ(s) to be in an “activated” state. This probability is described by

the following equation, where R is the excess radiation dose rate (total dose rate minus the nat-

ural background) and q is the excess dose rate at which 50% of all susceptible cells are activated

(Table 1):

Pe ¼ 1=½1þ q=R� ð1Þ

Details about the derivation of Eq 1 are provided in reference [21]. At very low dose rates Pe is
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close to zero, and at very high dose rates it approaches 1. The dependence of Pe on R is non-

linear.

We assumed that NTE contribute to the steady-state mean number of chromosomal aberra-

tions per snail embryo cell (M) by the term b×Pe, where b is the yield of excess aberrations

from maximally-intense NTE (Table 1). TE of course also contribute to M, by the term a×R,

where a is the adjustable parameter (Table 1). Both the TE and NTE terms are added to the

background number of aberrations per cell (bac), which occur under natural background radi-

ation exposure.

When these terms are combined, the mean number of aberrations per cell M(R) at excess

dose rate R is described by the following equation:

MðRÞ ¼ bacþ ða� Rþ b=½1þ q=R�Þ � exp½� c� ðT � T0Þ� ð2Þ

Here the term exp[-c×(T–T0)] represents a decrease in radiation-induced effects over time:

T0 is the year when observations began (1998 in the data set analyzed here [31]), T is the year

of interest, and c is an adjustable parameter (Table 1). This exponential decrease is intended to

represent the combined effects of the following phenomena: physical decay of the dominant

radionuclides, reduction of bioavailable radionuclide concentrations in the studied water bod-

ies, and possible reduction of radiation effect severity due to organismal adaptation [32].

The “slope” of the radiation response could be estimated at any selected dose rate by differ-

entiating Eq 2 over dose rate. The solution for this derivative, dM(R)/dR, is:

dMðRÞ
dR

¼ aþ b� q= R2 � ð1þ q=RÞ2
� �� �

� exp � c� T � T0ð Þ½ � ð3Þ

Dose rate estimates

Gudkov et al. [31] did not specify during what year(s) of the study the radiation dose rates

were estimated. We assumed that this was done during the first year of study– 1998. This

assumption about the calendar year to which dose rate estimates are assigned should not affect

the conclusions of our analysis (e.g. the shape of the radiation response relationship), as long

as the dose rates were estimated at the same time in all studied water bodies.

In an earlier publication, Gudkov et al. [30] provided not only total dose rates, but also

reported the contributions of specific radionuclides and radionuclide groups. Specifically, they

listed: (a) the dose rate from internally-incorporated 137Cs, 90Sr, 238Pu, 239+240Pu, 241Am; (b) the

dose rate from 137Cs and 90Sr in the water; and (c) the dose rate from external γ-rays [30]. This

information is potentially useful for assessing whether or not certain radionuclides had higher

biological effectiveness per unit dose in this system, than others. For example, α-particle emit-

ters (e.g. Am and Pu isotopes) may be more biologically effective than γ-ray emitters (e.g. 137Cs)

because α-particles and γ-rays differ in energy deposition patterns and complexity of induced

DNA damage [19, 33, 34].

Table 1. The meanings of model parameters.

Model parameter Meaning

bac Background mean number of chromosomal aberrations per cell

a Excess aberrations per cell from TE (year/Gy)

b Excess aberrations per cell from maximally-intense NTE

q Dose rate at which NTE reach ½ of maximal intensity (Gy/year)

c Decrease of radioactive contamination effects over time (year-1)

https://doi.org/10.1371/journal.pone.0176476.t001
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We used the data from Table 1 in Gudkov et al. [30] to extract the following values for each

studied water body: (1) the minimum and maximum dose rates from each (i-th) radionuclide

or radionuclide group (a-c above), called RMin(i) and RMax(i), respectively; (2) the correspond-

ing minimum and maximum total dose rates from all radionuclides combined, called RtotMin
and RtotMax, respectively. RMin(i) and RMax(i) were then be converted to fractional contribu-

tions, RfracMin(i) and RfracMax(i), as follows:

RfracMin ið Þ ¼
RMinðiÞ
RtotMax

; RfracMax ið Þ ¼ min½1;
RMaxðiÞ
RtotMin

� ð4Þ

We assumed that RfracMin(i) and RfracMax(i) were applicable to the total dose rates reported in

the subsequent publication from Gudkov et al. [31]. To assess potential differences in biological

effectiveness of different radionuclides, we performed separate analyses where the following

radionuclides were allowed to have higher biological effectiveness than other radiation sources

(e.g. external γ-rays): (A) α-particle emitting Am and Pu isotopes, (B) all internally-incorpo-

rated radionuclides, (C) internally-incorporated 90Sr, or (D) total 90Sr (internal and external).

The excess radiation dose rate (R) for these analyses was calculated as follows, where RbacMin
and RbacMax were minimum and maximum values for the background dose rate (in the two ref-

erence water bodies) and WF(i) was the weighting factor for the i-th radionuclide group (A-D):

Rgen ¼ ½ðRtotMin � RbacMinÞ � ðRtotMax � RbacMaxÞ�
1
2; RfracGM ið Þ ¼ ðRfracMinðiÞ�RfracMaxðiÞÞ

1
2; R

¼ ½WFðiÞ � RfracGM ið Þ þ ð1 � RfracGM ið ÞÞ� � Rgen ð5Þ

Here we used geometric means to produce point estimates for the relevant dose rates. In situa-

tions where RfracMin(i) and RfracMax(i) were unknown (not reported in reference [30]), they were

set to 10−9 and 1, respectively.

As described below in the subsection about model parameter uncertainties, we performed

sensitivity calculations to assess how these simplifying assumptions (which were motivated by

limitations of the published data from references [30, 31]) affected the results. These calcula-

tions involved random perturbations of dose rate estimates: instead of geometric means, point

estimates of dose rates were generated by random draws from the uniform distribution

bounded by the relevant minimum and maximum values. For example, RfracGM(i) was a uni-

formly-distributed random number between RfracMin(i) and RfracMax(i).
The values of R estimated using Eq (5), or by Monte Carlo (MC) simulation (described

below), were inserted into Eqs (2 and 3) to obtain model predictions. For the simple case

where the weighting factor for the i-th radionuclide group WF(i) was equal to 1, R reduced to

Rgen. In other situations, when WF(i) was >1, R became larger than Rgen.

Assumptions about error distributions

The error distribution around the mean M(R) from Eq 2 was assumed to be Poisson. This is a

reasonable assumption for chromosomal aberrations induced by sparsely-ionizing radiation

[35, 36]. According to the Poisson distribution, the predicted fraction of cells with�1 chromo-

somal aberrations (F(R)) is described by the following equation, where M(R) is taken from Eq

(2):

FðRÞ ¼ 1 � exp½� MðRÞ� ð6Þ

The same model structure (Eq 2) was used on the other analyzed data set (adult snail hae-

molymph composition) by assuming that the fraction of young amoebocytes is equal to 1 –s×F
(R), where s is an adjustable parameter.
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We also considered a scenario with a negative binomial (NB) error distribution. This distri-

bution is more appropriate for chromosomal aberrations induced by densely-ionizing radia-

tion (e.g. α-particles), where the variance can be considerably larger than the mean [35, 37].

For ease of interpretation, the NB distribution was parametrized as follows, where PNB(k) is the

probability of observing k aberrations in a cell, Γ is the Gamma function, and r is the “overdis-

persion” parameter:

Q ¼ MðRÞ þ 1=r;

PNBðkÞ ¼ ð1=½r � Q�Þ1=r � ðMðRÞ=QÞk � Γ ðkþ 1=rÞ=½Γ ð1=rÞ � k!� ð7Þ

Using this parametrization, the variance is described by the convenient expression M(R) +

r×M(R)2. Consequently, if r approaches 0, there is no overdispersion and the variance and

mean are equal, as in the Poisson distribution. On the other hand, if r> 0, then the variance

becomes greater than the mean and the ratio of variance to mean increases as the mean

increases.

According to the NB distribution, the predicted fraction of cells with�1 chromosomal

aberrations (FNB(R)) is described by the following equation:

FNBðRÞ ¼ 1 � ½1þ r �MðRÞ�� 1=r
ð8Þ

The data set analyzed here [31] contained only the observed fraction of cells with�1 chro-

mosomal aberrations, but not the full distribution of aberration frequencies. Consequently,

parameter r could not be determined from the data. We therefore used Eq (6), based on the

Poisson distribution, as the default assumption for our analysis, but also performed explor-

atory calculations using Eq (8) with artificially assigned values of r (0.1, 0.5, 1.0 or 2.0). These

exploratory calculations were intended to assess the sensitivity of analysis results to the poten-

tial presence of overdispersion in the data. They showed that varying parameter r affected the

best-fit model parameters, but these effects were not dramatic and they did not change any of

the major conclusions described below. Therefore, we focus on the results of using Eq (6)

rather than Eq (8) in the subsequent sections.

Model fitting procedure

The dose response model predicted the fraction of cells with�1 chromosomal aberrations: F
(R) from Eq (6) or FNB(R) from Eq (8). To fit these predictions to the data, i.e. to the observed

fractions of cells with�1 aberrations Fobs(R), we assumed that each analyzed snail embryo cell

represents an independent Bernoulli trial which can result in 2 outcomes: either the cell has 0

aberrations or�1 aberrations. We believe that this assumption is a reasonable approximation

for the available data taken from reference [31]. Using it, we constructed the following Bino-

mial distribution for the probability P of observing K cells with�1 aberrations out of N ana-

lyzed cells, where F(R) or FNB(R) is the model-predicted fraction of cells with�1 aberrations:

P ¼ N!� FðRÞK � ð1 � FðRÞÞN� K=½K!� ðN � KÞ!� ð9Þ

In other words, N and K represent the observed data (from a specific water body, dose rate

and year of observation), K/N is the fraction of cells with aberrations reported in reference

[31], and F(R) are corresponding model predictions. The goal is to find parameter values bac,
a, b, q and c that maximize the product of likelihoods (values of P) for all the data (for all water

bodies and years of observation). This task can be accomplished more conveniently by
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maximizing the log likelihood (LL), which is defined as LL = ln[P]. The solution for LL is:

LL ¼ K � ln½FðRÞ� þ ðN � KÞ � ln½1 � FðRÞ� þ ln½1=ðN � KÞ!� þ ln½N!� � ln½K!� ð10Þ

The terms ln[1/(N–K)!] + ln[N!]–ln[K!] do not contain F(R) and, therefore, have no role in

determining the best-fit values of parameters bac, a, b, q and c. They can be omitted for

convenience.

We maximized the sum of log likelihoods (LL from Eq 10) for all data using the sequential

quadratic programming (SQP) algorithm [38] implemented in Maple 20161 software. To

increase the probability that a global rather than a local maximum was found for the LL func-

tion, we performed the procedure 100 times with different randomly-selected initial parameter

values. The best results from these 100 repeats, i.e. the parameter values from the particular

repeat which produced the largest LL, were recorded.

Model parameter uncertainties

Uncertainties (95% confidence intervals, CI) for each model parameter (bac, a, b, q and c)
were estimated by profile likelihood [39], which is based on the asymptotic X2 behavior of the

log likelihood distribution. In addition, we further explored model parameter uncertainties by

sensitivity calculations. They consisted of MC simulation which included random variability

in dose rate estimates and aberration counts. Specifically, we produced 10,000 synthetic data

sets based on the real data set. In each synthetic data set: (1) the dose rate was a uniformly-dis-

tributed random number between the minimum and maximum dose rate values reported in

references [30, 31], as described above (Eq 5); (2) the number of analyzed snail embryo cells

was a Poisson-distributed random number with the mean set to the observed value (N, esti-

mated as described above); (3) the number of embryo cells with�1 aberrations was a Poisson-

distributed random number with the mean set to the observed value (K, estimated as described

above). The model was fitted to each synthetic data set using Eq (10), and best-fit parameter

values were recorded. Parameter uncertainties (95% CIs) were estimated using the 2.5th and

97.5th percentiles of the distribution of values for each parameter across the 10,000 simulations.

The goal of these analyses was to estimate model parameter uncertainties on unperturbed data

(by profile likelihood) and to test the sensitivity of these estimates to random fluctuations in

the data (by MC simulation).

Quantification of the NTE contribution to the radiation response

The fractional NTE contribution (NTEc) to the radiation response slope (Eq 3) can be esti-

mated by the expression NTEc = 1 –dM(R, b = 0)/dM(R), where dM(R) is the slope from Eq (3)

and dM(R, b = 0) is the slope with NTE parameter b set to zero (leaving only the TE contribu-

tion). For convenience, in this calculation one can use T = T0. The solution for NTEc is:

NTEc ¼ b� q=½b� qþ a� ðqþ RÞ2� ð11Þ

At very low dose rates NTEc approaches b/[b + a×q], and at high dose rates it approaches 0.

In other words, the NTE contribution is highest at low dose rates where few cells are traversed

by ionizing tracks and TE are therefore small. At very high dose rates the NTE contribution

declines and TE start to dominate.

To estimate the uncertainties of NTEc, we used MC simulation to generate random parame-

ter values in the vicinity of the best-fit values. The simulation continued until 10,000 parameter

combinations which produced model predictions that fell within the 95% confidence critical

contour of the log likelihood function were recorded. In other words, we accumulated model
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parameter combinations which produced fits almost as good as the best fit. These parameter

combinations were substituted into Eq (11). In this manner, a distribution of NTEc values was

created at any selected dose rate. The minimum and maximum values from the distribution

were used to approximate the 95% CIs of NTEc.

Information theoretic (IT) model selection

An additional method to estimate the role of NTE in describing the data involved IT model

selection. A reduced TE-only model was created by substituting b = q = 0 into Eq (2). This

reduced model was fitted to the data by the same log likelihood maximization procedure as the

full (TE+NTE model, Eq 2). The maximized log likelihoods for the full and reduced models

were compared by converting them into sample size corrected Akaike information criterion

(AICc) values [40, 41]. In this manner, models were ranked by relative support from the data,

taking into account sample size and number of adjustable parameters.

The relative likelihood of the M-th model, called the evidence ratio (ERM), can be expressed

as follows, where AICcmin is the lowest AICc value generated by the set of models being com-

pared:

ERM ¼ exp � 1=2
DAICcM½ �; where DAICcM ¼ AICcM � AICcmin ð12Þ

The normalized evidence ratio, i.e. the evidence ratio for the tested model divided by the

sum of the evidence ratios for all the models being compared, is another useful quantity which

is called the Akaike weight, WM. It represents the probability that the M-th model would be

considered the best-supported model (among those tested) upon repeated sampling of the

data. The formula for the Akaike weight is:

WM ¼ ERM=
P

MERM ð13Þ

As a hypothetical example, suppose that the TE-only model has an Akaike weight of 0.8,

which means that the full TE+NTE model’s weight is 1–0.8 = 0.2. This result implies that the

presence of NTE cannot be ruled out with high confidence, but that the simpler TE-only

model has better support from the data. On the other hand, if the TE-only model has an

Akaike weight of only 0.01, one can conclude that NTE are very important for describing the

data because the model which does not include them performs poorly, compared with the

model which does include NTE.

In addition to the TE+NTE and TE-only models, we used the IT metrics ΔAICc and W to

compare the performances of various other model versions. Specifically, an NTE-only model

was generated by setting a = 0 in Eq (2). A time-dependent dose rate (TDR) model was gener-

ated as follows by assuming that the decrease in radiation-induced effects over time, i.e. the

term exp[-c×(T–T0)], applies directly to the dose rate, rather than to the biological effects:

MðRÞ ¼ bacþ ða� R� exp½� c� ðT � T0Þ� þ b=½1þ q=ðR� exp½� c� ðT � T0Þ�Þ�Þ ð14Þ

Multiple other model versions were produced by substituting dose rete estimates produced

using weighting factors WF(i) for specific radionuclides, which were described earlier, into

each of these model structures (TE+NTE, TE-only, NTE-only, TDR). For each version, Pois-

son and NB error distributions were analyzed separately.

Results

The data on chromosomal aberrations in snail embryos exposed to different radiation dose

rates [31] are shown in Fig 1 (symbols). In reference water bodies (Opechen and Vyrlitsa
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lakes) with background radiation dose rates the fraction of snail embryo cells with chromo-

somal aberrations was generally low. In lightly contaminated water bodies (Pripyat river and

Uzh river), where the dose rate was about 10-fold above background, the fraction of cells with

aberrations was moderately increased (about 1.5-fold) above the background value. In highly

contaminated water bodies (Globokoye, Dalyokoye and Azbuchin lakes, Yanovsky crawl),

where dose rates were about 1,000–10,000-fold above background, the fraction of cells with

aberrations was strongly increased (>10-fold) above the background value.

The radiation response shape was clearly non-linear. Specifically, the response showed

some increase between uncontaminated (background) locations and lightly contaminated

locations (dose rates between 2.6–3.5×10−4 and 1.8–2.6×10−3 Gy/year), but the steepest rate of

increase occurred between lightly and highly contaminated locations (dose rates between 1.8–

2.6×10−3 and 0.31–0.51 Gy/year). The increase became less steep at high contamination levels

(dose rates between 0.31–0.51 and 3.07–3.68 Gy/year) [31]. The approximately 10-fold varia-

tion in dose rates between different highly contaminated water bodies (e.g. between Globokoye

and Dalyokoye lakes) resulted in a much less than 10-fold variation in aberration frequency.

Fig 1. Comparison of data (symbols) and best-fit predictions (curves) for the standard model which uses both TE and NTE (panels A-B) or the

TE-only model which does not use NTE (panels C-D). Best-fit parameter values for both model versions are provided in Table 2. The focus here is

the shape of the response to radiation dose rate. Error bars represent 95% CIs calculated using the score confidence interval method for binomial

proportions [42].

https://doi.org/10.1371/journal.pone.0176476.g001
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The best-fit model curves adequately described the main features of these data (Fig 1A and

1B). Specifically, the model was consistent with the non-linearity of the radiation response

shape. Such non-linearity was described mainly by NTE: when the NTE parameters b and q
were set to zero, the resulting TE-only model had a dramatically lower fit quality than the stan-

dard TE+NTE model (Fig 1C and 1D): its performance was worse by 5123 AICc units

(Table 2).

The best-fit model curves (Fig 1) adequately described the main features of these data. Spe-

cifically, the model was consistent with the non-linearity of the radiation response shape. Such

non-linearity was described mainly by the NTE component of the model. When the NTE

parameters b and q were set to zero, the resulting TE-only model had a dramatically lower fit

quality than the standard model: its performance was worse by 5123 AICc units (Table 2).

In other words, a TE-only model generated a linear radiation response which was inconsis-

tent with the shape of the observed data (Fig 1C and 1D). In contrast, when the TE parameter

a was set to zero, the resulting NTE-only model performed only 8 AICc units worse than the

standard model (Table 2). These patterns remained unchanged when the error distribution for

the number of chromosomal aberrations per cell was changed from Poisson to negative bino-

mial with various degrees of overdispersion, as described in Materials and Methods. The over-

dispersed distributions produced slightly worse model fits than the Poison ones, but the

relative ranking of models remained the same. These results suggested that a decent fit to the

data could be generated only by including NTE in the model.

The dose rate at which NTE were predicted to reach ½ of maximal intensity (parameter q)

was approximately 0.022 Gy/year, i.e. 2.5 μGy/h (Table 2). Such a dose rate is intermediate

between values observed in lightly and highly contaminated water bodies [30, 31]. The mean

number of excess chromosomal aberrations per cell from maximally-intense NTE (parameter

b) was approximately 0.24 (Table 2). The radiation response coefficient from TE (parameter a)

was about 0.008 year/Gy, i.e. 7.0×10−5 h/μGy (Table 2).

Table 2. Best-fit model parameter values and comparison of model fit qualities. The results for four model versions (standard = TE + NTE, Eq (2); TE-

only = NTE parameters b and q were set to zero; NTE-only = TE parameter a was set to zero; TDR = time-dependent dose rate, Eq 14) are arranged in col-

umns. ΔAICc and Akaike weight are information theoretic metrics of relative model performance: the model with the highest support from the data among all

tested models has the lowest ΔAICc and the highest weight. Details are discussed in the main text.

Model assumptions Standard TE-only NTE-only TDR

ΔAICc 0.0 5123.2 8.1 300.8

Akaike weight 0.983 0.000 0.017 0.000

Parameter bac 0.0117 0.0200 0.0117 0.0121

95% CIs 0.0116 0.0199 0.0116 0.0116

0.0120 0.0206 0.0120 0.0126

Parameter a (year/Gy) 0.0080 0.2313 0 0.0292

95% CIs 0.0031 0.2280 0 0.0201

0.0130 0.2428 0 0.0393

Parameter b 0.242 0 0.251 0.153

95% CIs 0.236 0 0.244 0.150

0.247 0 0.256 0.158

Parameter q (Gy/year) 0.0216 0 0.0227 0.0110

95% CIs 0.0203 0 0.0213 0.0105

0.0236 0 0.0248 0.0122

Parameter c (year-1) 0.0506 0.0828 0.0499 0.0998

95% CIs 0.0465 0.0796 0.0459 0.0769

0.0551 0.0852 0.0544 0.1202

https://doi.org/10.1371/journal.pone.0176476.t002
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The model assumption that the radiation-induced excess aberration frequency decreases at an

exponential rate (parameter c) with time after the Chernobyl accident in all water bodies was con-

sistent with the data (Fig 2). In contrast, an alternative assumption that the excess dose rate, rather

than excess aberration frequency, decreased with time had very poor support from the data: such

a model (labeled TDR, Table 2) performed worse than the standard model by 301 AICc units.

The best-fit rate of decrease for the radiation response (parameter c) was about 0.05 year-1

(Table 2), i.e. the half-life was about 14 years. This estimate is approximately 2-fold smaller

than the physical half-lives of the main radionuclide contaminants 137Cs and 90Sr. This dis-

crepancy suggests that reduction of long-term radiation effects in the studied snails may occur

not only due to physical decay of radionuclides, but also due to chemical/biological processes

that reduce radionuclide concentrations in the water bodies and in snail tissues [32].

The contributions of different radionuclides (e.g. internally-accumulated 90Sr or α-particle

emitters such as Pu and Am isotopes) to the total dose rate experienced by snails differed sub-

stantially among different water bodies [30]. As described in the Materials and Methods sec-

tion, we used this information to investigate potential differences in biological effectiveness

between radionuclides by assigning weighting factors >1 to the dose rate contributions of

these radionuclides. In other words, in the standard model the dose rates from external and

internally-accumulated radionuclides were treated equally and added together, but in these

calculations selected radionuclides or radionuclide groups were allowed to be more biologi-

cally effective than the rest. The highest support among all tested model variants was achieved

when the dose rate component from internally-incorporated 90Sr was weighted by a factor of

25 (95% CI: 13, 46) (Fig 3). This formalism, called the internal Sr model for convenience, fit

the data by 48.4 AICc units better than the standard model. However, we cannot exclude the

possibility that this difference in fit quality could have been amplified by the procedure used to

reconstruct data from limited published information [30, 31].

Visual comparison of the fits from the standard and internal Sr models (Figs 1 and 3) shows

that the shape of the radiation response changed because weighting the internal 90Sr contribu-

tion decreased the differences in radiation levels between the highly contaminated water bod-

ies (Glubokoye, Dalyokoye and Azbuchin lakes and Yanovsku crawl). This occurred because

the fraction of the total dose rate which was due to internal radionuclide incorporation differed

strongly among locations: e.g. internal exposure contributed only 5% to the total dose rate in

Fig 2. Comparison of data (symbols) and best-fit predictions (curves) for the standard model. The focus here is the time dependence of

radiation effects. In this and the following figures, error bars on the data points are not shown to make visualization of the data more convenient.

They are provided in Fig 1.

https://doi.org/10.1371/journal.pone.0176476.g002
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Globokoye lake, but>50% in Azbuchin lake and Yanosvky crawl [30]. Since the data from

highly contaminated locations were therefore brought closer together on the x-axis in Fig 3 vs.

Fig 1, the best-fitting radiation response became closer to linear. This resulted in a larger best-

fit value for the TE parameter a from the internal Sr model, compared with the standard

model (Fig 4). However, when random variability in dose rate estimates and aberration counts

was included in the estimation of model parameter uncertainties, the 95% CI for parameter a
overlapped zero in the internal Sr model (Fig 4). All other model parameter values and uncer-

tainties were similar in both the standard and internal Sr models (Fig 4).

As expected based on model assumptions and structure, NTE were particularly important

for describing the data at low dose rates (e.g. <1 Gy/year or <100 μGy/h), whereas at higher

dose rates their predicted contribution to the radiation response declined (Table 3, Fig 5). This

is intuitive because at low dose rates traversals of cell nuclei by ionizing tracks and the TE

resulting from such traversals are rare events. Consequently, if the magnitude of the biological

effects observed at such dose rates is considerable (as in the data analyzed here), these effects

may be caused by NTE.

The effects of radioactive contamination were of course unlikely to be limited to snail

embryos–adults were likely to be affected as well. Moreover, if the underlying types of radia-

tion-induced damage and signaling are similar in embryos and adults, then the dose response

shapes may also be similar. To investigate this possibility, we applied the best-fit radiation

response produced using the standard model on chromosomal aberration data in snail

embryos to a different data set: the fraction of young amoebocytes in the haemolymph of adult

snails [31] (Fig 6). As described in Materials and Methods, this calculation involved only one

adjustable parameter (s), which scaled the dose response from the embryo data to the adult

data, but did not alter its shape. The best-fit value of s was 12.65, and the fitted curve was visu-

ally consistent with the data (Fig 6). This result provides some evidence that radioactive con-

tamination affected different snail life stages in similar ways.

Fig 3. Comparison of data (symbols) and best-fit predictions (curves) for the internal Sr model. In this model the dose rate

component from internally-incorporated 90Sr was weighted by a factor of 25. Details are described in the main text.

https://doi.org/10.1371/journal.pone.0176476.g003
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Discussion

We conducted a mechanistically-motivated quantitative analysis of the effects of chronic irra-

diation from Chernobyl nuclear-power plant accident fallout on natural populations of a com-

mon aquatic invertebrate: the pond snail Lymnaea stagnalis. The analyzed data sets on

chromosomal aberrations in snail embryo cells and on the composition of adult snail haemo-

lymph were presented graphically in a publication by Gudkov et al. [31]. We reconstructed the

Fig 4. Exploration of model parameter uncertainties by MC simulation which included random variability in dose rate estimates

and aberration counts. The bars represent best-fit parameter values for the standard (blue) and internal Sr models (red). Parameter

interpretations and units are provided in Table 1. Error bars represent 95% CIs. The best-fit parameter values for the standard model were:

bac = 0.0117 (95% CI: 0.0110, 0.0122), a = 0.0080 (0.0013, 0.0143) year/Gy, b = 0.242 (0.228, 0.259), q = 0.0216 (0.0193, 0.0255) Gy/year,

c = 0.0506 (0.0440, 0.0570) year-1. For the internal Sr model they were: bac = 0.0117 (0.0114, 0.0130), a = 0.0183 (0, 0.0279) year/Gy,

b = 0.197 (0.169, 0.252), q = 0.0234 (0.0205, 0.0551) Gy/year, c = 0.0498 (0.0415, 0.0570) year-1. Details are described in the main text.

https://doi.org/10.1371/journal.pone.0176476.g004
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data by digitizing the published graphs and using additional information reported in refer-

ences [30, 31]. Certainly this reconstruction was not exact, but the similarity of model parame-

ter estimates obtained by fitting unperturbed (Table 2) or randomly perturbed data (Fig 4)

suggested that random errors in reconstruction of the data set were unlikely to strongly affect

model parameter estimates and conclusions. We also believe that the following strengths of the

data compensated for its limitations: (1) The data sets were very large– 307,540 snail embryo

cells and 96,060 adult snail haemolymph cells were analyzed. (2) The measured endpoints–

chromosomal aberrations and haematological effects–have relevance for radiation protection.

(3) The range of studied dose rates was very broad–approximately 4 orders of magnitude. (4)

The study involved multiple locations (8 different water bodies) and spanned multiple

generations.

These data showed a non-linear radiation response (Fig 1). The robustness of the response,

particularly at low dose rates (< 1 Gy/year) where TE resulting from traversal of nuclear DNA

by ionizing tracks are likely to be rare events, suggested involvement of NTE. Our detailed

quantitative analysis using a mathematical model which included both TE and NTE terms sup-

ported this hypothesis: accounting for NTE was very important for describing the data,

whereas a model without NTE performed very poorly (Fig 1, Table 2). NTE were needed for

reproducing the non-linear radiation response shape at low dose rates, whereas a TE-only

model predicted a linear response which was inconsistent with the data.

The cell signaling pathways responsible for radiation-induced NTE are actively studied but

the complex mechanisms involved remain incompletely understood [20, 24, 25, 28, 43–45].

For example, when only some (not all) cells in an organ or organism are damaged by radiation,

NTE can convert the entire organism into a stressed state. Such a state, particularly if it persists

during chronic radiation exposure, can result in different consequences: oxidative stress and

DNA damage levels can increase, but antioxidants and DNA repair machinery can be induced

as well [2, 46, 47]. This physiological shift can lead to increased mutagenesis and carcinogene-

sis, but may also increase the organism’s resistance to massive radiation insults (e.g. to a large

acute dose) [25, 26, 48]. Some evidence for the latter in L. stagnalis is reported by Golubev

et al. [32]: snails with higher levels of internal radioactive contamination (i.e. those collected

from the most contaminated water bodies) tended to survive longer after acute 500 Gy expo-

sure, than snails with lower contamination levels.

Our analysis provided some evidence that different radionuclides may have different effec-

tiveness in inducing NTE. For example, the best-fit weighting factor for internally accumulated
90Sr was 25 (95% CI: 13, 46). 90Sr and its decay product 90Y are almost pure β emitters.

Although the DNA damaging and cytotoxic potencies of β-particles are not as high as those of

Table 3. NTE contributions (Eq 11) to the radiation responses predicted by the standard and internal

Sr models. Excess dose rate represents radiation exposure above natural background.

Excess dose rate

(Gy/year)

Lower and upper 95% CIs for NTE contribution

Standard model Internal SR model

0.0001 0.999 1.000 0.997 0.998

0.001 0.999 1.000 0.997 0.998

0.01 0.997 0.999 0.994 0.997

0.1 0.963 0.992 0.924 0.960

1.0 0.266 0.634 0.147 0.263

3.16 0.015 0.067 0.017 0.036

10.0 0.004 0.018 0.002 0.004

https://doi.org/10.1371/journal.pone.0176476.t003
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α-particles, the high importance of 90Sr (rather than some α-emitting radionuclides) in L. stag-
nalis is plausible because molluscs accumulate 90Sr in their shells [49]. In other words, 90Sr

may be highly relevant for molluscs not only because of its radioactivity, but because of the

combination of its radioactivity with its chemical properties, which result in its long-term

incorporation into mollusk tissues.

Interactions of radiation with other environmental factors (e.g. water temperature, conduc-

tivity, pH, etc), and with chemical pollutants and/or pathogens, could in principle affect chro-

mosomal aberration yields in the studied snails. Variations in snail population structure (e.g.

age/stage distributions) at different times or locations also could confound the effects of radia-

tion. Unfortunately, such factors could not be investigated using the analyzed data from Gud-

kov et al. [30, 31]. However, it is unlikely that they could have distorted the main conclusions

of our analysis because differences in measured endpoints (e.g. chromosomal aberrations)

between locations (water bodies) with different environmental conditions were not as large as

the differences between locations with background, low or high radiation dose rates (Fig 1). In

other words, chromosomal aberrations were consistently rare in snail embryos from all water

bodies with low radiation levels and consistently much more common in embryos from

heavily contaminated water bodies, suggesting that radiation was the dominant cause of the

differences in chromosomal aberration frequency.

Overall, the data from Gudkov et al. [30, 31] and our mechanistically-motivated analysis of

these data suggested that even though Chernobyl fallout may not have affected the abundance

of aquatic molluscs [50], it affected L. stagnalis on a physiological level. Most of the effects at

low dose rates (<1 Gy/year) were likely to be caused by NTE (Table 3, Fig 5). These results

imply that NTE may be important for radiation protection for chronic low dose rate

Fig 5. NTE contributions (Eq 11) to the radiation responses predicted by the standard and internal Sr models. Curves represent best-

fit results, and symbols show the lower and upper 95% CIs at selected dose rates. The dose rate shown on the x-axis is excess dose rate

(above natural background). Details are described in the main text.

https://doi.org/10.1371/journal.pone.0176476.g005
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exposures, and that developing strategies to disrupt/modulate NTE may be a promising

approach to mitigate deleterious chronic radiation effects.
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Fig 6. Application of the best-fit radiation response (red curve) produced using the standard model

on chromosomal aberration data in snail embryos to a different data set: The fraction of young

amoebocytes in the haemolymph of adult snails (blue symbols). Details of this calculation are described

in the main text. The NTE-only model curve produced by setting the TE parameter a to zero is shown in green.

https://doi.org/10.1371/journal.pone.0176476.g006
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