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On the effects of memory 
and topology on the controllability 
of complex dynamical networks
Panagiotis Kyriakis1*, Sérgio Pequito2 & Paul Bogdan1

Recent advances in network science, control theory, and fractional calculus provide us with 
mathematical tools necessary for modeling and controlling complex dynamical networks (CDNs) that 
exhibit long-term memory. Selecting the minimum number of driven nodes such that the network is 
steered to a prescribed state is a key problem to guarantee that complex networks have a desirable 
behavior. Therefore, in this paper, we study the effects of long-term memory and of the topological 
properties on the minimum number of driven nodes and the required control energy. To this end, 
we introduce Gramian-based methods for optimal driven node selection for complex dynamical 
networks with long-term memory and by leveraging the structure of the cost function, we design a 
greedy algorithm to obtain near-optimal approximations in a computationally efficiently manner. We 
investigate how the memory and topological properties influence the control effort by considering 
Erdős–Rényi, Barabási–Albert and Watts–Strogatz networks whose temporal dynamics follow a 
fractional order state equation. We provide evidence that scale-free and small-world networks are 
easier to control in terms of both the number of required actuators and the average control energy. 
Additionally, we show how our method could be applied to control complex networks originating 
from the human brain and we discover that certain brain cortex regions have a stronger impact on the 
controllability of network than others.

In recent years, there has been an interplay between network science and control theory mainly due to the fact 
that many natural and man-made systems, such as the power grid, the World-Wide-Web, neural and biologi-
cal networks can be described by complex dynamical networks (CDNs). A CDN consists of two components: 
the network component and the dynamical component. On the one hand, the network component has been 
extensively studied in the past two decades, strongly stimulated by the exploration and advance of small-world 
networks (Watts–Strogatz model1) and scale-free networks (Barabási–Albert model2), both of which are con-
sidered developments that follow the notion of the classical Erdős–Rényi random graph model3. On the other 
hand, the indispensable dynamical component is required to determine whether a system is stable, controllable 
and observable and, if not, to extract conditions such that it can be so. Such questions and tools to address them 
lie at the core of dynamical and control systems theory4. Furthermore, recent advances in sensing and actuation 
technology as well as the refinement of network models combined with increased computational capabilities, 
which allow us to better process and represent the plethora of data stemming from CDNs, have brought the fields 
of network science and control theory together and created a collection of novel and interesting problems. One 
of those problems is the driven node selection which consists of finding an optimal set of nodes to be driven such 
that the system attains certain properties. The optimality criterion is usually quantified by a combination of the 
number of driven nodes and/or the required control energy and the property to be attained is the controllability.

There have been many variants of the aforementioned problem and different heuristics have been devised 
to address its combinatorial nature. A prominent example on the controllability of CDNs was presented by Liu 
et al.5 where the authors used the Kalman’s rank condition and the idea of structural controllability6 to solve 
the minimum number of driving nodes (i.e., the nodes that provide the external input signal to different state 
nodes) by solving a maximum bipartite matching. The minimum number of driven nodes ensuring structural 
controllability7 and related problems have been solved by considering minimum input/output actuating costs8. 
Other variants include minimum structural perturbations9, constraints on the set of controlled states10, edge 
dynamics11,12, by introducing the metric of structural permeability13 to account for physical and economic con-
straints on the network and by accounting for the time-to-control14.
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A limitation of these approaches is that they focus exclusively on structural controllability which may be 
a rather crude and misleading metric in some cases, as suggested by empirical findings in the field of cellular 
reprogramming15. This indicates that a more pertinent strategy is to determine the minimum number of driven 
nodes that optimizes a real-valued energy (e.g., controllability) metric. Gramian-based metrics4 have been exten-
sively used16–19 to quantify the controllability of a complex network as they are related to the energy required 
to move the system in the state-space. An additional benefit of using Gramian-based metrics is that they pos-
sess the submodularity property20, which allows us to approximate the solution to the problem for large-scale 
systems using greedy methods. In this line of work, the proposed approaches include convex relaxations while 
accounting for rank constraints21, upper bounds on the control effort22 and joint optimization of performance 
and controllability using matroid constraints23.

One particularly important application of the controllability of complex dynamical networks is in the emerg-
ing field of controlling the human brain. It has been recently observed24 that cognitive brain control is analogous 
to mathematical notions of control used in engineering. The architecture of the brain, consisting of billions of 
neurons (nodes) interlinked by trillions synapses (edges), has a strong impact on neural function, brain develop-
ment disease progression and rehabilitation. At a higher level, these neurons are organized in several anatomi-
cal regions (Fig. 4a), each of which is responsible for controlling a certain cognitive function such as memory 
and emotional expression (frontal lobe), motor control and movement (motor cortex) and auditory language 
and speech comprehension (temporal lobe). It is plausible24 that the brain could regulate cognitive function by 
transient network-level input through a process similar to the one used in control of complex networks. One 
important finding is that the brain network can be theoretically controllable by a single region/node, i.e., the 
smallest (in absolute value) of the eigenvalues of the controllability Gramian24. However, in order to assess the 
controllability of the brain network from one node, it is not necessary to compute the minimum eigenvalue, 
which in many practical cases admits extremely low values rendering the required control energy extremely 
high25. Alternatively, one can assess the controllability by proving the existence of a Hamiltonian path from 
each control region26, which however is a known NP-hard problem. The main pitfall of the current approaches 
is that they try to achieve controllability using a single node and that they ignore the long-term memory effects 
appearing in brain networks27,28.

While there has been a great effort to determine the minimum number of driven nodes in CDNs, most of 
the work focuses on Markovian (memoryless) or integer order dynamics and not much is known for the case 
where the dynamics are characterized by long-term memory. Long-term memory is captured by the notion of 
fractional derivative29 and many authors have shown that it is a more appropriate operator to describe the dynam-
ics observed in real-world systems30–32. Even though classical control theoretic notions have been extended to 
fractional systems29, energy based methods for driven node selection are still in their infancy33.

In this paper, we introduce a fractional order system as a model for CDNs that exhibit long-term memory. 
Our model exploits fractional calculus concepts and generalizes all state-of-art models for CDNs. We present the 
controllability matrix for those networks, analyze the differences compared to integer order systems and extend 
this notion to a more sophisticated, real-valued, energy based metric that depends on the controllability Gramian. 
We exploit the structure of the latter objective function to design a computationally efficient greedy algorithm 
with approximation guarantees for the minimum number of driven nodes under energy requirements problem. 
Our method is applied on networks generated from the Erdős–Rényi, Barabási–Albert and Watts–Strogatz 
models. The effect of topology, parameters and model as well as the effect of memory on the number of driven 
nodes and controlled energy are assessed through comprehensive numerical simulations. Additionally, we show 
how our novel framework is applicable to the emerging field of brain controllability and we observe that certain 
brain cortex regions have a stronger impact than others.

Results
Experiments on complex network models.  We investigate the effects of topology and long-term mem-
ory on the number of driven nodes and the trace of the controllability Gramian in the context of Fractional 
Order Complex Dynamical Networks (FOCDNs) where the adjacency matrix is given by three different well-
known models: the Erdős–Rényi (ER) model, the Barabási–Albert (BA) model and the Watts–Strogatz (WS) 
model. The edges are obtained by executing the corresponding network generation algorithm and a random 
weight drawn from the standard normal distribution is assigned. These models cover a wide spectrum of real-
world complex networks as they capture fundamental topological properties such as random interactions (ER 
model), power-law degree distributions and preferential attachment based growth mechanisms (BA model), 
and small-world properties such as short path length and high clustering (WS model). In more detail, the ER 
model is characterized by the parameter p which is the connection probability of two randomly chosen nodes. 
Additionally, the BA model is constructed by starting with an initial, random connected network of m0 nodes 
and connecting each newly added node to m ≤ m0 existing nodes with a probability that is proportional to the 
number of links that the existing nodes already have. Finally, a WS graph is generated by initially creating a ring 
lattice with N nodes of mean degree 2k. Each node is connected to its k nearest neighbors on either side. Then, 
for each edge in the graph, we rewire the target node with probability β.

Effects of network size.  To study the effect of network size, we set the model parameters as follows: p = 0.5 
for the ER model; m = 4 and m0 = 5 for the BA model; k = 4 and β = 0.8 for the WS model. We consider the 
memoryless case ( α = 1 for all nodes) and the case where all nodes exhibit the same amount of memory (i.e., 
homogeneous fractional order exponents, α = 0.5 and α = 0.3 ). The optimal number of driven nodes as well 
as the trace of the Gramian upon algorithm termination are shown in Fig. 1. Observe that the ER model gives 
networks that are harder to control in terms of number of required driven nodes. The confidence intervals for all 
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models are approximately steady for all investigated network sizes. The trace of the Gramian increases linearly 
with the network size for all models which implies that larger networks require higher control energy. Observe 
that the trace for the ER model is higher compared to either the BA or WS model implying that the former one 
is harder to control in terms of energy as well. We note that we performed as sensitivity analysis on the model 
parameters and obtained results similar to the above. This indicates that the effect of network size on the control-
lability is not dependant on the model parameters.

Effects of long‑term memory.  We study the effect of long-term memory profiles (i.e., different distributions for 
the fractional order exponents) on the number of driven node and average control energy. We use networks 
of size N = 100 and we investigate three different long-term memory profiles. For the first profile, we assume 
homogeneous fractional order which implies that all nodes exhibit the same amount of memory. We discretize 
the interval (0, 1] into a set of points {αi}10i=1 and interpolate the results. Then, we slightly vary the exponent 
of each node by drawing samples from a uniform (second profile) or a Gaussian distribution (third profile) 
of a small variance. Formally, if the fractional exponent of a node is ai in the first case, then it is ai + X where 
X ∼ U(−0.05, 0.05) in the second case and X ∼ N(0, 0.12) in the third case. The obtained results are shown in 
Fig. 2 and we observe that the existence of memory makes the network harder to control especially in terms of 
the number of the required driven nodes. More precisely, we see that, for different values of homogeneous order 
exponents, the number of driven nodes does not change significantly for the BA and WS models. On the con-
trary, when slightly varying the fractional exponent of each node around the mean we observe that the behavior 
changes significantly for all three models. More specifically, for higher values of the mean the network becomes 
easier to control as the number of needed driven nodes declines rapidly. The distribution from which the varia-
tions of the exponents are drawn does not have any significant effect. The fact that the variance around the mean 
is rather small indicates that this holds for a larger class of distributions. Regarding the trace of the Gramian, we 
observe that it does not change significantly for different long-term memory profiles, which indicates that the 
average control energy is not dependent on the fractional order exponents. Furthermore, the ER and BA appear 
to be slightly harder to control in terms of the average control energy as the trace of the Gramian is higher com-
pared to the WS model.

Effects of model parameters.  We investigate how the model parameters affect the controllability of the network. 
We use constant network size of N = 100 nodes and assume that there exists Gaussian distributed, heterogene-
ous fractional order exponents. In more detail, the exponent αi of each node is drawn from a Gaussian distribu-
tion centered around 0.5, i.e αi ∼ N(0.5, 0.2) . In the rare event that the exponent does not lie within the allowed 
interval (0, 1], it is re-sampled. We discretize the parameter space of the network models and interpolate the 
results which are shown in Fig. 3. For the ER model, we see that as the network becomes more dense (higher p) 
it requires lower number of driven nodes and a lower amount of control energy. A similar observation can be 
made for the BA model. On the contrary, we see that the more dense a WS network becomes the harder it gets to 
control it. This indicates that, in the presence of long-term memory, the effect of topology changes radically for 
WS networks compared to ER and/or BA networks.

Controlling complex brain networks.  In this section, we investigate how the topological features of a 
brain network affect our ability to steer it between states and therefore control its cognitive dynamics. Control-
lability of a brain network refers to the ability to manipulate the network components to drive the system along 
a desired trajectory with the purpose of reaching a target state, usually chosen for its functional utility. We define 
a trajectory of a neural system to be the temporal path that the system traverses through diverse states, where a 
state is defined as the magnitude of neurophysiological activity across brain regions at a single time point. Elec-
troencephalogram (EEG) enables the neurophysiological monitoring of space-averaged synaptic source activity 
from millions of neurons. The existence of long-term memory in the neurophysiological activity of the brain 
is a widely debated topic and recent results tend to verify this hypothesis. In fact, fractional order models have 
been used for modeling35 and classification36 of EEG signals and demonstrated superior performance than their 
non-fractional counterparts.

A pivotal part in the analysis, design and control of complex brain networks using such fractional order 
models is the optimal parameter identification. In this experimental study, we use the model of Eq. (1), EEG data 
from the BCI competition37, a maximum likelihood based estimator for inferring the model parameters (i.e., 
adjacency matrix A and vector of fractional order exponents α)34,38 as we leverage our novel framework to study 
the controllability of the brain. Our experimental setup consists of 109 subjects. We took the recorded 64-chan-
nel EEG signal, with the electrode distribution shown in Fig. 4b. The subjects were asked to perform motor and 
imagery tasks. The data was collected by BCI2000 system with sampling rate of 160 Hz39. After extracting the 
matrix A (an example is shown in Fig. 4c) and the fractional order exponent vector α , we use our method to 
identify the driven nodes to ensure controllability of the complex brain network. Specific information about the 
EEG is provided in the Methods section.

Our results are summarized in Fig. 5. We plot the positions of the EEG electrode along with the driven nodes, 
as given by our method, for 3 randomly chosen subjects, i.e., subjects with id numbers 3 (Fig. 5a), 27 (Fig. 5b) 
and 102 (Fig. 5c). We observe that there is high inter-subject variability on the number of driven nodes, their 
positions as well as the brain areas that are activated. Which is consistent with our understanding of human brain 
networks, whereby neural activity on a certain brain region may affect the activity on a distant one through the 
action potentials that propagate within the neurons. The fact that there are less and more sparsely located driven 
nodes (subject 100) indicates that the underlying subject exhibits stronger connections between the different 
brain regions.
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Figure 1.   Investigating the effect of network on the number of driven nodes and Gramian trace. We use 
homogeneous order exponents of α = 1 (left column), α = 0.5 (middle column) and α = 0.3 (right column) 
and set the model parameters as follows: p = 0.5 for the ER model; m = 4 and m0 = 5 for the BA model; 
k = 4 and β = 0.8 for the WS model. We run all simulations Nr = 50 times and report the first and second 
order statistics. (a–c): Mean and 95% confidence interval under the t-distribution assumption of the minimum 
number of driven nodes. (d–f) Quartiles and outliers of the trace of the controllability Gramian for the ER 
model. (g–i) Quartiles and outliers of the trace of the controllability Gramian for the BA model. (j–l) Quartiles 
and outliers of the trace of the controllability Gramian for the WS model.
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Another important observation is that in all three subjects it seems that there exist commonly driven nodes, 
i.e. the electrodes in the top part of the frontal lobe are driven in all three subjects. To verify this observation, 
we count the number of times that each node is driven across all 109 subjects and we plot the results (Fig. 5d). 
Observe that the FP1 sensor lead (dark red color, top left) is driven in all subjects. Similar observations can be 
made for surrounding leads in the frontal lobe region, where as leads located at the occipital lobe are less com-
monly driven. This not only verifies the observation that we made on the three plotted subjects but it more 
importantly indicates that the frontal lobe region has a higher impact on the controllability of the brain. In fact, 
the leads that are driven in at least 80% of the subjects are the FP1 , AF7 , AFZ , FPZ and FP2 , all of which are located 
in the frontal lobe region.

To assess the performance of our algorithm, we plot the histograms of the number of driven nodes (Fig. 5e) 
and the normalized trace of the Gramian (Fig. 5f). The two combined metrics can be seen as a measure of the 
“energy” required to achieve brain controllability. We observe that more than 20% of the subjects required less 
than 5 driven nodes with the rest being approximately uniformly distributed between 10 and 40. We also note 
that there exist few subjects who require high number of driven nodes ( > 50 ). Finally, the normalized trace of 
the Gramian exhibits a power-law behavior since almost half of the values are concentrated near zero. Both of 
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Figure 2.   Effect of long-term memory on the number of driven nodes and Gramian trace. The network size is 
N = 100 and the model parameters as follows: p = 0.5 for the ER model; m = 4 and m0 = 5 for the BA model; 
k = 4 and β = 0.8 for the WS model. We run all simulations Nr = 50 times and report the first and second 
order statistics. (a): Mean and 95% confidence interval under the t-distribution assumption of the minimum 
number of driven nodes for heterogeneous fractional order exponents. (b): Mean and 95% confidence interval 
under the t-distribution assumption of the minimum number of driven nodes for uniformly distributed 
fractional order exponents. (c) Mean and 95% confidence interval under the t-distribution assumption of the 
minimum number of driven nodes for normally distributed fractional order coefficients. (d–f) Quartiles and 
outliers of the trace of the controllability Gramian for uniformly distributed fractional order exponents. (g–i) 
Quartiles and outliers of the trace of the controllability Gramian for normally distributed fractional order 
exponents.
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Figure 3.   Investigating the effects of model parameters on the number of driven nodes and Gramian trace. 
We use networks of size N = 100 , Gaussian fractional order exponents, run all simulations Nr = 50 times 
and report the first/second order statistics. (a) Mean and 95% confidence interval under the t-distribution 
assumption of the number of driven of the ER model. (b) Quartiles and outliers of the trace of the controllability 
Gramian for the ER model. (c) Sample graph from the ER model ( p = 0.5 ). The algorithms selected 50 nodes to 
be driven (highlighted). (d) Mean of the minimum number of driven nodes for the BA model. (e) Mean of the 
trace of the controllability Gramian for the BA model. (f) Sample graph from the ER model ( m = 5,m0 = 15 ). 
The algorithms selected 24 nodes to be driven (highlighted). (g) Mean of the minimum number of driven nodes 
for the BA model. (h) Mean of the trace of the controllability Gramian for the BA model. (i) Sample graph from 
the WS model ( k = 5,β = 0.8 ). The algorithms selected 25 nodes to be driven (highlighted).

(a) (b)

10 20 30 40 50 60

10

20

30

40

50

60 -0.4

-0.2

0

0.2

0.4

0.6

0.8

(c)

Figure 4.   (a) Illustration of main anatomical brain regions (figure reproduced from34). (b) The position of the 
64 EEG sensors used in the experimental study. (c) Resulting adjacency matrix of the extracted complex brain 
network from a randomly chosen subject.
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these observations indicate that the set of driven nodes given by our algorithm archives relative low control 
energy which empirically validates its performance.

Discussion
When controlling complex dynamical networks with long-term memory, we are interested in steering the system 
to a desired state while minimizing a mutli-objective criterion consisting of the number of driven nodes and the 
required control energy. We empirically analyzed a wide spectrum of network models and studied how the topo-
logical properties combined with long-term memory affect the number of driven nodes and the control energy. 
Regarding the network size, we observed that random networks are harder to control in terms of the number 
of driven nodes. Scale-free and small-world networks require lower number of driven nodes which indicates 
that their complex construction mechanism creates a topology that is controllable by injecting input signals to 
very few nodes. Furthermore, we studied how the parameters of the network models affect the controllability. 
Random and scale-free networks seem to exhibit a similar trend relating density and required control effort; the 
more dense the network the lower the required effort (number of driven nodes and control energy).

In addition to the above, we investigated how different long-term memory schemes affect the controllability 
of the network. We observed that heterogeneous order exponents make the network harder to control compared 
to the case where there is no memory. However, there appears to be no significant variation on the number of 
control nodes for different values of heterogeneous order exponents. On the contrary, the network is more dif-
ficult to control for lower mean values of uniformly or Gaussian distributed non-heterogeneous order exponents 
but the difficulty declines and converges to the heterogeneous case as the mean approaches 1. These results 
suggest that the existence of identical long-term memory profiles on the nodes render the network harder to 
control. Nonetheless, when there exist variations on the fractional order exponents (i.e., non-heterogeneous), 
the network is easier to control.

It would be reasonable to assume that the fractional exponents appearing in a real-world network are not 
identical for all nodes due to divergent physical, social or economic processes that characterize the dynamics of 
each node. Hence, our results on the memory effects imply that such networks may be prone to attacks. However, 
since we showed that heterogeneous order networks are harder to control, this paves the way to new research 
directions in an attempt to control CDNs and make them robust and resilient to adversarial perturbations. An 
important question that one may pose is how we could influence the fractional order exponents to drive a het-
erogeneous network to a non-heterogeneous such that the network is easier to control.

We showed how our method could be applied to the emerging field of brain control. We observed that some 
subjects required a high number of more densely located driven nodes, which could be due to them having weak 
neural connections between brain regions, which we hypothesize that may be a result of a neurodegenerative 
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Figure 5.   Brain controllability analysis. Highlighting in yellow the driven nodes required to achieve brain 
controllability for several individuals, namely individuals with ID 3 (in (a)), 27 (in (b)), and 102 (in (c)), 
respectively. The color-map representing the relative number of times each electrode acts as a driven node across 
all 109 subjects is shown in (d). The histogram of the number of driven nodes (e) and the trace of the Gramian 
(f) show that most of the subjects require few driven nodes (e.g., more than 20% of the subjects require less than 
5 driven nodes) and a small fraction of 2 subjects that require more than 50 driven nodes.
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disease (e.g Alzheimer’s disease or brain trauma). We also noted that certain brain regions (such as the frontal 
lobe) have higher effect on the controllability of the entire network. We empirically validated the performance 
of our greedy algorithm since the combined energy metric (i.e. number of driven nodes and Gramian trace) has 
relatively low values for most of the subjects. Finally, one potential extension of our current work is the observ-
ability of CDNs. In fact, due to the known duality between controllability and observability40, our method is 
directly applicable (with minor changes in notation) to the problem of sensor selection to ensure observability.

Methods
Controllability and driven nodes in fractional‑order complex dynamical networks (all simula-
tions we run on Matla​b 2020a​).  A simple topological description of a CDN is a graph G = (V ,E) , where 
V is the set of n nodes and E ⊆ V × V  is the set of edges. Two nodes v, u ∈ V  are neighbors if (vi , vj) ∈ E and if, 
in addition, (vj , vi) ∈ E then the graph is said to be undirected. A convenient description of a graph is given by 
the weighted adjacency matrix A ∈ R

n×n where the weight Aij represents the strength of interaction between 
nodes vi , vj ∈ V  . Each node vi ∈ V  is associated with a dynamical state xi[k] ∈ R which evolves in discrete time 
k ∈ N+ influenced by the interactions of its neighbors. We model the temporal evolution of the entire network 
via the following fractional-order complex dynamical network (FOCDN)

where x[k] = (x1[k], x2[k], . . . xn[k])
T ∈ R

N is a vector containing the states of all the nodes in the network at 
time k, x[0] = x0 is a given initial state, u[k] ∈ R

m is the value of the m-dimensional control input signal injected 
in the network at time k and α ∈ (0, 1]n is a vector of fractional order exponents. The input matrix BS ∈ R

n×m 
identifies the nodes S ⊆ V  that are driven by a control input signal. In more detail, BS = diag{b1, b2, · · · , bn} 
where bi = 1 if the node vi belongs to the set of driven nodes S and bi = 0 otherwise. The operator �α denotes 
the Grünwald-Letnikov discretized derivative of order α = (α1, · · · ,αn) , which models the effects of temporal, 
long-term memory in the network dynamics29. If all fractional order coefficients are equal then this is referred 
to as a homogeneous order system, otherwise it is a heterogeneous order system. When the fractional order expo-
nents approach 1 the system tends to become memoryless and when they are equal to 1 this model reduces to 
the commonly used one for CDNs5. On the contrary, when these coefficients approach zero the system exhibits 
far more pronounced memory, meaning that past states have a greater effect on future states. For each node i the 
Grunwald–Letnikov operator is defined as:

Let us define

where cj = −(−1)j
(

αi
(j+1)

)

 , for j = 1, · · · ,N . Then, by substituting Eq. (2) into Eq. (1), taking into account Eq. 
(3) and rearranging terms, we obtain the following:

It is evident from this equation that the proposed FOCDN captures long-term memory effects. In many practical 
cases, we are interested in finding a set of nodes that we need to drive to achieve convergence of the FOCDN to 
a given state, which is equivalent to ensuring that the system is controllable. Formally, the system is controllable 
if, for every initial condition x0 ∈ R

N , there exists a control input able to steer the system to any arbitrary final 
state xd ∈ R

n in at most K ∈ N+ time steps. To quantify this systemic property, we introduce the controllabil‑
ity matrix

where

The system is controllable if and only if rank(C (A,BS ,α;K)) = N41. In the case where all fractional order 
exponents are equal to 1 (i.e, α = (1, 1, . . . 1)T ), it is well known that the rank of C (A,BS ,α;K) cannot increase 
for any K ≥ N , as a result of invoking the Cayley-Hamilton theorem4. On the contrary, in the case of a general, 
heterogeneous fractional-order system, the rank of C (A,BS ,α;K) can increase for values of K ≥ N . In other 
words, it is possible to reach the final state xd in a number of steps greater than n. This is due to the time-varying 
nature of the elements Gk which build up the controllabilitymatrix29. The full rank can be reached at some time 
step equal to or greater than n. This distinctive property of fractional order dynamics posses no real restriction 
as, in practice, we need to steer the system to the desired state within a given time frame. This implies that there 
exists a given upper bound on the value of K, which we can use to test for controllability. We now introduce the 
controllability (or reachability) Gramian defined as follows

(1)�αx[k + 1] = Ax[k] + BSu[k]

(2)�αi x[k + 1] = x[k + 1] +

k+1
∑

j=1

(−1)j
(

αi

j

)

x[k − j + 1]

(3)A0 = A− (c1 + 1)In Aj = diag{cij+1, i = 1, 2, . . . n},

(4)x[k + 1] =

k
∑

j=0

Ajx[k − j] + BSu[k].

(5)C (A,BS ,α;K) = [G0BS G1BS G2BS · · · GKBS],

(6)Gk =

{

∑k−1
j=0 AjGk−j−1 k ≥ 1

In k = 0

https://www.mathworks.com/products/matlab.html
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where Gk is defined as in Eq. (6). It can be verified that the reachability Gramian can be expressed in terms of the 
controllability matrix as follows WS = C (A,BS ,α;K)C

T (A,BS ,α;K) . The equivalent controllability condition 
is rank(WS) = N . The advantage of using the Gramian instead of the controllability matrix is that the former one 
provides an energy-related quantification of controllability20. Eigenvectors of WS associated with small eigenval-
ues (large eigenvalues of W−1

S  ) define directions in the state space that are less controllable (require large input 
energy to reach). Conversely, eigenvectors of WS associated with large eigenvalues (small eigenvalues of W−1

S  ) 
define directions in the state space that are more controllable (require small input energy to reach). Intuitively, we 
want WS “large” so that W−1

S  is “small”, requiring small amount of input energy to move around the state space. 
Based on this observation, we can define the following scalar controllability metric

The trace of the controllability Gramian is inversely related to the average energy and can be interpreted as 
the average controllability in all directions in the state space. Note that f(S) depends on the set of driven nodes 
via matrix BS (Eq. 7). The problem is to choose this set S ⊆ V  to maximize the above metric while keeping the 
size of S as small as possible. This can be easily proved to be an NP-hard optimization problem. Nonetheless, 
the objective function given by Eq. (8) is modular allowing us to solve a NP-hard combinatorial optimization 
problem using a greedy algorithm with approximation guarantees. In more detail, we start with an empty set of 
driven nodes S0 = ∅ , pick the node v ∈ V  whose addition to the set of driven nodes leads to highest gain in the 
value of the metric, add v in the set of driven nodes and repeat using the set of non-driven nodes v \ S0 . Under 
a cardinally constraint on the driven nodes set this greedy algorithm achieves an approximation ratio of 1/e, 
which is the best approximation that any polynomial algorithm can achieve, assuming that P  = NP42,43. In our 
formulation we aim to achieve controllability, therefore we impose an additional rank constraint on the Gramian. 
This implies that the algorithm is terminated when the controllability Gramian reaches full rank.

Driven node selection in FOCDNs.  Driven node selection in FOCDNs problems can be formulated as set func-
tion optimization problem. For the given finite set of nodes V, a set function f : 2n → R assigns a real number 
to each subset S ⊆ V  . In our setting, the elements of S represent potential nodes of the FOCDN which could be 
driven, and the function f is a metric for how controllable the system is for a given set of driven node selection. 
The problem can been seen as selecting the non-zero elements of the diagonal input matrix BS appearing in Eq. 
(1) such that the multi-objective function consisting of the number of driven nodes and the negative trace of the 
controllability Gramian is minimized and the system is controllable, i.e., given (A,B,α,K) and for k ∈ {1, . . . , n} 
determine the solution of the following problem:

It can be easily proved that (9) is an NP-hard optimization problem. One alternative to find the solution to this 
problem is to consider a brute force approach that consists by enumerating all possible subsets of size k, evaluating 
the trace of the Gramian for all of these subsets, and picking the one that optimizes the multi-objective function. 
However, we are interested in cases arising from real-world complex networks in which the number of possible 
subsets is very large. The number of possible subsets grows factorially as the number of nodes increases, render-
ing a brute-force approach computationally infeasible. Therefore, we focus on exploiting structural properties 
of the objective function, particularly the submodularity property20.

(7)WS := W(A,BS ,α;K) =

K−1
∑

j=0

GjBSB
T
S G

T
j ,

(8)f (S) = tr(WS).

(9)
minimize
S⊆V ,|S|=k

(k,−tr(W(A,BS ,α;K)))

subject to rank(W(A,BS ,α;K)) = N .
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The set function f : 2V → R is called submodular if for all subsets A ⊆ B ⊆ V  and all elements s  ∈ B , 
it holds that f (A ∪ {s})− f (A) ≥ f (B ∪ {s})− f (B) or, equivalently, if for all subsets A,B ⊆ V  , it holds that 
f (A)+ f (B) ≥ f (A ∪ B)+ f (A ∩ B) . Intuitively, submodularity is a diminishing returns property where add-
ing an element to a smaller set gives a larger gain than adding one to a larger set. In addition to that, it is called 
monotone increasing if for all subset A,B ⊆ V  it holds that f (A) ≤ f (B) and monotone decreasing if for all subset 
A,B ⊆ V it holds that f (A) ≥ f (B) . Maximization of monotone increasing submodular functions is NP-hard, but 
the so-called greedy heuristic can be used to obtain a solution that is provably close to the optimal solution. The 
pseudo-code of the greedy algorithm for the problem described in Eq. (9) is given in Algorithm 1. The returned 
set of driven nodes S is associated with an objective value f(S) and its difference from the optimal objective value 
f (S∗) given by the optimal set of driven nodes is guaranteed to be upper bounded as follows:

where f (∅) denotes the objective value when no node is driven. A major difficulty faced in the driven node 
selection problem stems from numerical instabilities in the estimation of the rank of a matrix. For the system to 
achieve controllability and, hence the greedy algorithm to terminate, the controllability Gramian needs to have 
full rank. However, even for moderately sized networks the rank computation gets computationally unstable 
quite rapidly. For example, experiments showed that if we consider a BA random graph of N = 50 nodes, drive 
every node (i.e, the matrix B appearing in Eq. (1) is the identity matrix) and compute the eigenvalues of the con-
trollability Gramian then the largest one is of order 1040 while the smallest one of order 1020 . When compared to 
the largest ones, the smallest eigenvalues are considered numerically zero and, therefore, the rank computation, 
which gives a rank significantly lower than 50, incorrectly concludes that the system is uncontrollable.

The aforementioned issue is a direct consequence of an extremely high condition number (defined as the 
ratio of the largest to smallest eigenvalue) which results in an inaccurate rank estimation44. Since the size of 
an eigenvalues is proportional the energy required to steer the system in the direction of the corresponding 
eigenvector in the state space, by considering the modeling and application context when interpreting whether 
the required energy for state transfer is feasible we can appropriately threshold the eigenvalues of the Gramian 
to obtain a domain-specific estimation of the rank. To address this computational issue in our experiments, we 
considered the QR decomposition the controllability Gramian and estimated the rank as the number of diago-
nal elements of the R matrix that are above a certain threshold. The QR decomposition was selected because it 
produces matrices with lower condition number and a sub-optimal threshold was empirically found by testing 
several fully-driven networks. The reasoning that we used for finding that threshold is that fully-driven networks 
give rise to a controllability Gramian that is full rank (because the network is fully controllable). Therefore, by 
testing networks of different sizes and adjusting the threshold such that the resulting rank estimation is correct, 
we are able to obtain an empirical value.

Regarding the computational complexity of Algorithm 1, observe that the outer loop is executed at most n 
times due to the fact that if we drive all nodes then the network is controllable and, therefore, the Gramian is full 
rank. Also, the inner loop is executed at most N times as well which gives rise to a computational complexity of 
O (N2) . However, we note that an important practical restriction comes from the computation of the Gramian. 
Assuming that the chosen time horizon K is proportional to the size of the network and utilizing the Copper-
smith–Winograd algorithm for matrix multiplication (which achieves a runtime of O (N2.374) ), we see from 
Eqs. (6) and (7) that the computation of the Gramian takes O (N5.748) time. This is partially due to the recursive 
nature of the state transition matrix Gk given by Eq. (6). One potential way to reduce the time complexity is to 

(10)f (S∗)− f (S) =
1

e
(f (S∗)− f (∅)),
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reduce the time horizon to K << N . This could reduce the time complexity by one order of magnitude but it 
would require the system to reach controllability in a shorter time frame, which in general is harder. Another 
way to reduce the complexity is to exploit the structure of the Aj matrix, which is diagonal for j ≥ 1 as seen in 
Eq. (3), to reduce the complexity of matrix multiplication to O (N2) . This reduces the complexity of the Gramian 
computation to O (N5) and the overall complexity of the algorithm to O (N7) , which is impractical for large 
networks. Nonetheless, we emphasize that scaling the method to large networks is not bottle-necked by the 
performance of our algorithm but rather by numerical stability issues in computing the rank of the Gramian, 
which are well known in the case of integer-order systems45,46. These issues persist in the fractional order case 
as well, since we can retrieve the integer-order system as a particular case.

EEG technology for brain activity monitoring: an overview34.  The Electroencephalogram (EEG) 
enables us to monitor the spatial average of the synaptic activity on the neocortex, a part of the human brain 
involved in high-level functions such as sensory perception, cognition and reasoning. Even though the EEG 
signals as characterized by poor spatial resolution, due to physical limitations in placing sensors, they have 
high temporal resolution since the electrical activity from the neocortex reaches the recording site within mil-
liseconds. The electrodes (i.e., sensors or leads) are placed over the area of interest on the scalp most commonly 
following the International 10–20 system, as depicted in Fig. 4. The rhythmic fluctuations occurring between 
inhibitory interneurons and excitatory pyramidic cells are known as oscillations. Even though the origin of such 
oscillations is not yet understood, the EEG electrodes are capable of capturing their activity. Furthermore, there 
exists evidence that the brain activity is processed at certain frequencies. Therefore, oscillatory behavior in the 
human brain is often partitioned in frequencies or bands (covering a wide range of frequencies decaying as 1/f 
in power): (i) δ-band (0.5–3 Hz); (ii) θ-band (3.5–7 Hz); (iii) α-band (8–13 Hz); (iv) β-band (14–30 Hz); and 
(v) γ-band (30–70 Hz). Certain high-level brain functions such as sensory registration, perception cognitive 
processes related to attention, learning and memory are associated with brain activity in certain bands47. Differ-
ent changes in the signals across different bands are also used to interpret the event-related potentials (ERPs) in 
the EEG signals, i.e., variations due to specific events48. These represent oscillations that are recorded over the 
posterior frontal and anterior parietal areas of the brain, i.e., over the sensorimotor cortices (see Fig. 4). SMRs 
occur mainly in the α-band (for sensors located on the top of the motor cortices), and on β and lower γ for those 
on the sensorimotor cortices49.

Received: 30 March 2020; Accepted: 29 September 2020

References
	 1.	 Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442. https​://doi.org/10.1038/30918​ 

(1998).
	 2.	 Barabasi, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512, https​://doi.org/10.1126/scien​

ce.286.5439.509 (1999).
	 3.	 Erdős, P. & Rényi, A. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of 

Sciences 17–61, (1960).
	 4.	 Chen, C.-T. Linear System Theory and Design, 2nd edn (Oxford University Press, Inc., New York, 1995).
	 5.	 Liu, Y.-Y., Slotine, J.-J. & Barabasi, A.-L. Controllability of complex networks. Nature 473, 167–173. https​://doi.org/10.1038/natur​

e1001​1 (2011).
	 6.	 Lin, Ching-Tai. Structural controllability. IEEE Trans. Autom. Control 19, 201–208. https​://doi.org/10.1109/TAC.1974.11005​57 

(1974).
	 7.	 Pequito, S., Kar, S. & Aguiar, A. P. A framework for structural input/output and control configuration selection in large-scale 

systems. IEEE Trans. Autom. Control 61, 303–318 (2015).
	 8.	 Pequito, S., Kar, S. & Aguiar, A. P. Minimum cost input/output design for large-scale linear structural systems. Automatica 68, 

384–391. https​://doi.org/10.1016/j.autom​atica​.2016.02.005 (2016).
	 9.	 Wang, W.-X., Ni, X., Lai, Y.-C. & Grebogi, C. Optimizing controllability of complex networks by minimum structural perturba-

tions. Phys. Rev. E 85, 026115, https​://doi.org/10.1103/PhysR​evE.85.02611​5 (2012).
	10.	 Gao, J., Liu, Y.-Y., D’Souza, R. M. & Barabási, A.-L. Target control of complex networks. In Nature Communications (2014).
	11.	 Pequito, S. et al. Structural analysis and design of dynamic-flow networks: implications in the brain dynamics. In 2016 American 

Control Conference (ACC), 5758–5764, https​://doi.org/10.1109/ACC.2016.75265​72 (2016).
	12.	 Nepusz, T. & Vicsek, T. Controlling edge dynamics in complex networks. Nat. Phys. 8, https​://doi.org/10.1038/nphys​2327 (2011).
	13.	 Iudice, F. L., Garofalo, F. & Sorrentino, F. Structural permeability of complex networks to control signals. Nat. Commun. 6, 8349. 

https​://doi.org/10.1038/ncomm​s9349​ (2015).
	14.	 Pequito, S., Preciado, V., Barabási, A.-L. & Pappas, G. Corrigendum: trade-offs between driving nodes and time-to-control in 

complex networks. SSci. Rep. 7, 43194. https​://doi.org/10.1038/srep4​3194 (2017).
	15.	 Mueller, F. J. & Schuppert, A. Few inputs can reprogram biological networks. Nature 478, E4–E4 (2011).
	16.	 Yan, G., Ren, J., Lai, Y.-C., Lai, C.-H. & Li, B. Controlling complex networks: how much energy is needed?. Phys. Rev. Lett. 108, 

https​://doi.org/10.1103/PhysR​evLet​t.108.21870​3 (2012).
	17.	 Chapman, A. & Mesbahi, M. System theoretic aspects of influenced consensus: single input case. IEEE Trans. Autom. Control 57, 

1505–1511. https​://doi.org/10.1109/TAC.2011.21793​45 (2012).
	18.	 Sun, J. & Motter, A. Controllability transition and nonlocality in network control. Phys. Rev. Lett. 110, https​://doi.org/10.1103/

PhysR​evLet​t.110.20870​1 (2013).
	19.	 Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics, limitations and algorithms for complex networks. In 2014 American 

Control Conference, 3287–3292, https​://doi.org/10.1109/ACC.2014.68586​21 (2014).
	20.	 Summers, T., L. Cortesi, F. & Lygeros, J. On submodularity and controllability in complex dynamical networks. IEEE Transactions 

on Control of Network Systems 3, https​://doi.org/10.1109/TCNS.2015.24537​11 (2014).
	21.	 Summers, T. & Shames, I. Convex relaxations and gramian rank constraints for sensor and actuator selection in networks. In 2016 

IEEE International Symposium on Intelligent Control (ISIC), 1–6, https​://doi.org/10.1109/ISIC.2016.75799​85 (2016).
	22.	 Tzoumas, V., Rahimian, M. A., Pappas, G. J. & Jadbabaie, A. Minimal actuator placement with bounds on control effort. IEEE 

Trans. Control Netw. Syst. 3, 67–78. https​://doi.org/10.1109/TCNS.2015.24440​31 (2016).

https://doi.org/10.1038/30918
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1038/nature10011
https://doi.org/10.1038/nature10011
https://doi.org/10.1109/TAC.1974.1100557
https://doi.org/10.1016/j.automatica.2016.02.005
https://doi.org/10.1103/PhysRevE.85.026115
https://doi.org/10.1109/ACC.2016.7526572
https://doi.org/10.1038/nphys2327
https://doi.org/10.1038/ncomms9349
https://doi.org/10.1038/srep43194
https://doi.org/10.1103/PhysRevLett.108.218703
https://doi.org/10.1109/TAC.2011.2179345
https://doi.org/10.1103/PhysRevLett.110.208701
https://doi.org/10.1103/PhysRevLett.110.208701
https://doi.org/10.1109/ACC.2014.6858621
https://doi.org/10.1109/TCNS.2015.2453711
https://doi.org/10.1109/ISIC.2016.7579985
https://doi.org/10.1109/TCNS.2015.2444031


12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17346  | https://doi.org/10.1038/s41598-020-74269-5

www.nature.com/scientificreports/

	23.	 Clark, A., Alomair, B., Bushnell, L. & Poovendran, R. Joint Performance and Controllability of Networked Systems 175–198, (2016).
	24.	 Gu, S. et al. Controllability of structural brain networks. Nature Communications 6, 8414. https​://doi.org/10.1038/ncomm​s9414​ 

(2015).
	25.	 Tu, C. et al. Warnings and caveats in brain controllability. NeuroImage 176, 83–91, https​://doi.org/10.1016/j.neuro​image​.2018.04.010 

(2018).
	26.	 Menara, T., Bassett, D. S. & Pasqualetti, F. Structural controllability of symmetric networks. IEEE Trans. Autom. Control 64, 

3740–3747 (2018).
	27.	 Ungerleider, L. G., Courtney, S. M. & Haxby, J. V. A neural system for human visual working memory. Proc. Natl. Acad. Sci. USA 

95, 883–890, https​://doi.org/10.1073/pnas.95.3.883 (1998).
	28.	 Linden, D. The working memory networks of the human brain. The Neuroscientist 13, 257–67. https​://doi.org/10.1177/10738​58406​

29848​0 (2007).
	29.	 Herrmann, R. Fractional Calculus: An Introduction for Physicists (3rd revised and extended Edition), World Scientific Publishing, 

Singapore, September 2018, ISBN: 978-981-3274-57-0 (2018).
	30.	 Rakkiyappan, R., Velmurugan, G. & Cao, J. Stability analysis of fractional-order complex-valued neural networks with time delays. 

Chaos Solitons Fractals 78, 297–316. https​://doi.org/10.1016/j.chaos​.2015.08.003 (2015).
	31.	 Huang, C., Cao, J. & Xiao, M. Hybrid control on bifurcation for a delayed fractional gene regulatory network. Chaos Solitons 

Fractals 87, 19–29. https​://doi.org/10.1016/j.chaos​.2016.02.036 (2016).
	32.	 Ding, Z., Shen, Y. & Wang, L. Global mittag-leffler synchronization of fractional-order neural networks with discontinuous activa-

tions. Neural Netw. 73, 77–85. https​://doi.org/10.1016/j.neune​t.2015.10.010 (2016).
	33.	 Tzoumas, V., Xue, Y., Pequito, S., Bogdan, P. & Pappas, G. J. Selecting sensors in biological fractional-order systems. IEEE Trans. 

Control Netw. Syst. 5, 709–721. https​://doi.org/10.1109/TCNS.2018.28099​59 (2018).
	34.	 Gupta, G., Pequito, S. & Bogdan, P. Re-thinking eeg-based non-invasive brain interfaces: Modeling and analysis. In Proceedings 

of the 9th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS ’18, 275–286, https​://doi.org/10.1109/ICCPS​
.2018.00034​ (IEEE Press, 2018).

	35.	 Namazi, H. & Kulish, V. Fractional diffusion based modelling and prediction of human brain response to external stimuli. Comput. 
Math.  Methods Med. 1–14, 2015. https​://doi.org/10.1155/2015/14853​4 (2015).

	36.	 Joshi, V., Pachori, R. & Vijesh, A. Classification of ictal and seizure-free eeg signals using fractional linear prediction. Biomed. 
Signal Process. Control 09, 1–5. https​://doi.org/10.1016/j.bspc.2013.08.006 (2014).

	37.	 Blankertz, B. et al. The bci competition iii: validating alternative approachs to actual bci problems. IEEE Trans. Neural Syst. Rehabil. 
Eng. 14, 153–159. https​://doi.org/10.1109/TNSRE​.2006.87564​2 (2006).

	38.	 Gupta, G., Pequito, S. & Bogdan, P. Dealing with unknown unknowns: Identification and selection of minimal sensing for fractional 
dynamics with unknown inputs. In 2018 Annual American Control Conference, ACC 2018, Milwaukee, WI, USA, June 27-29, 2018, 
2814–2820, https​://doi.org/10.23919​/ACC.2018.84308​66 (IEEE, 2018).

	39.	 Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N. & Wolpaw, J. R. Bci 2000: a general-purpose brain-computer interface 
(bci) system. IEEE Trans. Biomed. Eng. 51, 1034–1043. https​://doi.org/10.1109/TBME.2004.82707​2 (2004).

	40.	 Chen, C.-T. Linear System Theory and Design, 3rd edn (Oxford University Press, Inc., Oxford, 1998).
	41.	 Guermah, S., Djennoune, S. & Bettayeb, M. Controllability and observability of linear discrete-time fractional-order systems. 

AAppl. Math. Comput. Sci. 18, 213–222. https​://doi.org/10.2478/v1000​6-008-0019-6 (2008).
	42.	 Nemhauser, G. L., Wolsey, L. A. & Fisher, M. L. An analysis of approximations for maximizing submodular set functions–i. Math. 

Program. 14, 265–294. https​://doi.org/10.1007/BF015​88971​ (1978).
	43.	 Fisher, M. L., Nemhauser, G. L. & Wolsey, L. A. An Analysis of Approximations for Maximizing Submodular Set Functions–II, 73–87 

(Springer, Berlin, 1978).
	44.	 Strang, G. Introduction to Linear Algebra,  4th edn (Wellesley-Cambridge Press, Wellesley, 2009).
	45.	 Wang, L.-Z., Chen, Y.-Z., Wang, W.-X. & Lai, Y.-C. Physical controllability of complex networks. Sci. Rep. 7, 40198. https​://doi.

org/10.1038/srep4​0198 (2017).
	46.	 Yuan, Z., Zhao, C., Di, Z., Wang, W.-X. & Lai, Y.-C. Exact controllability of complex networks. Nat. Commun. 4, 2447. https​://doi.

org/10.1038/ncomm​s3447​ (2013).
	47.	 Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 

2, 704–716. https​://doi.org/10.1038/35094​565 (2001).
	48.	 Wolpaw, J. & Wolpaw, E. Principles and Practice, Brain-Computer Interfaces, (2012).
	49.	 Pfurtscheller, G. & Neuper, C. Motor imagery and direct brain-computer communication. Proc. IEEE 89, 1123–1134 (2001).

Acknowledgements
The authors gratefully acknowledge the support by the National Science Foundation under the Career Award 
CPS/CNS-1453860, the NSF award under Grant Numbers CCF-1837131, MCB-1936775, CMMI 1936624 and 
CNS-1932620, the DARPA Young Faculty Award and DARPA Director Award, under Grant Number N66001-
17-1-4044. The views, opinions, and/or findings contained in this article are those of the authors and should not 
be interpreted as representing the official views or policies, either expressed or implied by the Defense Advanced 
Research Projects Agency, the Department of Defense or the National Science Foundation.

Author contributions
P.K. obtained all experimental results and wrote the manuscript. S.P. and P.B. contributed to reviewing and 
revising of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to P.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/ncomms9414
https://doi.org/10.1016/j.neuroimage.2018.04.010
https://doi.org/10.1073/pnas.95.3.883
https://doi.org/10.1177/1073858406298480
https://doi.org/10.1177/1073858406298480
https://doi.org/10.1016/j.chaos.2015.08.003
https://doi.org/10.1016/j.chaos.2016.02.036
https://doi.org/10.1016/j.neunet.2015.10.010
https://doi.org/10.1109/TCNS.2018.2809959
https://doi.org/10.1109/ICCPS.2018.00034
https://doi.org/10.1109/ICCPS.2018.00034
https://doi.org/10.1155/2015/148534
https://doi.org/10.1016/j.bspc.2013.08.006
https://doi.org/10.1109/TNSRE.2006.875642
https://doi.org/10.23919/ACC.2018.8430866
https://doi.org/10.1109/TBME.2004.827072
https://doi.org/10.2478/v10006-008-0019-6
https://doi.org/10.1007/BF01588971
https://doi.org/10.1038/srep40198
https://doi.org/10.1038/srep40198
https://doi.org/10.1038/ncomms3447
https://doi.org/10.1038/ncomms3447
https://doi.org/10.1038/35094565
www.nature.com/reprints


13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17346  | https://doi.org/10.1038/s41598-020-74269-5

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

http://creativecommons.org/licenses/by/4.0/

	On the effects of memory and topology on the controllability of complex dynamical networks
	Results
	Experiments on complex network models. 
	Effects of network size. 
	Effects of long-term memory. 
	Effects of model parameters. 

	Controlling complex brain networks. 

	Discussion
	Methods
	Controllability and driven nodes in fractional-order complex dynamical networks (all simulations we run on Matla​b 2020a​). 
	Driven node selection in FOCDNs. 

	EEG technology for brain activity monitoring: an overview34. 

	References
	Acknowledgements


