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Abstract: Bamboo is one of the most important non-timber forest resources worldwide. It has
considerable economic value and unique flowering characteristics. The long juvenile phase in
bamboo and unpredictable flowering time limit breeding and genetic improvement and seriously
affect the productivity and application of bamboo forests. Members of SQUA-like subfamily genes
play an essential role in controlling flowering time and floral organ identity. A comprehensive study
was conducted to explain the functions of five SQUA-like subfamily genes in Phyllostachys edulis.
Expression analysis revealed that all PeSQUAs have higher transcript levels in the reproductive
period than in the juvenile phase. However, PeSQUAs showed divergent expression patterns during
inflorescence development. The protein–protein interaction (PPI) patterns among PeSQUAs and
other MADS-box members were analyzed by yeast two-hybrid (Y2H) experiments. Consistent with
amino acid sequence similarity and phylogenetic analysis, the PPI patterns clustered into two groups.
PeMADS2, 13, and 41 interacted with multiple PeMADS proteins, whereas PeMADS3 and 28 hardly
interacted with other proteins. Based on our results, PeSQUA might possess different functions by
forming protein complexes with other MADS-box proteins at different flowering stages. Furthermore,
we chose PeMADS2 for functional analysis. Ectopic expression of PeMADS2 in Arabidopsis and rice
caused early flowering, and abnormal phenotype was observed in transgenic Arabidopsis lines. RNA-
seq analysis indicated that PeMADS2 integrated multiple pathways regulating floral transition to
trigger early flowering time in rice. This function might be due to the interaction between PeMADS2
and homologous in rice. Therefore, we concluded that the five SQUA-like genes showed functional
conservation and divergence based on sequence differences and were involved in floral transitions by
forming protein complexes in P. edulis. The MADS-box protein complex model obtained in the current
study will provide crucial insights into the molecular mechanisms of bamboo’s unique flowering
characteristics.

Keywords: SQUA-like genes; Phyllostachys edulis; floral development; protein–protein interaction
(PPI); ectopic expression; early flowering

1. Introduction

Bamboos are important members of the subfamily Bambusoideae and the family
Poaceae, which are important timber, fiber, and food products worldwide [1]. Unlike other
members of Poaceae, bamboo has unique flowering features and an unpredictable juvenile
phase [2]. For instance, wood bamboo retains vegetative growth for a very long time
(13–120 years) and usually dies after seed production [1]. The flowering incidence may
be restricted to a few plants of a population, i.e., so-called sporadic flowering, whereas
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synchronous flowering may happen across populations in a community in which all
plants flower and die within the same year [3]. The long juvenile phase in bamboo and
unpredictable flowering time possibly limit breeding and genetic improvement and cause
economic losses. Consequently, studying the mechanism of bamboo flowering has great
scientific importance and economic value. Although many research groups tried to uncover
the cause of bamboo flowering by genomes and transcriptomes [4–6], the molecular aspects
of bamboo flowering remain unclear.

Phyllostachys edulis (Moso bamboo) genome and the transcriptomes of different bam-
boo species have been sequenced to characterize genes related to bamboo flowering; most of
the cloned genes belonged to the MADS-box gene family [2,5,7,8]. For instance, 16 BeMADS
genes were obtained from the flowering transcripts of Bambusa edulis, among which Be-
MADS1 could undergo co-transformation with other cytosol BeMADS proteins in the
nucleus to function as transcription factors (TFs) [8]. PvSOC1 and PvMADS56 from
P. violascens can significantly promote flowering in overexpression transgenic Arabidop-
sis thaliana or Oryza [9,10]. BoMADS50 could interact with SQUAMOSA (SQUA)-like
proteins and positively promote flowering in B. oldhamii [6]. Based on previous results
from our laboratory, 42 full-length P. edulis MADS-box members were identified, and the
expression analysis revealed that several PeMADSs play roles in modulating flowering in
Moso bamboo [11]. Ectopic expression of one of the candidate genes, namely, PeMADS5,
could promote flowering in A. thaliana [11].

In plants, MADS-box gene family members reportedly play important roles in many
aspects of development [12–14], particularly the regulation of reproductive development,
including the flowering time, establishing floral organ identity, fruit ripening, seed pig-
mentation, and embryo development [15–18]. Members from the SQUA-like subfamily,
also named as APETALA1/FRUITFULL (AP1/FUL), participate in floral meristem identity,
floral organ specification, and flowering regulation [16]. There are four members of the
Arabidopsis SQUA subfamily in which the roles of AP1, CAULIFLOWER (CAL), and FUL
are crucial for the control of floral organ development and flowering time [19]. AP1 belongs
to the A-class gene in the floral organ ABC model, and it is involved in the identification
of sepal and petal development [20]. Meanwhile, AP1 and CAL share overlapping roles
in floral meristem (FM) identity and determination [21]. FUL has an important role in
Arabidopsis carpel and fruit development and is functionally redundant with AP1 and
CAL in controlling inflorescence architecture [21,22]. The function of SQUA-like genes
that control floral transition is somewhat conserved between eudicots and grass [23].
In rice, SQUA-like genes have redundant roles in controlling flowering time, and the ec-
topic expression of OsMADS14, OsMADS15, or OsMADS18 results in early flowering and
dwarf habit [24,25]. In winter wheat and barley varieties, overexpression of the SQUA-like
gene (VERNALIZATION 1) could promote flowering in response to vernalization [26,27].
Two bamboo SQUA-like subfamily genes, PpMADS1 and PpMADS2, were identified from
P. praecox, and overexpression of these two genes significantly promotes early flowering in
Arabidopsis [28].

Several studies support the important roles of SQUA-like genes in floral transition
and inflorescence architecture. However, few studies investigated the regulatory roles
of SQUA-like genes in P. edulis, which is the most commonly used species in China
and is the only bamboo with whole-genome information released [18]. In this study,
we identified five SQUA-like members in P. edulis. The expression patterns of PeMADSs at
different flowering stages were comprehensively studied. Yeast two-hybrid (Y2H) assay
showed that some SQUA-like members have extensive interactions with other MADS-
box subfamilies. The Y2H assay showed that PeMADS2 has the highest number (11) of
interaction proteins among the five PeSUQAs subgroup members, and PeAMDS2 was
highly expressed during inflorescence initiation. Thus, we prioritize PeMADS2 for further
functional study. The ectopic expression of PeMADS2 in Arabidopsis caused early flowering
and abnormal phenotype in leaves and inflorescence. Furthermore, overexpression of
PeMADS2 in rice also triggered early flowering time, and RNA-seq analysis indicated that
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PeMADS2 integrated multiple flower signaling pathways in transgenic plants. Our data
provided the spatial expression analysis and protein–protein interaction (PPI) of SQUA-like
genes with other bamboo MADS-box members. Our findings present new perspectives
that contribute to the function of PeMADS2 in regulating the floral transition in transgenic
Arabidopsis and rice.

2. Results
2.1. The Bioinformatics Analysis of Five SQUA-like Members in P. edulis

Five SQUA-like genes, namely, PeMADS2, PeMADS3, PeMADS13, PeMADS28, and Pe-
MADS41, were obtained from our previous study [11]. The phylogenetic tree of SQUA-like
proteins showed that these five P. edulis SQUA-like genes are clustered within monocot
species (Oryza sativa, Brachypodium distachyon, Setaria italica, and D. latiflorus) and are
separate from Arabidopsis (Figure 1A). PeMADS2 and PeMADS13 were clustered in one
branch with rice OsMADS18, whereas PeMADS3 and PeMADS28 were gathered in the
other branch with rice OsMADS14. However, PeMADS41 showed less homology with the
other four genes. The alignment indicated that all five bamboo SQUA-like proteins con-
tained a well-conserved MADS-domain in the N-terminus, followed by the less conserved
K (keratin-like) domain, and a divergent C-terminal region (Figure 1B). Furthermore,
a conserved FUL-like (LPPWML) motif was identified in the C-terminal region of Pe-
MADS2, PeMADS13, and PeMADS41, which was highly conserved in most monocot
SQUA-like genes [29]. However, this motif was absent in PeMADS3 and PeMADS28 due
to the truncated C terminus (Figure 1B).

2.2. Expression Analysis of PeSQUA-like Genes during Different Flowering Stages

To better elucidate the roles of PeSQUA-like genes in the transition from vegetative
growth to flowering, the expression levels were analyzed from online transcriptomes [30].
The transcriptomes include leaf samples from different developmental stages, as follows:
3-week-old seedlings (TW); 1-year-old plants (OY); plants that will flower in the next year
(FLNY); and flowering plants (FL), and flower florets (FP) samples from the flowering
stage. The PeSQUA-like genes were predominantly detected in leaves (FL) and florets (FP)
from flowering plants and were moderately expressed in plants ready to flower (FLNY).
However, they were poorly expressed in juvenile plants (TW and OY) (Figure 2A). Based on
the expression patterns, the PeSQUAs were divided into two groups, which were similar to
the homology tree (Figure 1A). Besides the flowering tissues, the transcripts of PeMADS2
and PeMADS13 were both high in the plants at the reproductive transition stage (FLNY).

PeSQUA-like gene expression levels at different flowering developmental stages were
also tested by qPCR. Bamboo inflorescence development (Figure 2B) had four stages,
namely, the first floral bud formation (F1), the initial stage of inflorescence development
(F2), maturation of inflorescence (F3), and anthesis (F4). The leaf tissues (leaf) from the
non-flowering plant under the same growth environment as the flowering plants were
used as the control. The transcripts of PeSQUAs were highly expressed in floral samples
and less expressed in leaves. The expression of PeMADS2 exhibited a peak expression at
the initial stage (F1) and decreased during inflorescence development, whereas PeAMDS3
and PeMADS13 showed an upregulated trend. The expression levels of PeMADS28 and
PeMADS41 showed a mild change at different floral development stages.
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Figure 1. Sequence analyses of PeSQUA-like. (A) A phylogenetic tree of Moso bamboo PeSQUA-like and SQUA-like 
proteins from other species. The phylogenetic tree was constructed with the neighbor-joining (NJ) method and evaluated 
by bootstrap analysis using MEGA soft (version 7.0). Sixteen SQUA-like proteins were used: four from A. thaliana (AGL7, 
AGL9, AGL10, and AGL79), four from rice (OsMADS14, OsMADS15, OsMADS18 and OsMADS20), one from 
Brachypodium distachyon (BdMADS18), one from Setaria italic (SiMADS18), and one from D. latiflorus (DlMADS1). P. edulis 
SQUA-like proteins are marked by red triangles. (B) Alignment of AA sequences of P. edulis SQUA-like proteins. The lined 
regions represent the conserved MADS domain and K domain. The red boxed region in the C-terminal represents the 
FUL-like motif. Residues that are identical in all sequences in the alignment are marked with “*” in the bottom row, 
conserved and semi-conserved substitutions with “:” and “.” respectively. 
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proteins from other species. The phylogenetic tree was constructed with the neighbor-joining (NJ) method and evaluated
by bootstrap analysis using MEGA soft (version 7.0). Sixteen SQUA-like proteins were used: four from A. thaliana (AGL7,
AGL9, AGL10, and AGL79), four from rice (OsMADS14, OsMADS15, OsMADS18 and OsMADS20), one from Brachypodium
distachyon (BdMADS18), one from Setaria italic (SiMADS18), and one from D. latiflorus (DlMADS1). P. edulis SQUA-like
proteins are marked by red triangles. (B) Alignment of AA sequences of P. edulis SQUA-like proteins. The lined regions
represent the conserved MADS domain and K domain. The red boxed region in the C-terminal represents the FUL-like
motif. Residues that are identical in all sequences in the alignment are marked with “*” in the bottom row, conserved and
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Figure 2. The expression pattern of PeSQUA-like genes. (A) The expression levels of PeSQUAs
during the transition from vegetative to reproductive growth. TW: leaves from 3-week-old seedlings,
OY: leaves from 1-year-old plants, FLNY: leaves from plants that will flower in the next year,
FL: leaves from flowering plants, and FP: flower florets. (B) The bamboo inflorescence development
was divided into four stages: the first floral bud formation (F1), the initial stage of inflorescence
development (F2), maturation of inflorescence (F3), and anthesis (F4). The leaf tissues (leaf) from the
non-flowering plant. (C) qPCR analysis of PeSQUAs at different flowering stages. NTB or TIP41 was
used as a reference gene; mean ± SD of three biological replicates is presented.

2.3. PPI between PeSQUA-like Members and Other MADS-Box Proteins in P. edulis

To investigate the interaction patterns of P. edulis SQUA-like members, a comprehen-
sive Y2H assay was performed to clarify the protein interactions among bamboo MADS-box
proteins (Figure 3). The five BD baits of PeSQUAs showed no auto-activation or toxicity
(Figure 1). Among five genes, PeMADS2 had the highest number of interaction relation-
ships with other MADS-box proteins, followed by PeMADS13 and PeMADS41. PeMADS13
could form a homologous dimer, whereas the other four PeSQUAs could not. Based on
the PPI results, the PeSQUAs could be classified into two groups, thereby showing the
variable PPI patterns. PeMADS2, 13, and 41 had an extensive interaction network among
eight MADS-box subfamilies, whereas the PeMADS28 and PeMADS3 showed fewer or
no interactions with other PeMADSs. Most of the interaction relationships were among
SQUA-, SVP-, TM3-, and AG-like subgroups. The SVP-like proteins showed the strongest
correlation with SQUA-like proteins, specifically with PeMADS2, 13, and 41.
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Figure 3. Protein–protein interactions (PPI) among PeSQUAs and PeMADSs. A yeast two-hybrid assay was performed to
verify the interaction among PeSQUAs and other MADS-box proteins. The result was displayed by the phylogenetic tree of
the bamboo MADS-box gene family. The dark red represents a strong reaction, light red represents a mild reaction, and gray
represents no reaction.

2.4. Ectopic Expression of PeMADS2 Accelerates Arabidopsis Flowering

To explore the roles of bamboo SQUA-like genes in the regulation of flowering, we
transformed PeAMDS2 into Arabidopsis. PeAMDS2 was highly expressed during inflores-
cence initiation and had the highest PPI potential. The ectopic expression of PeAMDS2
in Arabidopsis resulted in an early flowering phenotype under long-day (LD) conditions
(Figure 4C), and the phenotypic variations were observed in leaves and floral organs
(Figure 4A,B). The rosette and cauline leaves of OE-PeMADS2 plants were curled and
smaller than those of the wild-type (WT) plants (Figure 4A). The inflorescences were
densely clustered in the transgenic plants (Figure 4B). The flowering time was approxi-
mately 6–8 days earlier than WT plants, and the number of rosette leaves of OE-PeMADS2
plants was significantly fewer than that of WT Arabidopsis (Figure 4D). We further inves-
tigated the expression levels of important genes involved in flowering time and flower
organ development. The expression levels of AtAP1, AtFUL, and LEAFY (AtLFY) were
significantly upregulated, whereas the expression levels of the other four genes were in-
significantly different between transgenic and WT plants (Figure 4E). PeMADS2 might
regulate transgenic plant flowering by controlling the expression of its homology (AtAP1
and AtFUL) and AtLFY.

2.5. Ectopic Expression of PeMADS2 Promotes Rice Flowering

To further examine the function of hub genes, PeMADS2 was transformed into
O. sativa (Dongjing), a member of the same grass family as bamboo. Twenty-four T1
OE-PeMADS2 transgenic rice plants were obtained. We analyzed the heading time and
found that OE-PeMADS2 transgenic rice plants had a significantly early flowering phe-
notype (Figure 5A). In transgenic rice, the average relative expression level of PeMADS2
was ~12.05 ± 2.57 (Figure 5C). The heading time of transgenic plants (Figure 5B) was
~64.17 ± 3.18 d, which was 16 d earlier than that of the WT lines (80.62 ± 1.02 d). Further-
more, the highest level of PeMADS2 was detected in OE-PeMADS2 line #3, which showed
the earliest heading, thereby indicating a negative association between the heading time
and the expression level of PeMADS2.
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Figure 4. The early flowering phenotype of OE-PeMADS2 in Arabidopsis. (A)The leaves of OE-
PeMADS2 transgenic and WT Arabidopsis plants. (B) The floral organs of OE-PeMADS2 transgenic
Arabidopsis and wild-type plants. (C) Phenotypes of overexpressing PeMADS2 transgenic lines
(OE-PeMADS2#1, #3) and wild-type (WT) plants as control under LD conditions. (D) Flowering time
was scored as the number of rosette leaves under LD conditions. (E) Transcription levels of AP1, FUL,
LFY, CO, AP3, SOC1, and SEP3 in WT and transgenic plants. Arabidopsis Actin or TIP41 was used as
the internal reference gene. Mean ± SD of three biological replicates is presented. Asterisks indicate
a significant difference between transgenic and WT plants (* p ≤ 0.05, ** p ≤ 0.01, t’s test).
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PeMADS2 after heading. (B) Days to the heading of T3 homozygous transgenic plants. (C) Relative expression levels of
PeMADS2 in transgenic rice plants and WT. Asterisks indicate a significant difference between transgenic and WT plants
(* p ≤ 0.05, t’s test).

2.6. Analysis of Differential Gene Expression in OE-PeMADS2 Transgenic Rice

To explore the early heading mechanism in transgenic rice, the RNA-seq analyses
of OE-PeMADS2 (line #3) and WT lines were performed. We pooled the short reads
and aligned them to the Nipponbare reference genome to identify the transcripts. In to-
tal, we obtained 145,947,014 and 136,115,288 reads with three biological repeats from
OE-PeMADS2 transgenic rice and wild-type rice libraries, respectively. The mapping rate
for each library was above 95%. We obtained 39,333,958 (85.74%) and 38,097,230 (86.52%)
uniquely mapped reads for further analysis (Supplemental Table S4). Among the 42,004 ex-
pressed unigenes, 27,213 have been GO annotated, and 14,606 have been KEGG annotated.
Compared with WT lines, 3146 genes were differentially expressed, including 2021 that
were upregulated and 1125 that were downregulated in OE-PeMADS2 lines. KEGG analysis
indicated that the genes for plant–pathogen interaction and plant hormone signal transduc-
tion were significantly upregulated in transgenic lines (Figure 6A). In contrast, genes for ri-
bosome and photosynthesis were significantly downregulated (Figure 6C). GO enrichment
showed that genes upregulated in OE-PeMADS2 lines were enriched in defense response,
plasma membrane, integral component of membrane, and ATP binding (Figure 6B). Dif-
ferentially expressed genes (DEGs) in OE-PeMADS2 plants were enriched for functions
related to floral development with overrepresented gene ontology (GO) terms such as
“regulation of timing of the transition from vegetative to reproductive phase” (GO:0048510)
and “flower development” (GO:0009908). Genes associated with plant hormone signal
transduction, such as the salicylic acid- (GO:0009751, GO:0071446, and GO:2000031) and ab-
scisic acid-activated signaling pathways (GO:0009738, GO:0010427), were overrepresented
in OE-PeMADS2 (Supplemental Table S5). In contrast, downregulated GO terms were
involved in the structural constituents of ribosome, chloroplast, and translation (Figure 6D,
Supplemental Table S6).

Thirty-seven genes involved in rice floral regulatory pathways were identified for
further analysis based on transcription data (Supplemental Table S7). DEGs with a mini-
mum fold change 1 (Log2 converted) and a q-value of <0.05 were identified and extracted
(Table 1). OsMADS1, OsMADS15, OsMADS14, OsMADS51 (OsMADS65), DNA-BINDING
WITH ONE FINGER (OsDof12), HEADING DATE 3a (Hd3a), and RICE FLOWERING LOCUS
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T 1 (RFT1) were all upregulated in the transgenic lines compared with WT. The expression
levels of GRAIN NUMBER, PLANT HEIGHT, AND HEADING DATE 8 (Ghd8) were down-
regulated. The transcriptome results were further validated by qPCR analysis (Figure 7A),
which showed similar expression trends with RNA-seq data.

Int. J. Mol. Sci. 2021, 22, 10868 9 of 19 
 

 

ontology (GO) terms such as “regulation of timing of the transition from vegetative to 
reproductive phase” (GO:0048510) and “flower development” (GO:0009908). Genes 
associated with plant hormone signal transduction, such as the salicylic acid- 
(GO:0009751, GO:0071446, and GO:2000031) and abscisic acid-activated signaling 
pathways (GO:0009738, GO:0010427), were overrepresented in OE-PeMADS2 
(Supplemental Table S5). In contrast, downregulated GO terms were involved in the 
structural constituents of ribosome, chloroplast, and translation (Figure 6D, Supplemental 
Table S6). 

Thirty-seven genes involved in rice floral regulatory pathways were identified for 
further analysis based on transcription data (Supplemental Table S7). DEGs with a 
minimum fold change 1 (Log2 converted) and a q-value of <0.05 were identified and 
extracted (Table 1). OsMADS1, OsMADS15, OsMADS14, OsMADS51 (OsMADS65), DNA-
BINDING WITH ONE FINGER (OsDof12), HEADING DATE 3a (Hd3a), and RICE 
FLOWERING LOCUS T 1 (RFT1) were all upregulated in the transgenic lines compared 
with WT. The expression levels of GRAIN NUMBER, PLANT HEIGHT, AND HEADING 
DATE 8 (Ghd8) were downregulated. The transcriptome results were further validated by 
qPCR analysis (Figure 7A), which showed similar expression trends with RNA-seq data. 

 
Figure 6. Analysis of RNA-seq data of OE-PeMADS2 lines and wild-type rice plants. (A,B): GO and KEGG enrichment 
analysis of DEGs that were upregulated in OE-PeMADS2 plants. (C,D): GO and KEGG enrichment analysis of DEGs that 
were downregulated in OE-PeMADS2 plants. Low q-values are shown in the dark grey circle, and high q-values are shown 
in the red circle. The size of a circle represents DEG number. 

Figure 6. Analysis of RNA-seq data of OE-PeMADS2 lines and wild-type rice plants. (A,B): GO and KEGG enrichment
analysis of DEGs that were upregulated in OE-PeMADS2 plants. (C,D): GO and KEGG enrichment analysis of DEGs that
were downregulated in OE-PeMADS2 plants. Low q-values are shown in the dark grey circle, and high q-values are shown
in the red circle. The size of a circle represents DEG number.

Table 1. DEGs related to rice floral pathway in transgenic plants.

Gene ID Gene Name
Pe2OX vs. WT

log2(fc) Qval Regulation Significant

LOC_Os03g11614 OsMADS1 3.863916636 1.76 × 10−2 up yes
LOC_Os03g54160 OsMADS14 1.223462598 1.10 × 10−2 up yes
LOC_Os07g01820 OsMADS15 4.612040145 1.94 × 10−2 up yes
LOC_Os01g69850 OsMADS51; OsMADS65 3.610909085 9.48 × 10−6 up yes
LOC_Os08g07740 DTH8; Ghd8; −1.103164383 6.26 × 10−2 down yes
LOC_Os06g06320 Hd3a 3.627964485 3.37 × 10−6 up yes
LOC_Os06g06300 RFT1 4.131154855 3.32 × 10−7 up yes
LOC_Os03g07360 OsDof12 1.661444261 9.75 × 10−3 up yes
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3. Discussion
3.1. Gene Expression Patterns and PPI Patterns Are Divergent among PeSQUA-like Genes

SQUA-like MADS-box genes are typical A-class floral organ identity genes that have
essential roles in modulating floral transition and organ development [23]. Previous studies
often focus on the extensive evolution and development studies of SQUA-like genes in
rice and wheat [20,26], whereas relatively little information on their functions in bamboo
is available. In the present study, five SQUA-like MADS-box genes were characterized
from P. edulis, and these were grouped into two clusters, depending on the existence of
the FUL-like motif in the C-terminal region (Figure 1). Sequence structures that have
similar features are likely to share a relatively closer evolutionary relationship, especially
if the features appear in a non-conserved region [31]. In our study, this FUL-like motif
seems to be important for the function of bamboo SQUA-like proteins. The expression
profiles revealed that PeSQUAs from the same lineage share a similar expression pattern,
which is consistent with phylogenetic studies (Figure 2). Although the five PeSQUAs genes
were highly expressed in leaves and florets of flowering plants, PeMADS2 and PeMADS13
have relatively higher transcript levels in the reproductive transformation period, thereby
suggesting that PeMADS2 and PeMADS13 are involved in floral transition modulation.
The conserved FUL-like motif consisting of hydrophobic amino acids might be crucial
in PPIs [32]. Consistently, cluster I, which includes PeMADS2, 13, and 41 that harbor
FUL-like motifs, could interact with multiple PeMADS proteins, whereas PeMADS3 and
28 have no FUL-like motif and hardly interact with other proteins (Figure 3). Although the
importance of the FUL-like motif to protein function is unclear in bamboo, the differences
of these sequences in the C-terminal region might explain the divergences in interacting
and expression patterns of PeSQUAs [32]. Thus, PeMADS2, 13, and 41 might play more
important roles than PeMADS3 and 28 in the floral development of P. edulis.

3.2. PPI Patterns of PeSQUAs Alternating from Vegetative to Reproductive Growth

The change from vegetative to reproductive growth involves many genes. Under-
standing the PPI networks of the master floral developmental regulator is necessary to
obtain the full picture of the phase transition in P. edulis. Thus, we proposed a hypothetical
molecular model based on the PeSQUAs expression patterns and the PPI network during
reproductive phase transitions (Figure 8). SQUA-like genes play key roles in several impor-
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tant developmental processes, especially in flower development [33]. In rice, the interaction
of OsMADS18, OsMADS14, and OsMADS15 with other MADS proteins suggested that
monocot SQUA-like genes accomplish a general role in floral transition and floral meristem
identity by coordinating their functions [34]. Consistently, bamboo SQUA-like genes show
high expression levels at the reproductive stage, and the potential interactors, i.e., SVP-like
genes (PeMADS5 and 43) and TM3-like genes (PeMADS6 and 34), showed higher accumu-
lation during the FLNY stage (Figure 8A). This finding suggested that the formation of
dimers between SQUA-like and SVP-like genes or TM3-like genes triggers the initial stages
of flower development. The expression levels of bamboo SQUA-like genes (PeMADS2,
13, 41, and 28) were higher in the leaves (FL/FLNY) than the floral organs (FP) at reproduc-
tive stages (Figure 8B). Rice SQUA-like genes (OsMADS14 and 15) were largely detected in
the floral meristem and organs [35], whereas OsMADS18 was expressed in most tissues
and increased during rice reproduction [25,34]. The PPI relationship among the SQUA-like
subfamily was similar to rice in that the members could interact with one another [23,34].
Our results indicated that PeMADSs played important roles in the process of floral transi-
tion and morphological architecture due to the formation of PeSQUA homo- or heterodimer.
In the floral organ (Figure 8C), PeSQUA proteins might interact with SEP-(PeMADS20),
PI-(PeMADS9), AG-(PeMADS29, 31, and 40), and AP3-like (PeAP3) subfamily members;
these genes are required for floral development in grasses corresponding to A-, B-, and C-
classes of the ABC model [36]. These MADS protein complexes may play certain roles in
floral meristem identity and inflorescence development. Based on our results, PeSQUAs
might possess different functions by forming complicated protein complexes with other
MADS-box proteins.
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3.3. PeMADS2 Acts as a Flowering Promoter in Transgenic Arabidopsis

Several studies have shown that the increased expression of SQUA-like genes in
monocots is correlated with the floral transition and that the ectopic expression of all rice
SQUA subfamily members results in early flowering and dwarfism [24,25]. This was in
line with this study that ectopic expression of PeMADS2 had an early flowering phenotype
in Arabidopsis. Ectopic expression of PeMADS2 led to the up-regulation of AtAP1, AtFUL,
and AtLFY genes, which are associated with the flowering regulation (Figure 4E). These
results suggest that the functions of PeMADS2 might be dependent on its homologs, AP1
and FUL, in Arabidopsis. However, the underlying mechanism mediated by PeMADS2 in
Arabidopsis needs further investigation. The ectopic expression of TaVRN1, a SQUA-like
member in wheat, caused the overexpression of Arabidopsis AP1, which resulted from
the binding of TaVRN1 to CArG-box present on the AP1 promoter [37]. CArG-box was
the binding site for the MADS domain transcription factors [38]. Therefore, in silico
identification of the CArG-box motif was performed in the 3000 bp upstream of AtAP1,
AtFUL, and AtLFY (Supplemental Table S8). At least two CArG-boxes were presented
in the promoter regions of these three genes. According to the result, we speculated
that PeMADS2 might promote transgenic Arabidopsis flowering by physically binding
AtAP1, AtFUL, and AtLFY’s promoters to trigger the up-regulation of the genes’ expression,
however, further “in vitro” and “in vivo” experimental verifications should be included in
the future.

The ectopic expression of PeMADS2 in Arabidopsis and rice both showed early flower
phenotype and caused up-regulation of flowering regulation genes (Figure 4E and Table 1).
In both Arabidopsis and rice, the ectopic expression of PeMADS2 triggered the accumulation
of its corresponding homologous genes. The upregulated Arabidopsis AtAP1 and AtFUL
genes and rice OsMADS14 and OsMADS15 genes, belonged to the SQUA-like subgroup.
Furthermore, the key flowering regulators, AtLFY in Arabidopsis and Hd3a/RFT1 in rice,
were both significantly upregulated in the OE-PeMADS2 transgenic plants. The Arabidopsis
LFY plays a key role in reproductive transitions via the regulation of floral homeotic
MADS-box transcription factors [39]. The rice RFT1 and Hd3a are thought to encode the
mobile flowering signal (florigens) proteins and promote floral transition [40]. However,
the number of flowering-related DEGs is greater in transgenic rice than that in Arabidopsis,
which might be due to the closer biological relationship between rice and Moso bamboo.

3.4. Ectopic Expression of PeMADS2 Triggered Multiple Flower Signaling Pathways to Induce
Early Flowering in Rice

Genetic approaches in Moso bamboo are not feasible for now, and advanced experi-
ments are performed in the most related model species and rice. The ectopic expression
of PeMADS2 had an early flowering phenotype; the heading date was approximately
15 days earlier than in WT (Figure 5A). Based on transcriptomic data and qPCR, we pro-
posed the working model of PeMADS2 to induce early flowering (Figure 7B). One of the
regulation modules triggered is the OsMADS51/65-Hd3a/RFT1-OsMADS14/15 pathway.
OsMADS51/OsMADS65, a type I MADS-box gene that can promote flowering through the
Ehd1-dependent pathway via Hd3a and OsMADS14, was upregulated in OE-PeMADS2
transgenic rice [41]. Another flower promoter’s transcript level (OsDof12) also significantly
increased in OE-PeMADS2 lines. OsDof12 might regulate flowering time by controlling the
transcription levels of Hd3a and OsMADS14 independent of other flowering genes under
LD [42]. PheDof12-1 is the homologous gene of OsDof12 in Moso bamboo; overexpressing
PheDof12-1 in Arabidopsis causes early flowering under LD conditions [43]. In contrast,
the flowering repressor DTH8/Ghd8 was repressed in OE-PeMADS2 lines compared with
WT. DTH8 suppressed rice flowering by down-regulating the expressions of Ehd1 and Hd3a
under LD conditions independent of Hd1 and Ghd7 [44]. In addition to upstream flowering
regulators, rice florigens Hd3 and RFT1 were upregulated in OE-PeMADS2 transgenic rice
plants [40]. These two florigens are fundamental for the flowering regulatory pathway
because almost all flowering pathways finally target these two genes [45]. Furthermore,



Int. J. Mol. Sci. 2021, 22, 10868 13 of 18

two SUQA clade MADS-box genes, namely, OsMADS14 and 15, were upregulated in
OE-PeMADS2 plants; these are major genes located downstream of Hd3a and RFT1 that reg-
ulate the identity of floral meristem development [46]. PeMADS2 had high homology with
OsMADS18 (SUQA-like clade), which can interact with OsMADS15 and OsMADS34 in the
shoot apical meristem (SAM) in the reproductive transition [25,34]. Another rice MADS-
box gene affected in OE-PeMADS2 transgenic rice was OsMADS1, which was expressed
preferentially in flowers and played crucial roles in the determination and specification
of floral organ identity in rice [47]. Ectopically expressed OsMADS1 in tobacco and rice
caused early flowering [48]. OsMADS1 could interact with SUQA proteins (OsMADS14
and 15) [49].

These observations suggested that the ectopic expression of PeMADS2 in rice affected
the expressions of upstream genes OsMADS51, OsDof12, and Ghd8, which were regulated
by photoperiod. They either promote or restrain florigen gene expression, enhance the
florigen genes Hd3a, RFT1 expression levels, and ultimately increase the expressions of
the downstream genes OsMADS14, OsMADS15, and OsMADS1, which could control the
transformation from SAM to inflorescence meristem (IM) [50]. Ehd1 is a key flowering
time regulator in rice. The expression levels of the upstream and downstream genes in-
volved in the Ehd1-dependent pathway showed significant changes (Figure 7A). However,
the expression level of Ehd1 was not notably different between OE-PeMADS2 and WT
plants. One of the assumptions is that PeMADS2 could directly interact with the upstream
MADS proteins, OsMADS51/OsMADS65 or OsMADS1, in the regulation of flower devel-
opment (independent from Ehd1) and increase the expression levels of downstream gene
Hd3a/RFT1 and OsMADS14/15. Another assumption is that PeMADS2 could interact with
the downstream MADS proteins, such as OsMADS14 and OsMADS15, thereby resulting in
feedback regulations that upregulate the expression of upstream genes (Hd3a/RFT1 and Os-
MADS51/OsMADS65). A similar result was found in OsMADS15 ectopic expression plants,
which was the ultimate downstream target of all the flowering regulators; however, the
expression levels of the upstream regulators were upregulated in the transgenic lines [51].
The interactions among different flowering regulators are essential for their function in
controlling flowering processes. In this study, PeMADS2 might be a crucial component
of the interaction networks for floral transition in bamboo and could interact with other
regulators to determine the flowering time in rice and Arabidopsis. The ectopic expression
of PeMADS2 coordinately upregulated the other flowering regulators’ expression levels
and might form protein complexes to promote the transition from the vegetative to the
reproductive stage.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Flowering bamboo (P. edulis) materials were collected in Lingchuan Country, Guilin,
China. Wild type and T-DNA-tagged Arabidopsis Colombia 0 (Col-0) were grown under
long-day photoperiod conditions (16 h/8 h light/dark photoperiod). Rice (O. sativa) var.
japonica “Dongjing” plants were cultivated in the field of Lin’an, Hangzhou, China.

4.2. Gene Cloning and Phylogenetic Analysis

Specific primers were designed to amplify the full-length ORF sequences of bamboo
SQUA-like genes (Supplemental Table S1) using cDNA templates prepared from flower bud
and leaf tissues. The amplified PCR products were cloned into the pMD18-T vector (Takara,
Dalian, China). Five bamboo and related Oryza and Arabidopsis SQUA-like proteins were
aligned by MAFFT version 7 (http://mafft.cbrc.jp/alignment/server/large.html, accessed
on 3 October 2021) [52]. A phylogenetic tree was generated using the neighbor-joining
method in the MEGA7 program [53,54]. The reliability of tree nodes was evaluated by
bootstrap analysis for 1000 replicates.

http://mafft.cbrc.jp/alignment/server/large.html
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4.3. DGE Data and Transcriptome Data Analysis

PeSQUAs expression profiles in bamboo at different inflorescence development stages
(F1–F4) and non-flowering bamboo tissues (leaf) were analyzed by quantitative qPCR.
For bamboo reproductive transition, the transcriptome data of leaf samples from the fol-
lowing developmental stages were determined: the juvenile stages of 3-week-old seedlings
(TW) and 1-year-old plants (OY); the transition stage, i.e., plants that will flower in the
next year (FLNY); and the flowering stage, including the flowering plants’ leaves (FL) and
flower florets (FP) [30]. Accession number: SRR8053492-SRR8053506. We used HISAT2-
2.0.4 (https://daehwankimlab.github.io/hisat2/ accessed on 14 December 2020) to map
the reads to the Moso bamboo reference genome (http://www.bamboogdb.org/ accessed
on 12 July 2021). StringTie and ballgown were used to estimate the expression levels of all
transcripts and to determine the expression level of mRNAs by calculating FPKM [55].

4.4. Yeast Two-Hybrid Analysis

Yeast two-hybrid analyses were performed by the Matchmaker® Gold System (Clon-
tech, Palo Alto, CA, USA). The protein-coding sequences of PeSQUAs were amplified by
PCR using specific primers (Supplementary Table S2). PeSQUAs sequences were cloned
into both pGBKT7 (bait) and pGADT7 (prey) vectors. Meanwhile, 19 bamboo MADS-box
sequences from other subfamilies were also amplified and cloned into pGADT7 vectors sep-
arately. The resulting recombinant plasmids were introduced into yeast strains Y2HGold
and Y187. Two-hybrid interactions were assayed on selective SD/-Trp/-Leu double-
dropout (DDO) and SD/-Trp/-Leu/-His/-Ade/X-α-gal (40 mg/mL) media supplemented
with Aureobasidin A (AbA).

4.5. Binary Plasmid Construction and Analysis of Transgenic Plants

The ORFs of full-length PeMADS2 was inserted into the binary vector pCAMBIA1301
using the Cauliflower mosaic virus (CaMV) 35S promoter to drive constitutive expression.
Recombinant vectors were transferred to Agrobacterium tumefaciens strain GV3101 and
used to transform Arabidopsis by the floral dip method [56]. Arabidopsis seeds were har-
vested after transformation and were selected with hygromycin. The flowering times were
measured by counting rosette leaf numbers on main inflorescences. The recombinant vector
pC1301-PeMADS2 was also transformed into O. sativa “Dongjing” plants. Calli induced
from seeds were co-cultured with A. tumefaciens, and the putative transgenic rice was
regenerated from calli [57]. The expression levels of PeMADS2 and flowering regulator
genes in transgenic plants were analyzed by qPCR, the gene-specific primers for qPCR are
listed in Supplemental Table S3.

4.6. RNA Extraction, and Quantitative RT–PCR (qPCR) Analysis

Total cellular RNA was extracted from frozen plant samples using TRIzol reagent kit
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocols. The purity and
concentration of total RNA was measured by NanDrop 2000 spectrophotometer (Thermo
Fisher, Wilmington, NC, USA) at a wavelength of 230, 260 and 280 nm. The first-strand
cDNA was synthesized using the Prime-Script® RT reagent kit (Takara, Dalian, China)
according to the manufacturer’s guidelines. The expression analysis of bamboo PeSQUAs
at different flowering stages was performed by qPCR using SYBR® Premix Ex Taq II
(Takara, Dalian, China) on a CFX-96-well Real-Time System (BioRad, Hercules, CA, USA).
The relative expression levels of target genes were calculated using the 2−∆∆Ct method by
normalizing NTB or TIP41 as the reference gene. The gene-specific primers are listed in
Supplementary Table S3. Statistical analysis was conducted by two-tailed Student’s t-tests
in Microsoft Excel 2011.

4.7. RNA-seq, KEGG, and GO Analysis

Leaves from WT and transgenic rice plants were collected when the first panicle
appeared. After total RNA extraction according to the 4.6 protocols, sequencing libraries

https://daehwankimlab.github.io/hisat2/
http://www.bamboogdb.org/
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were generated using NEB-Next® Ultra™ RNA Library Prep Kit for Illumina® (NEB,
Ipswich, MA, USA). The libraries were sequenced on Illumina Novaseq™ 6000 (LC-Bio
Technology CO., Ltd., Hangzhou, China) by following the recommended protocol. We used
HISAT2-2.0.4 to map the reads to the Nipponbare reference annotation. The mapped reads
of each sample were assembled using StringTie and merged to reconstruct a comprehensive
transcriptome using gffcompare software [55]. StringTie and ballgown were used to
estimate the expression levels of all transcripts and to determine the expression level of
mRNAs by calculating FPKM [58]. The DEGs were selected with fold change >2 or fold
change <0.5 and p-value < 0.05 by R package DESeq2. The expression levels of these selected
DEGs’ expression were confirmed by qPCR. Gene ontology (GO) enrichment analysis of
the DEGs was implemented by the GOseq R package [59] and further annotated against
the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways database [60].
All the RNA-Seq raw data are available in the NCBI Sequence Read Archive (SRA) under
the accessions number SRR16020759-SRR16020764.

5. Conclusions

Five PeSQUA-like genes were cloned from P. edulis and were further grouped into
Cluster I (PeMADS2, 13, and 41) and Cluster II (PeMADS3 and 28). Five PeSQUAs had
higher transcript levels in the reproductive period than the juvenile phase and had diver-
gent expression patterns at different flowering stages.Y2H showed that three members
of cluster I could interact with multiple PeMADS proteins, whereas PeMADS3 and 28
hardly interacted with other proteins. Based on our results, PeSQUA possessed different
functions by forming the complicated protein complexes with other MADS-box proteins at
different inflorescence development stages. Furthermore, we have chosen PeMADS2 for
functional analysis. The ectopic expression of PeMADS2 in Arabidopsis and rice triggered
early flowering, and the alteration of floral organ development was observed in Arabidop-
sis. RNA-seq and qRT–PCR analyses of plants overexpressing PeMADS2 indicated that
PeMADS2 might integrate multiple flower signaling pathways to trigger early flowering
time in rice. Our results provided valuable information on the interaction patterns of
PeSQUA and other MADS-box members during P. edulis floral development. Moreover,
to fully understand the PeSQUA subfamily member’s function related to flowering, addi-
tional transgenic investigation of other PeSQUAs members in Arabidopsis and rice should
be conducted.
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