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Severe deterioration of water quality in lakes, characterized by overabundance of algae
and declining dissolved oxygen in the deep lake (DOB), was one of the ecological crises
of the 20th century. Even with large reductions in phosphorus loading, termed
“reoligotrophication,” DOB and chlorophyll (CHL) have often not returned to their
expected pre–20th-century levels. Concurrently, management of lake health has been
confounded by possible consequences of climate change, particularly since the effects of
climate are not neatly separable from the effects of eutrophication. Here, using Lake
Geneva as an iconic example, we demonstrate a complementary alternative to paramet-
ric models for understanding and managing lake systems. This involves establishing an
empirically-driven baseline that uses supervised machine learning to capture the chang-
ing interdependencies among biogeochemical variables and then combining the empiri-
cal model with a more conventional equation-based model of lake physics to predict
DOB over decadal time-scales. The hybrid model not only leads to substantially better
forecasts, but also to a more actionable description of the emergent rates and processes
(biogeochemical, ecological, etc.) that drive water quality. Notably, the hybrid model
suggests that the impact of a moderate 3°C air temperature increase on water quality
would be on the same order as the eutrophication of the previous century. The study
provides a template and a practical path forward to cope with shifts in ecology to man-
age environmental systems for non-analogue futures.

empirical dynamic modeling j water quality j reoligotrophication j aquatic ecosystem management j
environmental data science

During the 20th century, water quality in lakes across the globe declined as cities grew
and agriculture industrialized (1). These declines were marked by high chlorophyll
(CHL) from abundant algae and depressed dissolved oxygen levels in deep water (DOB)
from excess organic matter (2). The prime culprit was enrichment of phosphorus (3). To
counter and reverse eutrophication, remediation measures were implemented in many
areas, such as construction of treatment plants that removed phosphorus and regulation
of additives in laundry detergents. The logic was that by reducing phosphorus inputs
(termed reoligotrophication), water quality would improve (4). However, contrary to
expectation, even in systems with successful reoligotrophication, DOB and CHL have
often not returned to their earlier states.
Scientists have pursued many strategies to parametric modeling for lake systems

(5–9), with a concerted effort to address the lack of success in water-quality improve-
ment (10, 11). These approaches have favored different balances of complexity and res-
olution to address the interactions among total phosphorus (TP), CHL, and DOB and
how they operate within a nexus of interdependent lake physics, biogeochemistry, and
ecology. However, the fundamentally complex nature of these interactions can make it
difficult to uniquely identify and mathematically represent the causal pathways under-
lying system changes and management outcomes (12). Often, different combinations
of rules and relationships can produce the same expectations and, hence, comparable
fits to history. Ultimately, the question of “which” and “how many” components to
include in a reductionistic description of these natural systems faces a fundamental
trade-off between having too many parameters and too limited a set of relationships.
Models with too many parameters lack predictive credibility due to overfitting (8),
while models with too restricted a set of relationships are only credible for predicting
behavior in specific system states (e.g., one particular primary producer community
and associated biogeochemical rates).
The issue of overfitting notwithstanding, it is critical for the ongoing management

of lake systems to have reliable models that can accommodate complexity and capture
behavior across a range of states. Through the last century, eutrophication and
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reoligotrophication have caused broad ecological and biogeo-
chemical changes (13–17) in the water column and sediments
of many lakes. Additionally, a second major anthropogenic
driver, climate change (18, 19), is beginning to exert strong
influence on lake systems. Even just considering increasing air
temperature,* there are manifold possible direct and indirect
effects on lakes. Atmospheric warming is associated with
changes in thermal structure and mixing regimes of many lakes
(20). In deep temperate lakes specifically, increases in the
strength and duration of stratification are expected to suppress
winter mixing that resupplies oxygen to depth and nutrients to
the surface (14, 21, 22). These physical changes can also affect
water quality through biology, such as promoting less edible
and harmful cyanobacteria (23). Thus, the consequences of reo-
ligotrophication and atmospheric warming can be interrelated
and synergistic. This begs the question: Is it possible to resolve
the major interdependencies in the limnology without creating
a model too complex to reliably fit or understand?

As a practical solution to this conundrum, we suggest a
hybrid approach for modeling limnological complexity, which
we demonstrate here using two-phase analysis of the iconic (24)
case of Lake Geneva. First, we pursue a data-driven approach
(25–29) with Empirical Dynamic Modeling (EDM) to identify
interdependencies among causal drivers of DOB. Importantly,
the empirical dynamic approach captures the net relationship
among variables through time (25) and, thus, avoids the tricky
business of distinguishing among specific, mechanistic rules
(12). The causal analysis confirms that the incomplete recovery
of the lake can be understood from documented changes in the
ecology (particularly in the food web) that altered the cause-
and-effect relationships with TP (13, 14, 18, 30) (SI Appendix,
Fig. S1). Second, in the spirit of Mooij et al. (7), we investigate a
hybrid-modeling approach, but instead of combining different
parametric structures, here, we combine empirical (inductive) ele-
ments derived from data with parameterized (deductive) elements
derived from first principles. It is designed with a modular struc-
ture, taking advantage of the reasonable assumption that biogeo-
chemical processes in the lake do not feed back on atmospheric
forcing. The oxygen sources to deep water from wind-driven mix-
ing and river discharge are accounted for with a two-box model

A D
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C

Fig. 1. (A) Time series of DOB averaged from 260 to 310 m in Lake Geneva. Vertical black arrows represent years in which Simstrat predicts mixing below
250 m. (B) Time series of lake TP both averaged over the entire lake and just the epilimnion (Materials and Methods). (C) Time series of averaged (0 to 30 m)
of CHL-a. (D) Multivariate EDM analysis shows improvement in forecast skill (Pearson’s correlation between observed and predicted DOB) with sequential
addition of biogeochemical variables to the embedding (set of coordinate variables). Variables are abbreviated as follows: hmix = depth of mixed layer (epi-
limnion), Tsurf = temperature of epilimnion, Tatm = air temperature, Q = Rhone River discharge, chl = CHL-a, TPsurf = concentration of TP averaged over the
epilimnion, and TPlake = concentration of TP averaged over the lake. The forecast skill is shown as a function of the nonlinear tuning parameter, θ. A MAR
model (S-map with θ = 0) that does not allow for nonlinear state dependence between variables only reproduces part of the historical variance. The EDM
approach is similar to multiple-linear-regression techniques, as it identifies the relationships among parameters. A fundamental difference is that EDM
allows those relationships to change, depending on the state of the system.

*The limnological consequences of other aspects of climate change, such as changing
precipitation patterns across the lake watershed, are difficult to generalize or even pre-
dict, particularly as they can depend on future management and land use.
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controlled by the one-dimensional (1D) hydrodynamic Simstrat
model (21), while oxygen depletion in the deep lake is modeled
with a multivariate empirical dynamic model we develop herein.
However, the modularity means that the essential principle could
easily be adjusted to a different hydrodynamic model or alterna-
tive nonlinear empirical dynamic predictor that might be more
suitable in other applications.
The resulting hybrid model is a more complete systems per-

spective, which we validate by improved historical prediction
(relative to current state-of-the-art). The hybrid model is then
used to make iterative, multi-decadal calculations for Lake
Geneva that explore water quality and hypoxic conditions
under different reoligtrophication and air-temperature scenar-
ios, demonstrating how the empirical–parametric approach can
be a critical tool for adaptive management going forward,
where multivariate complexity cannot be ignored.

Reoligotrophication and State-Dependent
Effects

In Lake Geneva, the dominant process driving the large-scale
temporal evolution of DOB is irregular deep mixing in winter
(Fig. 1A). When surface cooling coincides with sufficiently
strong wind, DO mixes from near-surface to deepest depths.
However, atmospheric warming is predicted to interfere with
this process. Schwefel et al. (21) modeled the effect of warming
on the future water quality of Lake Geneva using a hydrody-
namic model for thermal structure (Simstrat) coupled to a
two-box model of oxygen with simple parameterizations for
biogeochemical processes. The decreased frequency of deep
mixing under warming was predicted to negatively affect DOB

more than previous eutrophication.
The study provides a good first approximation to lake water

quality under future climate, but the structure of the model
assumes that relationships between biological parameters are
fixed and uses parameters that are only strictly valid for a lim-
ited range of system states. In particular, the model assumes a
simple, fixed relationship between nutrients (TP) and algae
abundance (CHL), but recent studies on the lake indicate the
need to address biogeochemical interactions across a wider range
of system-states. First, sediment cores show that Lake Geneva
was not hypoxic prior to 1945 (31), when TP < 10 μg�L�1.
Second, the phytoplankton communities in Lake Geneva and
other Swiss lakes have shifted C:P stoichiometry to compensate
for decreasing TP and, hence, increasing phosphorus limitation
during early reoligotrophication (32, 33). The initial actions to
lower TP had little effect on algal biomass and DOB until phos-
phorus fell below 36 μg�L�1. Third, nonlinear causality analysis
(30) found an evolving seasonal variability in the connectivity
of biological, chemical, and physical variables during reoligotro-
phication, rather than stationary relationships.
While the general notion of complex interdependence is com-

monly accepted in limnology, an actionable quantitative under-
standing of the coupled effects of reoligotrophication and climate
change remains an unfulfilled management goal. To construct a
data-derived approach to this goal, we first establish an empirical
foundation by performing a causality analysis for Lake Geneva
similar to Anneville et al. (30), but that is explicitly focused on
DOB and a preselected subset of suspected ecological drivers
(Fig. 1 B and C and SI Appendix, Fig. S2). For readers unfamil-
iar with EDM, we recommend two short videos (34, 35) for
graphical description and narrated explanation of EDM basics.
The nonlinear causal measurement method, convergent cross-
mapping (CCM), can detect dynamic coupling among variables

lacking fixed or well-defined correlations (26) [see short video
(36)]. The basic causal drivers on DOB found are air tempera-
ture, lake temperature, thermal structure, CHL, and phosphorus
(SI Appendix, Table S1). Note that phosphorus is characterized
with two depth averages (Fig. 1B): TPsurf (average TP in the top
20 m) tracks the seasonal cycling of phosphorus in and out of
the euphotic zone, while TPlake (average TP over the full lake
hypsometry) tracks the long-term trend of the total mass of
phosphorus in the system under reoligotrophication.

Causal coupling is further clarified with multivariate predic-
tion (Fig. 1D). That is, we have greater confidence that a driver
is important if it can contribute to prediction skill. However,
the most familiar tool of multivariate prediction, linear regres-
sion, presupposes that the system is confined to a narrow range
of behavior around an equilibrium, such that the dynamic rela-
tionships are fixed and can be treated by a single set of coeffi-
cients. When a natural system is changing through time, it is
better to conceptualize the state not as jiggling around an equi-
librium, but following an evolving trajectory on or near a
dynamic attractor (again, we refer unfamiliar readers to the two
short videos above for graphical explanation of attractor
dynamics in the context of EDM). Linear multivariate models
can approximate the dynamics, but the regression coefficients
must be computed differently for each different “system state,”
where each state is literally a specific location on the attractor
defined by the particular values of the variables. This is exactly
accomplished in EDM with multivariate S-map regression (37).
S-maps approximate the local linear dynamics with weighted
(kernel) regression, where each observation in the training set Xi
is weighted by using a decaying exponential of the distance (in
state-space) to the state at time t. That is, wi ¼ expð�θdi=�d Þ,
where di is the Euclidian distance to the target, and �d is the
average distance of observations in the training set. Defined
this way, there is a parameter θ controlling the “steepness” of
the weighting—i.e., the degree of local state-dependence. When
θ = 0, all observations have equal weight, thus giving a standard
global linear regression. When θ increases, the regression
becomes increasingly sensitive to the observations closest to the
target, and, hence, the regression is increasingly nonlinear. This
is illustrated in SI Appendix, Fig. S3.

Here, we use an S-map to construct an additive comparison
of multivariate DOB prediction. Baseline predictability is set
with a multivariate EDM model that uses the important physi-
cal drivers that go into the parametric Simstrat model and are
validated by CCM (SI Appendix, Table S1): hmix = depth of
the mixed layer (= depth of thermocline), Tsurf = temperature
of the epilimnion, Tatm = air temperature, and Q = Rhone
River discharge. This four-dimensional empirical model is then
augmented sequentially by using biological and biogeochemical
variables identified by CCM. Indeed, adding biogeochemical
terms improves prediction skill, and the best representation of
the system (i.e., the attractor coordinates producing the best
predictions) is obtained by integrating physical and biological
information with both TP averages.

As described above, the degree of local state-dependence
with the S-map is controlled by the nonlinear parameter θ. The
linear S-map (θ = 0) is equivalent to a multivariate autoregres-
sive (MAR) model and does not allow for state-dependence
between variable effects. Fig. 1D shows that a global linear
model only captures a small part of the dynamics (predictabil-
ity) of DOB, and predictability improves substantially when the
EDM models are tuned toward nonlinear solutions (θ > 0)—
that is, the lake dynamics can be approximated by a limited
set of variables (low-dimensional model), just not as linear
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dynamics around a stable equilibrium. This test validates the
general hypothesis that interdependence among variables has
shaped water-quality dynamics over the management history of
Lake Geneva, but also shows that this complexity is quantita-
tively tractable (in the predictive sense).
Additional insight can be obtained from the fact that the local

linear regression coefficients of the S-map quantify and track the
changing strengths (and signs) of interactions between model
variables through time (25). If the S-map includes all the key
causal variables (a “mechanistic embedding”), the coefficients
approximate the Jacobian partial derivatives between causal
components (if key causal variables are missing, the direct inter-
pretation of coefficients is less rigorous). In the context of man-
agement, we aim to quantify changes in the effect of TP on
CHL and CHL on DOB. This first involves determining optimal
multivariate S-map embeddings for CHL and DOB (Materials
and Methods). Then, the effect of TPsurf on CHL through time is
quantified by the S-map coefficient estimating ∂CHL

∂TP in the mecha-
nistic embedding to predict CHL(t + 1) (SI Appendix, Fig. S5).
In effect, this measures phosphorus limitation as a function of
lake state. If production in the lake is TP limited, a small increase
in TP will lead to an increase in CHL, and the coefficient will be
positive. The empirical analysis (Fig. 2A) shows that in the 1980s,
the lake was not P limited. Initial success at reducing the nutrient
load did not have a strong impact on CHL until TPlake fell below
40 μg�L�1, at which point CHL started responding to P limita-
tion. In this way, the empirical relationship shown with the
S-map is closely related to the increasing C:P ratio as a function
of decreasing TP recently demonstrated in Swiss lakes undergoing
reoligotrophication (37).
The effect of CHL on DOB, is quantified by the S-map

coefficient estimating ∂DO
∂CHL from the mechanistic embedding pre-

dicting DOB(t + 1) (SI Appendix, Fig. S6). During the eutrophic
period, oxygen consumption was not sensitive to summer algal
biomass (CHL) as ∂DO

∂CHL ∼ 0 for TPlake > 50 μg�L�1. With reoli-
gotrophication and TPlake < 50 μg�L�1, DOB began to show a
consistent negative response to changes in CHL (Fig. 2B). This
complex, state-dependent response of DOB to CHL is in agree-
ment with the existing evidence that there has been an unfavor-
able food-web rearrangement under ongoing reoligotrophication
(SI Appendix, Fig. S1) that has led to less organic matter transfer
within the surface food web and high export to depth (30). In
principle, such a trend could also be created by an increase in
sediment oxygen uptake (which is not directly resolved in the
empirical modeling); however, the current state of understanding
the sediments of Lake Geneva does not suggest it (38). Either
way, the state-dependent S-map coefficients measured on long-
term time series provide an empirical quantification of the
changes† without having to explicitly resolve phytoplankton
composition and food web.

Management Insights

A long-term need for management is to understand the com-
bined effects of climate change and reoligotrophication on the
evolution of hypoxia over the coming decades. To first order,
this can be accomplished by considering combined air tempera-
ture and TP scenarios.‡ In the traditional box-model framework,

the oxygen dynamics reduce to combining a DO source term
representing physical mixing with DO sink terms representing
biogeochemical processes. The thermal structure relevant to oxy-
gen dynamics in Lake Geneva is approximated by an equation-
based deterministic model (Simstrat). This parameterized model
has low error in reproducing the proximate physical dynamics of

A

B

Fig. 2. S-map estimates of first-order partial derivatives (Jacobian ele-
ments) quantify the state-dependent nature of interactions among phos-
phorus, CHL, and DO under reoligotrophication. (A) Effect of phosphorus
on CHL. Positive values of ∂chl=∂TP indicate that an increase in TPlake leads
to an increase in CHL. At high levels of TPlake (e.g., 1980s when TPlake > 60
μg�L�1), the mean annual effect of TPlake on CHL was essentially zero. There
is little evidence of phosphorus (∂CHL=∂TPlake ∼ 0) until the TPlake concen-
tration drops below 40 μg�L�1. (B) S-map analysis finds the effect of CHL on
DO changes with reoligotrophication (TPlake concentration). Negative values
of ∂DOB=∂CHL show that, as expected, a decrease in CHL is usually associ-
ated with increased water quality (increased DOB). However, this is not
always true, and at higher TPlake, the average effect of additional CHL is
essentially zero.

†Whether or not this rearrangement of the food web is transient or permanent.

‡Recent downscaled climate scenarios for Switzerland affirm that air temperature is the
single climate parameter in the area that will experience unambiguous increase or
decrease under greenhouse-gas scenarios of the next century (39). Though systematic
increases or decreases in, e.g., rainfall or wind speed would likely impact DO, there are no
coherent scenario predictions of change in these variables to explore at this point.
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the lake from atmospheric forcing, able to predict daily thermo-
cline depth across four decades with normalized root mean
squared error (nrmse) of 6.7% (rmse = 21 m) (40). The S-map
analysis shows a necessity for accounting for evolving nonlinear
interactions in the biogeochemistry not represented in previous
parameterized approaches (21, 41). Thus, we construct a hybrid
approach, where the source term is equation-based and the sink
term is represented by the empirically measured (equation-free)
features captured by S-map regression (Fig. 2).
Conveniently, these processes separate seasonally. Thus, we

focus on how the S-map relationships estimate the evolution of
hypoxia over the 6-mo stratified periods following possible deep
mixing in winter (Fig. 3). This plays to the strength of EDM,
which typically performs best for short-term prediction of
nonlinear systems (42) (SI Appendix, Fig. S4). Explicitly, we can
consider alternative scenarios of management futures: different
fixed-background TP concentrations (reoligotrophication states)
and different predicted increases in air temperature (climate-
change scenarios). With high DOB at the onset of summer
(DOB_init = 7.5 and 6 mg�L�1), EDM experiments reveal a high
DOB depletion rate at high background TP (Fig. 3). The deple-
tion rate gradually decreases with TP until TP ∼ 30 μg�L�1, but
the empirical model suggests a reverse in the relationship at the
lowest values of TP considered, meaning that further decreases in
TP below ∼20 μg�L�1 lead to a reincreasing rate of DOB deple-
tion. In this way, the response of the lake to reoligotrophication
appears not to follow (yet) the expected steady-state response
between TP and DOB shown in M€uller et al. (32). Instead, the
reversing trend at low TP is a product of the changing biogeo-
chemical relationships shown in Fig. 2, which we interpret as a
consequence of the previously documented unfavorable rearrange-
ment of the food web—specifically, the emergence of less edible
phytoplankton (13–15).

The simulated summer depletion in the absence of recent
mixing (DOB_init = 4.5 mg�L�1) shows the same features, with
an additional reversal around 40 μg�L�1. This level of detail is
hard to work out from a single lake time series, where the
change in TP has happened in a long, slow, and steady way. It
could instead be an artifact of limited observations in this stage
of reoligotrophication due to the prolonged interval between
mixing in the late 1980s and early 1990s (Fig. 1). However, it
is consistent with the changing relationships quantified in
Fig. 2—CHL is only weakly responding to phosphorous limita-
tion (Fig. 2A), but causing increased oxygen demand at depth
(Fig. 2B).

The above analysis shows that phosphorus levels dominate
future behavior over air-temperature change, but only insofar as
summer oxygen depletion is concerned. To capture the full scope
for management, we combine the strengths of EDM with the
equation-based physical model, Simstrat, to account for source
and sink dynamics. The conceptual framework of the hybrid
model is presented in SI Appendix, Fig. S3 and takes advantage of
the way DOB controls operate in distinct seasons. The meteoro-
logical forcing drives the physical Simstrat model that evolves an
initial DOB through the winter months; at the end of the mixing
season, the data-driven EDM model is fed with deterministic
model output (lake temperature and stratification) and TPlake
loading. Predictions of CHL and TP are made internal to the
EDM component (using the S-map predictors in SI Appendix,
Fig S3), avoiding the need of parameterizing the many possible
relationships involved. These predictions are made iteratively for
6 mo, and then the DOB at the end of October is fed back into
Simstrat.

The fundamental test for a model is if it can accurately pre-
dict (and not just fit) the observed dynamics of the system. The
results in Fig. 4A show that the hybrid model using historical
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Fig. 3. Short-term (6 mo) iterated EDM forecasts can be used to predict summer oxygen depletion under set temperature and phosphorus conditions. Here,
the predictions are shown across three different postwinter DOB concentrations (panel labels). Effectively, this figure is a graphical representation of the EDM
calculations that are integrated in the hybrid-modeling pipeline (Fig. 4). In practice, summer stratified depletion forecasts can be linked to physical model pre-
dictions of winter mixing. Although the first-order mechanism of climate change affecting DO appears to be winter mixing, EDM shows that higher tempera-
tures can also increase oxygen depletion in the summer, particularly when there has not been strong winter mixing (Left; May DOB = 4.5 mg/L). The average
deep-oxygen depletion for Lake Geneva from 1970 to 2012 has been previously estimated at ∼0.007 mg�L�1�d�1 (48) and falls in the middle of the range of the
seasonally averaged (May through October) deep rate of oxygen depletion produced by EDM for these scenarios (0 to 0.017 mg�L�1�d�1). We only show results
up to the year 2012, the last year with full deep mixing, in order to avoid bias in our data analysis between the currently low DOB observed since 2013 and con-
tinuously decreasing TP. The results are very similar if data beyond 2012 are included to extrapolate behavior to even lower TP.
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atmospheric forcing and a single initialization of the biogeo-
chemistry is able to reproduce the temporal evolution of DOB

over 37 y, with high correlation between observed and pre-
dicted DOB values (ρ = 0.89) and low error (mean absolute
error = 0.94 mg�L�1). For comparison, equivalent predictions
are also included using the traditional approach in Schwefel
et al. (21) of fully parameterized physics and biogeochemistry.
The substantially improved forecast skill of the hybrid model
demonstrates an advantage to incorporating the emergent non-
linear effects between phosphorus, CHL, and oxygen that occur
during reoligotrophication (Fig. 2).
The hybrid approach offers an improvement in bottom-line

prediction and, more importantly, is capable of simultaneously
accounting for changing air temperature and phosphorus load-
ing as they act together through multiple, interdependent path-
ways. To diagnose and predict how DO will respond to the
interplay of reoligotrophication and atmospheric warming over
long time scales, we use the historical time-series observations

(1981 through 2017) and translate them into hypothetical sce-
narios. This is accomplished by applying a simple offset in
detrended air temperature and fixing TP to a certain value in
the observed range. The hybrid model is then run for these 135
cases (i.e., 45 TP scenarios × 3 climate-change scenarios), pro-
ducing a simulation of DO dynamics under each scenario.
From these simulated dynamics, we calculate the percent of
time with DOB < 4 mg�L�1

—i.e., a management benchmark
for regulating deep water quality in Switzerland. Because all
meteorological data besides air temperature are kept unchanged
(Materials and Methods), this specific analysis does not aim to
predict an exact future for the lake. However, other changes
can be readily incorporated into scenario exploration and pre-
diction as management relevance arises, including land-use
changes or questions about other climatological effects.

Fig. 4 shows this management benchmark across all 135
scenarios and offers a number of insights on past and future
management. First, the hybrid model demonstrates that the
regulations related to TP reduction in Lake Geneva were
effective at reducing the rate of oxygen depletion during the
last 4 decades (decreasing trend in the percent of time with
DOB < 4 mg�L�1). The hybrid model predicts that under pre-
intervention conditions (background TP ∼ 60 μg�L�1 and no
change in median temperature, ΔTair = 0 °C), the deepest
50 m of water would remain hypoxic 55% of the time. This
value drops to 20% for a background TP ∼ 25 μg�L�1 (and
ΔTair = 0 °C). These estimates explain and buttress the initial
success of the original single-factor management paradigm at
addressing an “acute crisis,” where the extreme perturbation to
TP so dominated the ecosystem in the early stages that other
confounding considerations were relatively minor.

What does the hybrid model suggest about the more recent
history and impending future, where lake complexity reemerges
and the individual linear relationships among TP, CHL, and
DOB shift (Fig. 2)? Most importantly, the hybrid model sug-
gests that the impact of moderate air-temperature increase
(ΔTair = 3 °C) on water quality would be on the same order
as the eutrophication of the previous century. Thus, for
ΔTair = 3 °C and background TP ∼ 25 μg�L�1, the fraction of
time with hypoxic deep water would be 55%, similar to the
expectation for simulated high background TP (∼60 μg�L�1)
with no warming (ΔTair = 0 °C). Hypoxia would be even
greater under 3 °C warming and unmitigated TP, with DOB

below the threshold 85% of the time. Moreover, the confound-
ing effect of temperature may increase going forward, since
according to the recent CH2018 scenario (Representative Con-
centration Pathway 8.5) for the western part of Switzerland, a
temperature increase (ΔTair = 3 °C) corresponds to the lower
bound of predicted near-surface temperature increase for the
period 2070 through 2100.

Finally, the hybrid model clarifies the limits that single-
factor management through phosphorus mitigation alone has
going forward. All three climate scenarios show counterintui-
tively that hypoxic conditions begin to increase again when
TP < 25 μg�L�1 as a direct consequence of the state-dependent
changes in the biogeochemical processes (Fig. 2). A decline in
near-surface CHL from reoligotrophication can have unex-
pected effects on DOB below TP < 25 μg�L�1 [e.g., as shifts in
the food web or higher export fluxes (14, 30)]. Nevertheless,
the conclusion is not that moderate pollution of the lake is
acceptable; long sediment cores show that Lake Geneva was not
hypoxic before the Anthropocene (31) with TP < 10 μg�L�1.
Instead, this analysis demonstrates that, in addition to reducing
nutrient loading, management will also need to identify other

Fig. 4. Hybrid-model predictions of DOB forced by observed atmospheric
and TPlake and simulations under alternative scenarios. (A) The time series
of hybrid-model-predicted DOB under historical conditions (purple) is com-
pared to observed DOB (gray) and previous parametric efforts (orange) for
reference. (B) Hybrid-model simulations are shown under alternative sce-
narios of atmospheric temperature and TPlake. The model is forced by the
detrended historical time series, shifted by 0 °C (green), 1 °C (blue), and 3 °C
(red) warming and a constant value of TP (TPlake). These simulations consti-
tute a critical quantitative capability for management, linking physical
model predictions of winter mixing and EDM predictions of summer DO
depletion to examine the percentage of time that deep-water DO dips
below 4 mg�L�1. Under 3 °C, the hybrid model estimates that the lake will
be hypoxic the majority of the time, regardless of phosphorus levels. The
less extreme (but increasingly unlikely) temperature scenarios suggest that
the reoligotrophic lake state with the lowest TP loadings may not be opti-
mal for lake health. Without broadening management actions (e.g., on the
food web), further TP decreases are not predicted to benefit the lake.
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control levers to maintain a phytoplankton community and
food web that limit oxygen depletion at depth.
The essential ingredients to the approach here were a para-

metric modeling framework that could account for physical
processes controlling oxygen and multidecadal time series of
biogeochemical variables that could be successfully modeled
with EDM. Although Lake Geneva is one of the most well-
studied lakes in the world, similar data exist for other deep
lakes in the region, and many of these are already parameterized
for Simstrat or other similar hydrodynamic models. A next step
is to determine how reproducible the hybrid-model success is
across a wider set of lake morphologies and ecological states.
Moreover, combining observations from multiple lakes within
a single EDM model of deep-lake biogeochemistry would
enable informed extrapolation beyond the historical record of
any one lake. However, the general principle of the hybrid
approach should be applicable more broadly than just to deep
lakes but also shallow lakes and even estuaries where physical
processes are well represented in models and biogeochemical
variables like CHL and nutrients have been measured through
time.
Although this generalizability of approach is speculative, the

need for practical inroads into modeling ecosystem complexity
is not. While the initial correction from a single large ecosystem
disturbance, be it excess nutrient loading or overfishing, can be
managed based on common sense or a single conspicuous over-
riding relationship, the task becomes more complicated as we
steer systems closer to their healthy states. Success will require
finding practical avenues for addressing and even embracing
complexity. We suggest that this, as well as contending with
the ever-destabilizing effects of climate change, is the signature
task for 21st-century environmental management.

Materials and Methods

Lake Geneva Time-Series Data and Reoligotrophication. Lake Geneva
(Lac L�eman) is a deep (310 m), large (589 km2) lake located between Switzer-
land and France. Lake Geneva is arguably the cradle of European limnology due
to the seminal interdisciplinary studies by Forel (24). It is classified as a warm
monomictic lake with intermittent deep mixing. The last complete winter mixing
was observed in 2012. All of the time-series data, except the Rhone River dis-
charge, are from long-term monitoring conducted by the Centre Alpin de
Recherche sur les R�eseaux Trophiques des Ecosyst�emes Limniques (CARRTEL) lab-
oratory and freely available in the Syst�eme d’Observatoires, d’Exp�erimentations
et de Recherche en Environnement Observatoire des Lacs (https://si-ola.inra.fr).
TPepi and CHL were volume-weighted averaged over the first 20 m of the water
column. The total amount of phosphorus TPlake was calculated by integrating
over the hypsometry each bimonthly or monthly profile. Phosphorus concentra-
tion has been measured with two protocols, quantifying soluble-reactive phos-
phorus (SRP) and TP. However, these two measurements are tightly correlated
(both integrated over the first 20 m or the full hypsometry) and give nearly iden-
tical results with EDM analysis. The SRP measurements give slightly higher pre-
dictive skill, however; thus, the results presented in the figures are those using
SRP as an indicator of TP, rather than the measurement of TP. Rhone River data
were obtained from the Swiss Federal Office for the Environment (https://www.
hydrodaten.admin.ch/en/2009.html). Meteorological data were obtained from
the Swiss Federal Office of Meteorology and Climatology, MeteoSwiss, for the
monitoring station Pully (https://www.meteoswiss.admin.ch/home/measurement-
values.html?param=messwerte-lufttemperatur-10min&station=PUY). The data
derived from these sources needed for the calculations presented in the manu-
script are included in SI Appendix and are also available at GitHub (https://
github.com/SugiharaLab/Geneva_Hybrid) and Zenodo (43).
Climate change and reoligotrophication scenario. This study did not use
explicit regional climate predictions, such as those driven by greenhouse-gas-
emission scenarios for changes in atmospheric forcing, or future land-use scenarios

for predicting changes in nutrient loading. Instead, we reanalyzed the 30-y his-
torical data by applying synthetic TPlake and air-temperature time series. The
air-temperature time series were generated by applying a uniform 0 °C, 1 °C,
or 3 °C change to the detrended historical air temperature. The TPlake time
series were generated for a constant concentration from 65 to 15 μg�L�1

(1-μg�L�1 increments). The other meteorological drivers for Simstrat were
unchanged, as we currently lack clear expectation for their fate under
greenhouse-gas scenarios. The resulting Simstrat output for propagation of the
air-temperature scenario into lake physics variables was then used to drive the
EDM component. Our goal was to examine the benefits of a hybrid-modeling
approach for addressing the complex challenges that will be confronting envi-
ronmental management in the coming years. In principle, this same machinery
can be generalized to follow any particular prediction of climate change or
land-use.

Equation-Based Model. We used a 1D hydrodynamic model [Simstrat version
(v)1.0 from https://github.com/Eawag-AppliedSystemAnalysis/Simstrat with an
online near-real-time version at https://simstrat.eawag.ch/ (44)] to infer the evo-
lution of the lake thermal structure based on meteorological (wind speed and
direction, solar radiation, air temperature, relative humidity, and cloud coverage)
and river (discharge and temperature) parameters. Simstrat combines a
buoyancy-extended k-ε model with an internal seiche model. The model was
recently improved to better reproduce deep mixing in deep lakes (41). The
model was previously validated (21, 41) based on the in situ bimonthly to
monthly profiles collected since 1957. Gaudard et al. (41) reported an rmse of
∼0.2 °C over 30 y over in the deep layer.

Resolving the dynamics of thermal structure of the lake allows for simple para-
metric relationships to approximate the mixing of surface water with dissolved
oxygen at equilibrium with the atmosphere and deep water. Schwefel et al. (21)
developed a two-box model of oxygen to run on output from Simstrat. The lake is
divided into a surface layer and a deep layer, based on the time-varying thermo-
cline depth (depth of maximum stratification indicated by the buoyancy fre-
quency, N2). Additionally, there is a seasonally varying input of oxygen from the
Rhone River, with river flux in summer entering the surface layer and in winter
entering the deep layer.

Equation-Free Model. Comprehensive EDM analysis of DO and likely interac-
tors was performed through a similar pipeline as analyses of planktonic food-web
data in Deyle et al. (25) and by using rEDM 0.7.3 from GitHub (https://github.
com/SugiharaLab) (a newer application programming interface is now available
through the CRAN repository, https://cran.r-project.org/web/packages/rEDM/index.
html). R-Markdown code to reproduce the EDM calculations is included in SI
Appendix and is also available from GitHub (https://github.com/SugiharaLab/
Geneva_Hybrid). First, univariate analysis with simplex (27) and S-map (29)
confirmed the presence of low-dimensional, nonlinear dynamics in DOB (SI
Appendix). Thus, the basic assumption of EDM analysis is valid for these data.

Next, CCM was computed between all variables using simplex projection
(26). Each pairwise test requires only a single fit parameter, the embedding
dimension E. Following the insights of Ye et al. (45), we selected embedding
dimension E* in [1,15] to maximize CCM skill at tp = 0 and then measure CCM
skill at prediction-time tp = floor(�E*/2), the middle of the embedding vector.
This mediates the risk of statistical overfitting without relying on univariate esti-
mates of E that can be too low.

Multivariate EDM analysis (37, 46) was used to examine forecast improve-
ment when potential drivers are added to the embedding (set of coordinate vari-
ables). This provides an additional test of causality overlapping, but not identical
to, CCM (28). When a potential driver Xj improves prediction of target Xi, it can
indicate that Xj interacts with Xi. When multiple potenital drivers are added in
sequence, comparing improvments in prediction skill can additionally tease out
when variables act interdependently from when one driver acts indirectly
through another (28). Thus, multivariate S-map prediction was used to examine
whether physical and biogeochemical drivers of DO act interdependently. S-map
analysis on multivariate empirical models can also be used to characterize
changing interactions (25). S-map models for predicting CHL, TPepi, and DOB
were built from step-by-step multivariate EDM analyses (SI Appendix, Figs. S3
and S4), where the ultimate predictor variables were chosen to maximize fore-
cast skill.
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Finally, these multivariate models for predicting DOB were used for scenario
exploration of climate change and management futures. While EDM scenario
exploration has normally involved single time-step predictions (47), the analysis
here uses iterated short-term prediction to generate long-term behavior on a
time scale relevant to management.

Hybrid Model. We provide here an initial attempt to couple equation-based
and equation-free models (SI Appendix, Fig. S4). The rationale is to use an
equation-based model for physical processes and an equation-free model for
biogeochemical processes. The thermal structure is provided by the equation-
based model to the equation-free model. Both physical and biogeochemical
results are merged together into a simple box model. The temporal evolution of
the box size is given by the thermocline depth (equation-based model). The tem-
poral evolution of DO in the upper box was estimated following equation 7 in
Schwefel et al. (21), except that we used the CHL output from EDM instead of
synthetic averaged CHL values. From initial conditions of DO at the surface and
at the bottom in May 1981, we used the results of the EDM (given the

temperature scenario, the reoligotrophication scenario, deep mixing depth, and
initial DOB) to predict the rate of oxygen depletion in the deep water over 180 d.
During the following winter, reoxygenation was estimated based on the extent
of the deep winter mixing and the relative concentration of oxygen in the upper
and lower layer, as well as the Rhone River underflow (40) providing oxygenated
water to the deep layer.

Data Availability. R scripts (*.R), R markdown (*.rmd), R data files (*.Rdata),
text data files (*.csv; *.dat), and text parameter files (*.par) have been deposited
in GitHub (https://github.com/SugiharaLab/Geneva_Hybrid; https://github.com/
SugiharaLab) and Zenodo (43).
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