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Alzheimer’s disease is a very common progressive neurodegenerative disorder affecting the learning and

memory centers in the brain. The hallmarks of disease are the accumulation of b-amyloid neuritic plaques

and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer’s disease is

currently incurable and there is an intense interest in the development of new potential therapies. Chromatin

modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in

models of Alzheimer’s disease with some promising results. For example, the natural antioxidant and sirtuin 1

activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly,

numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic

acid and phenylbutyrate reduction have shown promising results in models of Alzheimer’s disease. These

beneficial effects include a reduction of b-amyloid production and stabilization of tau protein. In this review

we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified

to have an important role in the pathobiology of Alzheimer’s disease. Further, we discuss the potential for

pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase

enzymes.
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H
istone deacetylase (HDAC) inhibitors represent

a new class of anticancer compounds. To date,

suberoylanilide hydroxamic acid (SAHA, Vor-

inostat, ZolinzaTM) and depsipeptide (Romidespin, Isto-

daxTM) have been approved by the US Food and Drug

administration (FDA) for the treatment of cutaneous

T-cell lymphoma (1�4). Numerous clinical trials involving

HDAC inhibitors, either as monotherapies or in combi-

nation with other anticancer modalities, are currently

underway for both hematological and solid malignancies

(5�7). The anticancer properties of HDAC inhibitors are

relatively well known (5�7). Although not as thoroughly

investigated, it is emerging that HDAC inhibitors may

have clinical potential for non-oncological applications,

including asthma, cardiac hypertrophy and neurodegen-

erative conditions (8�16).

The aim of this review is to focus on the therapeutic

potential of HDAC inhibitors in Alzheimer’s disease

(AD). Alzheimer’s disease is the most common form of

dementia and given the aging population in Western

societies, prevalence is expected to continue to grow (17).

It is an age-related progressive neurodegenerative dis-

order affecting the cortex and hippocampus (learning and

memory centers in the brain), and is considered to be a

disease of synaptic dysfunction and loss (18�21). The

hallmark features of AD are: 1) the accumulation of

b-amyloid neuritic plaques resulting from aberrant clea-

vage of the amyloid precursor protein (APP); typically

APP is cleaved by a-secretase however, it can be cleaved

into a soluble and the highly insoluble b-amyloid

fragments, by b- and g-secretases and 2) neurofibrillary

tangles formed by abnormally phosphorylated tau pro-

tein (17). Other characteristics of AD include direct

neurotoxic effects by lipid peroxidation, protein oxida-

tion and formation of radical species (oxygen and

nitrogen), inflammation arising from microglia surround-

ing plaques, mitochondrial damage and altered mito-

chondrial distribution, abnormal calcium regulation

and aberrant interaction between metals and b-amyloid

(22�24). Although, cholinesterase inhibitors and an
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N-methyl-D-aspartate antagonist are currently approved

by the FDA to assist in managing symptoms, the disease

is currently untreatable (25�27). Therefore, there is

intense interest in the investigation of novel compounds

as potential therapeutics for AD. Chromatin-modifying

compounds such as HDAC inhibitors have been shown to

have beneficial effects in experimental models of AD. In

this review, we provide an overview of histone deacetylase

enzymes and their relevance to AD. Pharmacological

modulation of these enzymes in the context of AD is

discussed.

Sirtuins in Alzheimer’s disease
Histone acetylation is regulated by the opposing actions

of HDAC enzymes and histone acetyltransferases (HATs)

(28�30). Briefly, HATs catalyze the addition of the acetyl

group of acetyl-CoA to the o-amino lysine residue of

histone lysines resulting in an open, transcriptionally

permissive, chromatin architecture (31, 32). The HDAC

enzymes catalyze the opposite (removal of acetyl groups)

resulting in a more condensed, transcriptionally repres-

sive chromatin conformation (28). In addition, numerous

non-histone protein substrates, with key cellular func-

tions (e.g. chaperones, DNA repair proteins, cell motility

proteins, transcription factors and co-regulators and

signaling mediators) have been identified for HDAC

enzymes (33�36). HDAC enzymes are categorized into

two main families; the metal-dependent HDAC1�11

enzymes and the seven mammalian class III sirtuins.

The class III HDAC enzymes consist of the sirtuins

(SIRTs) 1�7 which are homologous to the Saccharomyces

cerevisiae silent information regulator 2 (Sir2) (Fig. 1)

(37, 38). The sirtuins are nicotinamide adenine dinucleo-

tide (NAD�)-dependent enzymes. They deacetylate sub-

strates via the consumption of NAD� releasing

nicotinamide, O-acetyl-ADP-ribose and the deacetylated

substrate (29). The sirtuins contain a 257 amino acid

catalytic core domain and have differing N- and C-

terminal tails and zinc-binding domains (37). Phylogen-

etically the sirtuins can be further sub-classified into four

distinct classes (37, 38). Class I consists of SIRTs 1�3 and

those found in yeast. SIRT 4 is the sole member of class II

enzymes with homology to enzymes found in bacteria,

insects, nematodes and protozoans (37). Class III consists

of SIRT 5, with homology to prokaryotic enzymes. Class

IV includes SIRTs 6 and 7 which have homologous

enzymes distributed in plants, vertebrates and metazoans

(37, 38). The sirtuins have differing subcellular localiza-

tions with SIRTs 3, 4 and 5 found in the mitochondria,

SIRT 2 is primarily cytoplasmic and SIRTs 1, 6 and 7 are

found predominantly in the nucleus (39, 40). SIRT 1 is

mainly associated with euchromatin but also shares a

degree of cytoplasmic localization (39, 40). SIRT 6 is

associated predominantly with heterochromatin and

SIRT 7 is localized in the nucleolus (39, 40). SIRTs 1, 3

and 5 are NAD� -dependent deacetylases. They catalyze

the deacetylation of histone and non-histone substrates.

SIRT 6 is an NAD�-dependent ADP ribosyltransferase

(ART) and catalyzes the ribosylation of mitochondrial

proteins. SIRTs 2 and 4 are both NAD�-dependent

and ART enzymes. The properties of SIRT 7 are not

well-defined (39).

To date, SIRT 1 has been the most extensively investi-

gated of the sirtuin enzymes. It has been shown to

Fig. 1. Schematic representation of the class III sirtuin (SIRT) deacetylases. The sirtuins are highly conserved nicotinamide adenine

dinucleotide (NAD�) dependent protein deacetylases (DAC) or ADP-ribosyltransferases (ART) which can be subdivided into four

classes based on their phylogenetic lineage. The subcellular localization, DAC or ART binding domains (dark blue) and zinc binding

domains (black) are depicted.
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modulate metabolism (e.g. via modulation of peroxisome

proliferator-activated receptor gamma coactivator-1a
[PGC-1a]), cellular stress resistance (e.g. by interaction

with forkhead box class O (FOXO) transcription factors)

and genomic integrity (e.g. by interaction with p53 and

Ku70), which have been the subject of recent reviews

(41�43). The functions of SIRT 1 in AD are summarized

in Fig. 2. SIRT 1 has been shown to increase production

of a-secretase, via deacetylation and activation of the

retinoic acid receptor-b protein, which stimulates tran-

scription of the ADAM10 gene (44, 45). This results in the

increases in ADAM10 drive alpha-secretase cleavage of

APP within the amyloid peptide region, resulting in the

reduction of the b-amyloid peptide which gives rise to the

characteristic amyloid plaques found in AD (44�46).

ADAM10 also cleaves the cell-surface Notch receptor

initiating the Notch signaling pathway which results in the

upregulation of genes involved in neurogenesis (47).

Further, SIRT 1 has been shown to deacetylate the tau

protein resulting in destabilization and proteolysis (48).

This reduces neurofibrillary tangles in neurons (48).

Another effect of SIRT 1 in AD is mediated by inhibition

of NFkB signaling in microglia resulting in the decrease

of b-amyloid-induced release of neurotoxic chemokines,

cytokines and nitric oxide (47, 49). Anti-apoptotic effects

are mediated by interaction with p53 and antioxidant

effects of SIRT 1 are mediated by activation of FOXO3

and regulation of PGC-1a (42, 47). Resveratrol, a natural

polyphenol abundant in the skins of red grapes and

putative SIRT 1 activator, has been shown to have

efficacy in relevant models of AD (Fig. 2) (50�56).

Previous studies have found protective effects of resver-

atrol on beta-amyloid-induced toxicity in cultured rat

hippocampal cells (57�59). Supplemental forms of

resveratrol are undergoing evaluation in clinical trials

for the disease. However, there are still question marks

over its precise mechanism of action and whether the

effects are mediated through activation of SIRT 1.

Further, bioavailability of both oral resveratrol and its

active metabolites remains controversial and it will be

important to determine whether these reach biologically

relevant concentrations to affect either sirtuin-dependent

and/or independent pathways. Paradoxically, nicotina-

mide, a competitive sirtuin inhibitor has also shown

beneficial effects in an animal model of AD, attenuating

cognitive deficit (60). The mechanism was ascribed, at

least in part, to reduced phosphorylation of tau protein at

threonine-231 (T231) (60). Hyperacetylation of a-tubulin

was also observed (60). These findings highlight the need

for further clarification of the function of sirtuins in AD.

Metal-dependent histone deacetylases
The remaining 11 HDACs are typically referred to as the

classical metal-dependent enzymes which require coordi-

nation of a divalent metal ion (zinc) for their catalytic

activity (Fig. 3) (6, 7, 61, 62). These HDAC enzymes are

divided into class I (HDAC1, 2, 3 and 8), class IIa (4, 5, 7

and 9), class IIb (HDAC6 and 10) and class IV

(HDAC11) on the basis of their homology to yeast

proteins (6, 7, 61, 62). Class I enzymes share homology

with Saccharomyces cerevisiae transcriptional regulator

RDP3 whereas class II enzymes are homologous with

yeast Hda1 (62). HDAC11 shares homology with both

class I and II enzymes and is the sole member of class IV

(62). Class 1 enzymes are expressed ubiquitously, pri-

marily localized in the nucleus and have important roles

in cellular proliferation and survival (63). Class IIa

enzymes shuttle between the nucleus and cytoplasm and

Fig. 2. Identified roles of sirtuin (SIRT) 1 in Alzheimer’s disease. Although there a still controversies surrounding its precise mechanism

of action, activation of SIRT 1 by the natural antioxidant resveratrol, may lead to the molecular effects depicted.
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have more restricted tissue distributions and functions

(6, 7, 35, 36, 61, 62, 64, 65). Little is known about the

class IIb HDAC10. However, HDAC6, another class IIb

member, is a major cytoplasmic protein with numerous

identified non-histone substrates and important roles in

aggresome formation and growth signaling (66�68).

With respect to AD, the class I HDAC2 and class IIb

HDAC6 enzymes, have been associated with the patho-

biology of the disease. Firstly, a seminal study has

indicated that over-expressing HDAC2 in neurons in

mice results in decreased synaptic plasticity and memory

formation that modifying HDAC2, indicating that mod-

ification of HDAC2 could be a beneficial treatment for

the memory impairment that occurs in AD (69). In the

same study it was shown that HDAC2 deficiency exhibits

the opposite effects indicating that the enzyme has an

important role in negatively modulating synaptic plasti-

city, learning and memory (69). A solid body of evidence

has accumulated for the role of HDAC6 in various

neurodegenerative conditions including AD (70). Firstly,

HDAC6 has been shown to be over-expressed in the

brains of AD patients (by 52% in cortices and 91% in

hippocampi) (71). In the same study it was shown that

HDAC6 binds with tau protein both in vitro and in

human brain tissues (71). Tau was identified as a HDAC6

deacetylase inhibitor (72). A further study, using the

HDAC6 selective inhibitor, tubacin, has indicated that

inhibition of the enzyme results in attenuation of tau

phosphorylation at T231, which is important for the

regulation of the stability of the cytoskeleton; this may

decrease neurofibrillary tangle formation in AD (71, 73).

Additionally, abnormal mitochondrial transport is a

feature of AD, and it has been identified that HDAC6

has an important function in the modulation of mito-

chondrial transport through an association with glycogen

synthase kinase-3b GSK3b (17, 74).

Histone deacetylase inhibitors in Alzheimer’s
disease
A structurally disparate group of compounds have been

identified to possess HDAC inhibition activity. The

prototypical Trichostatin A and the clinically approved

Fig. 3. Schematic representation of metal�dependent histone deacetylase (HDAC) enzymes. The classical HDACs are categorized into

class 1 (HDAC1, 2, 3 and 8), class IIa (HDAC4, 5, 7 and 9), class IIb (HDAC6 and 10) and class IV (HDAC11) on the basis of their

homology to yeast proteins. The deacetylase catalytic domain (pink), nuclear localization signal (purple), myocyte enhancer factor 2

binding domain (light blue), serine binding motif (orange). SE14�serine�glutamate tetradecapeptide, ZnF�zinc finger protein binding

domain and leucine rich domain are depicted. Subcellular localization is shown.
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SAHA are part of the hydroxamic acid class of HDAC

inhibitors with HDAC inhibition activity in the nanomo-

lar to low micromolar range (2, 6, 7, 33, 61, 75). The

cyclic peptides, which include trapoxin and clinically

approved depsipeptide, are also potent HDAC inhibitors.

Similarly, the benzamides such as entinostat and electro-

philic ketones such a-ketomide are potent HDAC in-

hibitors (2, 6, 7, 33, 61, 75). Aliphatic acids which include

valproic acid, butyrate and phenylbutyrate are the least

potent group of HDAC inhibitors possessing inhibition

activity in the millimolar range (75�78). These com-

pounds are typically referred to as broad-spectrum (pan-)

HDAC inhibitors. Although they inhibit multiple

HDAC1�11 enzymes they do possess some selectivity

for HDAC isoforms. It is becoming apparent that

selectivity or isoform-specificity is important particularly

when considering non-oncological applications. There-

fore, there is an intense effort aimed at development of

such compounds, the HDAC6 specific, tubacin and the

HDAC8 selective PC-34051 being pertinent examples

(79�82).

There is accumulating evidence indicating the potential

benefits of classical metal-dependent HDAC inhibitors in

models of AD. For example, Trichostatin A has been

shown to increase diminished H4 acetylation and im-

prove contextual performance in a mouse model of AD

(83). Similarly, the clinical hydroxamic acid, SAHA, has

been shown to rescue contextual memory in a transgenic

mouse model of AD (84). However, most studies to date

have focused on the aliphatic acid group of HDAC

inhibitors. Although histone acetylation was not consid-

ered, valproic acid has been shown to inhibit the

production of b-amyloid in cells (HEK293) transfected

with the Swedish APP isoform (APP751) (85). Further,

using the PDAPP (APP (V717F)) transgenic model of

AD, valproic acid was shown to inhibit the production of

b-amyloid in the brains of mice at biologically relevant

doses of 400 mg/kg (85). Similarly, valproic acid has been

shown to decrease b-amyloid production and to attenuate

behavioral deficits in APP23 transgenic mice (86).

Inhibition of GSK3b was suggested as a mechanism of

action of valproic acid in AD (85). In another study, the

beneficial effects of valproic acid in models of AD have

been linked with histone acetylation (H4) (84). Valproic

acid is particularly interesting given that it is relatively

well-tolerated and has a very long history of clinical use

as an anti-epileptic (87�89). However, the findings from a

recent clinical trial indicate potential contraindications

with the use of valproic acid in Alzheimer’s disease

highlighting the need for further research with this

commonly used compound (90).

The aliphatic acid HDAC inhibitor, phenylbutyrate,

has also been investigated in models of AD. Several

groups have shown beneficial effects upon AD pathology

and memory performance with no signs of toxicity in AD

transgenic mouse models (84, 91�94). Further, phenylbu-

tyrate specifically represses apoptosis in stressed neuronal

systems (95�97). Findings have indicated that the bene-

ficial effects of phenylbutyrate (increased synaptic plas-

ticity, improved learning and memory and attenuation of

spatial memory deficits) may be attributed to restored

acetylation of histone H4 and to the clearance of

intraneuronal Ab accumulation (91, 92).

Although acetylation of histone H4 appears to be

important in AD, the potential use of classical HDAC

inhibitors in neurodegeneration remains controversial.

Broad-spectrum HDAC inhibitors have cell-specific ef-

fects and are well-known for their potential to induce cell-

death, apoptosis and cell-cycle arrest in malignant and

transformed cells (7, 75, 98, 99). However, similar effects

have been observed in neuronal cells (100). In this

context, evaluation of more selective or isoform-specific

compounds is important. In particular, HDAC2 and

HDAC6 have been shown to have important roles in

the pathobiology of AD (69, 70). Although there is no

specific inhibitor of HDAC2 available, tubacin is highly

selective for HDAC6 (79). As described earlier, tubacin

has been shown to interact with tau protein (71).

Conclusions
Overall, the class III sirtuin deacetylases, in particular

SIRT 1, have been shown to be important potential targets

in AD. Numerous clinical trials, using resveratrol to target

SIRT 1 are ongoing. The findings from clinical studies and

further characterization of the sirtuins in relevant model

systems are anticipated to improve our understanding of

the therapeutic promise of targeting this class of enzymes

in AD. Similarly, classical metal-dependent HDAC in-

hibitors have been shown to have beneficial effects of

models of AD. While most studies have used relatively

broad-spectrum inhibitors, it is becoming apparent that

more selective or isoform-specific compounds may be

more applicable. Evaluation of HDAC expression in

animal models of disease akin to the atlas of the

HDAC1�11 expression produced in normal rat brain will

assist identifying relevant targets (101). Further genetic

studies and experiments with more selective compounds

(e.g. tubacin for HDAC6 and a selective HDAC8 inhibitor

is available) are also required to clarify the roles of

HDAC1�11 in the pathobiology of AD.
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