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ABSTRACT
Propensity score analysis has been widely used in observational studies to make a causal inference. This study
introduces three assumptions for causal inferences—conditional exchangeability, positivity, and consistency—and five
steps for propensity score (PS) analysis—1) construct appropriate PS models, 2) check overlap in PS, 3) apply appropri‐
ate weighting (inverse probability of treatment weighting, standardized mortality ratio weighting, matching weights,
and overlap weights) or matching methods according to the target of inference, 4) check the balance of covariates, and
5) estimate the effect of exposure appropriately. Finally, the advantages of PS analyses over conventional multivariable
regression are discussed.
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1 .  INTRODUCTION

Propensity score (PS) analysis has become a reliable
approach in medical research to make a causal inference
on the association between exposure and outcome using
observational data [1, 2]. PS analysis is based on several
important assumptions for causal inference and there
exists a diversity of PS methods that vary by the target of
inference. This study introduces the steps to conduct PS
analysis, mainly focusing on appropriately choosing the
most suitable PS method. We will also review the advan‐
tages of PS analysis compared with conventional multi‐
variable regression.

2 .  THREE ASSUMPTIONS FOR CAUSAL INFERENCE

Generally, three assumptions are needed to identify the
causal effects of exposure (A) on an outcome (Y) from
observational studies: 1) conditional exchangeability, 2)
positivity, and 3) consistency [3].

Conditional exchangeability means that, within levels
of confounders (L), all other covariates are equally dis‐
tributed between the exposed (treatment) and unexposed

(control) groups [3]. Suppose that A is a binary variable
of a new surgery (1, with surgery; 0, without surgery), Y
is mortality (1, dead; 0, alive), and L is sex (1, male; 0,
female). If a male patient is more likely to receive this
surgery and there are no other confounders, in the subset
L = 1, the exposed and unexposed are exchangeable. If
the exposed individuals remained unexposed, they would
experience the same average outcome as the unexposed
individuals did and vice versa [4]. However, L is a set of
measured confounders and does not include unmeasured
confounders. Suppose that an individual without a his‐
tory of stroke (U) is more likely to undergo this surgery,
but the information on history of stroke is unmeasured.
When the history of stroke is distributed differently
between the exposed and unexposed, conditional
exchangeability given L does not hold. Therefore, the
assumption of conditional exchangeability has the same
meaning as no existence of unmeasured confounders.

The second assumption is positivity. Suppose that
exposure A is a new surgery and the outcome Y is
mortality, as described above. If the doctors assign all
patients to receive the exposure level A = 1, it is
impossible to calculate the average causal effect because
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there is nobody in A = 0. The probability of being
assigned to each of the exposure levels should be over 0
(positive). This assumption should be satisfied for all the
strata made by confounders L that are required for
exchangeability. Suppose that L includes age L1 (1, ≥65
years old; 0, <65 years old) and sex L2 (1, male; 0, female).
In the strata meeting the conditions of aged ≥65 years
(L1 = 1) and male (L2 = 1), one or more individuals
must exist both in the exposed group (A = 0) and the
unexposed group (A = 1). This should be true of the
other strata.

The third assumption is consistency, which means that
researchers should pay attention to multiple versions of
exposures [3]. Suppose the above example again: the
exposure A is a surgery and the outcome Y is mortality.
Now suppose that the operative time (short, normal, or
long) and the number of nurses engaged in post-
operation procedures (1 nurse per ≤7 patients or per >7
patients) had multiple versions. In this context, the prog‐
nosis of a patient undergoing surgery with a very long
operative time would be different from that with a short
operative time. Similarly, more nurses per patient after an
operation would have a better effect on the patient’s prog‐
nosis. Thus, the exposure should be sufficiently well-
defined by us [3]. In the above example, we have to define
the inclusion criteria for the operative time and the num‐
ber of nurses. Specifically, we use the term “sufficiently”
because we do not have to define irrelevant things. For
example, whether the surgeon is right-handed or left-
handed would be unrelated to the outcome; thus, there is
no need to define the dominant hand of the surgeon.
How strictly researchers should define the exposure and
to what extent they allow the treatment-variation irrele‐
vance depend on the researchers’ expert knowledge.
Making clinical questions without vagueness is important
for accurate causal inference. Generally, biological (e.g.,
blood pressure) and social (e.g., socioeconomic status)
exposures tend to leave high vagueness, whereas inter‐
ventional exposure (e.g., surgery or medical treatments)
do not [3].

To summarize, researchers should always account for
(1) conditional exchangeability (no unmeasured con‐
founders), (2) positivity (the existence of one or more
individuals in all strata), and (3) consistency (sufficiently
well-defined exposure) to make a firm causal inference.

3 .  TARGET  OF  INFERENCE  (ESTIMAND)

There are four methods for PS: matching, weighting,
adjustment as a covariate, and stratification. In this study,

we will focus on the two most widely used methods:
matching and weighting.

Before expounding on the details of the two methods,
we have to consider the target of inference (estimand). If
researchers assume that the exposure of interest could be
applied to all the individuals in the study, the target of
inference would be the average treatment effect (ATE)
[5]. An example may be in a study comparing metformin
versus sodium-glucose cotransporter-2 inhibitors for the
prevention of acute myocardial infarction in patients
with diabetes. These two drugs are both indicated for the
treatment of relatively young patients with diabetes
unless they have contraindications; thus, all the patients
in the study can be candidates for receiving both drugs.

However, if researchers assume that the individuals
who were actually exposed in the study are a unique
population that has certain characteristics and that the
individuals who were unexposed in the study do not have
a possibility of being exposed, the target of inference
would be the average treatment on the treated (exposed)
(ATT) [5]. An example may be a study investigating
whether extracorporeal membrane oxygenation (ECMO)
can decrease the risk of death for patients with
COVID-19. As the conditions of patients undergoing
ECMO are naturally more severe than those not under‐
going ECMO, not all the individuals in the unexposed
group can be candidates for receiving ECMO.

Finally, if researchers are interested in comparing the
subsets of exposed and unexposed groups that have simi‐
lar characteristics and are assumed to be able to be
equally assigned to both exposure and non-exposure, the
target of inference would be ATE in a subset with clinical
equipoise. An example may be a study comparing 30-day
mortality between open surgery and laparoscopic surgery
groups for colorectal cancer. Various factors such as sex,
age, comorbidities, and social economic status may affect
the assignment of the open surgery versus laparoscopic
surgery, but patients with similar characteristics (i.e.,
close PS values) would exist in both two groups. Such
patients are the target in this case.

4 .  PROCESS  OF  PS  ANALYSIS

In this section, we examine the process of PS analysis in
five steps. Fig. 1 shows the flowchart of these steps.

Step 1. Calculating PS with Correctly Specified Models
Researchers should avoid misspecification of the PS
model; that is, they should pay attention to the variable
selection. Direct acyclic graph (DAG), which shows
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causal diagrams, will be useful for this purpose (Fig. 2).
DAG can clearly show the relationships between the
exposure, outcome, and covariates based on subject-
matter knowledge rather than statistical associations [3].
The covariates that should be included in the PS model
are confounders (L1 in Fig. 2) and those (L2) affecting the
outcome but not affecting the exposure. Conversely, the
covariates that should not be included are mediators (M)
and those (L3) affecting the exposure but not affecting the
outcome. This is because adding the variable L2 to the PS
model decreases the bias of the estimator [6], whereas
adding the variable L3 increases the variance [6] and add‐
ing the mediator M increases the bias (called overadjust‐
ment for mediators) [3].

Logistic regression is usually used to estimate the PS.
Other machine-learning algorithms such as decision
trees, support vector machines, and neural networks can
also be used for the estimation of PS [7]. These machine-
learning methods have the advantage of automatically
taking account of interaction terms, splines, and highly
order polynomials, which may get closer to the correctly

specified PS model, but extensive simulation studies are
needed to use these algorithms in practice [7].

Fig. 1 Flowchart showing the five steps of propensity score analysis

Fig. 2 Direct acyclic graph

A is exposure and Y is outcome. L1 is a confounder because L1 is a
common cause of the exposure A and outcome Y. M is a mediator
because M is affected by the exposure A and affects the outcome Y. L2

is a cause of Y, but not a cause of A. L3 is a cause of A, but not a cause
of Y. Thus, L2 and L3 are not confounders. L1 and L2 should be
included in the propensity score model, but M and L3 should not be
included in the propensity score model.
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Step 2. Checking the Overlap of the PS
The next step is checking the propensity score overlap
between the exposed and unexposed groups. High over‐
lap in the PS indicates a clinical equipoise between the
two groups and we can reasonably compare them (Fig.
3). However, low overlap indicates that the two groups
are not comparable (Fig. 4), as exposed individuals with
a certain PS have to be compared with unexposed indi‐
viduals with a similar PS (relating to the positivity
assumption [8]). At a PS of 0.80 in Fig. 4, for example,
exposed individuals do exist, but unexposed do not. In
this case, the weights for the exposed individuals become
extremely large, resulting in biased estimates. The trim‐
ming and truncation methods are often used to deal with
the problem; the details are described below. However,
because low overlap in PS indicates the two groups are
not comparable, researchers should reconsider the
research question.

Step 3. Selecting the Target of Inference (the Choice of
Weighting and Matching Methods)
After confirming a high overlap in PS, we can proceed to
the selection of the target of inference. There are three

options: ATE, ATT, and ATE in a subset with clinical
equipoise.
ATE and ATT
If researchers are interested in ATE, they should choose
the inverse probability of treatment weighting (IPTW).
This method involves weighting each individual by the
inverse probability of receiving the exposure that they
actually received [9]; that is, the weights for the exposed
and unexposed individuals are calculated as 1/PS and
1/(1 − PS), respectively. If researchers are interested in
ATT, standardized mortality ratio weighting (SMRW)
should be selected, and weights for the exposed and
unexposed individuals are calculated as 1 and PS/(1 −
PS), respectively. For the IPTW and SMRW, weights can
become extremely large and lead to increased variance
and bias of the effect estimates, thus requiring trimming
or truncation. Trimming removes the individuals with
extreme weights. There are several ways of trimming: 1)
the common range method (lower cutpoint = lowest PS
in the exposed; upper cutpoint = highest PS in the unex‐
posed) [10], 2) the Stürmer method (lower cutpoint, 5th
PS percentile in the exposed; upper cutpoint, 95th PS
percentile in the unexposed) [11], 3) the Walker method

Fig. 3 High overlap in the propensity score

Fig. 4 Low overlap in the propensity score
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(lower cutpoint, preference score ≤0.3; upper cutpoint,
preference score ≥0.7) [12], and 4) the Crump method
(lower cutpoint, PS ≤0.1; upper cutpoint, PS ≥0.9) [13]. A
simulation study reported that the Stürmer and Walker
methods consistently reduced bias when unmeasured
confounding was concentrated in the tails of the PS dis‐
tribution [10]. Truncation is to replace the value of
weights larger than percentile p with the value of percen‐
tiles p. The 1st and 99th percentiles are typically used
because these cutoff values are superior to others in terms
of bias-variance trade-off [8].
ATE in a subset with clinical equipoise (overlap weights and
matching weights)
If researchers are interested in ATE in a subset with clini‐
cal equipoise, they can select weighting with matching
weights [14] or overlap weights [15]. Matching weights
and overlap weights were firstly published in 2013 and
2018, respectively. Overlap weights have been especially
popular in recent medical research (Fig. 5).

Matching weights for the exposed and unexposed indi‐
viduals are calculated as {min(PS, 1 − PS)}/PS and
{min(PS, 1 − PS)}/(1 − PS), respectively [14]. Overlap
weights for the exposed and unexposed individuals are
calculated as 1 − PS and PS, respectively [15]. Basically,
these two methods are analogues to PS matching [14, 15].

As stated above, IPTW (ATE) and SMRW (ATT) need
cutoff values for trimming or truncation, which can be
arbitrarily chosen and which cause the variance of the
resulting subpopulation from study to study. Especially

when trimming is used, many individuals are discarded
and the target of inference is modified (this problem is
true of PS matching). These problems might be mitigated
by overlap weights and matching weights. The two
weights do not need researchers to select the cutoff values
for trimming or truncation. Furthermore, these weights
are bound between 0 and 1 by design (down-weighing)
and become smaller for extreme PS values; thus they can
avoid extraordinarily amplifying the outlier individuals
who are nearly always exposed (PS approximately 1) or
who are most unlikely to receive exposure (PS approxi‐
mately 0) [16, 17]. These outliers contribute little to the
weighted samples, whereas the individuals who have sim‐
ilar characteristics greatly contribute to them. Thus, the
resulting subpopulation can emphasize the individuals at
clinical equipoise without excluding the outliers [15, 17].
The matching weights and overlap weights are useful
especially when the baseline covariates are greatly differ‐
ent in the exposed and unexposed groups (low PS over‐
lap) [16, 17]. Another advantage of matching weights and
overlap weights is that they can be easily extended to the
comparison of three or more groups (generalized match‐
ing weights and generalized overlap weights) unlike PS
matching [17, 18].
ATE in a subset with clinical equipoise (PS matching)
Another method to investigate ATE in a subset with clin‐
ical equipoise is PS matching. The most commonly
implemented way would be one-to-one matching, in
which one exposed individual with a certain PS is

Fig. 5 The number of papers using matching weight and overlap weight found in Pubmed

Papers using matching weight were found with the following query: (“matching weight” [Title/Abstract] OR “matching weighting” [Title/Abstract]
OR “matching-weighted” [Title/Abstract] OR “matching weighted” [Title/Abstract]) AND propensity.
Papers using overlap weight were found with the following query: (“overlap weight” [Title/Abstract] OR “overlap weighting” [Title/Abstract] OR
“overlap-weighted” [Title/Abstract] OR “overlap weighted” [Title/Abstract]) AND propensity. These searches were performed on August 20, 2022.
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matched to one unexposed individual who has a similar
PS. We consider one-to-one matching here. Researchers
have to make several decisions to perform PS matching
[19]. First, they must choose between matching with
replacement and without replacement [20]. For matching
without replacement, an unexposed individual is
matched to an exposed individual only once; the unex‐
posed individual is no longer a candidate for subsequent
matching. By contrast, for matching with replacement, an
unexposed individual can be matched to multiple
exposed individuals. Matching with replacement can
minimize the PS distance between the matched exposed
and unexposed individuals, which leads to a greater
reduction in bias compared with matching without
replacement, especially when there are few unexposed
individuals similar to the exposed individual [21]. This is
an advantage of matching with replacement, but what is
troublesome is that researchers should use statistical
methods accounting for the nature of repeated occur‐
rence [22].

Second, researchers have to decide between greedy
nearest neighbor matching or optimal matching [19].
Greedy nearest neighbor matching selects an exposed
individual and then selects an unexposed individual
whose PS is closest to that of the exposed individual [23].
Optical matching is a method to minimize the average

within-pair difference in PS [23]. Greedy nearest neigh‐
bor matching is frequently used in medical literature and
shows better performance than optical matching [23].

Third, a caliper distance should be specified for greedy
nearest neighbor matching; that is, how distant PS values
are allowed for researchers to create pairs of exposed and
unexposed individuals [19]. Although there is no consen‐
sus about this threshold value, a simulation study recom‐
mends that researchers use a caliper of width equal to 0.2
of the standard deviation of the logit of the PS [24].

Fig. 6 shows the overlap in propensity score before
(crude) and after the five methods (IPTW, SMRW,
matching weight, overlap weight, and PS matching) using
a sample dataset. The figure demonstrates that individu‐
als with extreme weight are up-weighted greatly for the
IPTW and SMRW, whereas they are down-weighted for
matching weight, overlap weight, and PS matching. Fur‐
thermore, the PS distribution after weighting with
matching weight and overlap weight is almost the same
as that after PS matching.

Step 4. Balance Diagnostics
After selecting the target of inference and calculating the
weights for individuals, researchers must check the bal‐
ance of baseline covariates. This process corresponds to
assessing whether the propensity score model has been

Fig. 6 Overlap in propensity score before and after each weighting and matching method.

Orange bars represent exposed individuals and blue bars represent unexposed individuals. ATE = average treatment effect, ATT = average treat‐
ment effect in the treated.
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correctly specified [19]. After weighting or matching with
PS was performed, the covariates used for the construc‐
tion of the PS model are expected to be well-balanced
between the exposed and unexposed groups; however,
there may exist an imbalance of covariates. To check the
balance, standardized differences are usually used [19].
The standardized difference is the difference in the aver‐
age of a variable between two groups divided by the
pooled standard deviation (weighted average of standard
deviations for the two groups) [19, 25]. Its values are
within the range of 0 to 1 and smaller values mean better
balance. For continuous variables, the standardized dif‐
ference d is denoted as [19]

d =  
x−exposed − x−unexposed

sexposed
2 + sunexposed

2

2

,

where x−exposed and x−unexposed represent the sample aver‐
age for the covariate in exposed and unexposed individu‐
als, respectively, and sexposed

2  and sunexposed
2  represent the

sample variance of the covariate in exposed and unex‐
posed individuals, respectively. For dichotomous varia‐
bles, the standardized differences d is denoted as [19]

d =  
pexposed − p−unexposed

pexposed 1 − pexposed +  punexposed 1 − punexposed
2

,

where pexposed and punexposed represent the prevalence or
average of the dichotomous variable in exposed and
unexposed individuals, respectively. The standardized
difference is not affected by sample size and the units of
covariates, whereas significance testing is dependent on
sample size (e.g., p-value is likely to be below 0.05 just
because of the large sample size) [25]. Thus, standardized
differences are preferable to significance testing.
Although there is no consensus on the threshold of the
standardized difference that indicates good balance, the
value of 0.1 is often used [25]; that is, standardized differ‐
ence <0.1 means that the covariate is well-balanced. If
some covariates show a standardized difference ≥0.1 even
after weighting or matching, researchers should return to
the step of constructing PS models (step 1). The c-
statistic of the PS model is sometimes used for balance
diagnostics [26]; however, it only indicates how well the
PS model has discriminated the exposed and unexposed
individuals [19]. Previous studies show that the c-statistic
does not provide any information on the covariate bal‐
ance [27, 28]. Thus, researchers do not need to report the
c-statistics.

Step 5. Comparing the Outcomes between the Two
Groups
After confirming the balance of covariates between the
weighted or matched groups, researchers are finally able
to compare the outcomes between the two groups. When
weighting (IPTW, SMRW, matching weight, overlap
weight) has been chosen, researchers will use a general‐
ized linear model with identity link to compare continu‐
ous variables (e.g., length of stay) and a generalized linear
model with logit link to compare dichotomous variables
(e.g., death). What is important here is that they must use
the robust variance to calculate the confidence interval
because variance estimation must account for the weigh‐
ted nature of the sample [29]. When matching has been
chosen, researchers will use t-tests to compare continu‐
ous variables and chi-squared tests to compare dichoto‐
mous variables. Like the weighting method, they must
take account of the matched nature of the sample; thus,
paired t-tests and McNemer’s tests should be used [19]. A
previous study using Monte Carlo simulations demon‐
strated that statistical methods accounting for the rela‐
tionship within pairs resulted in estimated standard
errors that more closely reflected the sampling variability
of the estimated treatment effect [30], compared with the
methods that do not consider the relationship within
pairs.

5 .  ADVANTAGES  OF  PS  ANALYSIS  VS .
CONVENTIONAL  REGRESSION

The flow of PS analyses has been shown so far. In this
section, we will outline the advantages of PS analyses
compared with conventional multivariable regression
models. First, PS methods work against p-hacking, as PS
models are decided before looking at outcome data [31].
In other words, researchers can go back to the construc‐
tion of PS models if the covariates are not well-balanced
after weighting or matching, but this process does not
include the step involving the comparison of the out‐
come. However, when researchers construct and run a
conventional regression model on statistics software, the
resulting estimate and p-value will be produced instantly.
Looking at these results, they may reconstruct the model
(e.g., adding interaction terms). This process allows them
to change the model many times until the results become
convenient for them. Therefore, conventional multivaria‐
ble regression is more subject to p-hacking.

Second, researchers can consider the important
assumption of causal inference “positivity” through the
step of checking the PS overlap between the two groups.
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However, conventional regression does not include the
step of checking the positivity assumption [32], which
may lead to inappropriate results unless researchers con‐
sider the positivity assumption explicitly.

Third, when the outcome is rare, the performance of
PS analyses is better than conventional regression [33].
This is because PS converts high-dimensional covariates
into a single variable.

Fourth, PS analyses are robust to model misspecifica‐
tion [34, 35]. Researchers cannot know the true PS
model, but they can bring the model closer to the true
one by constructing the PS model until a good covariate
balance is achieved.

6 .  CONCLUSION

We provided an overview of PS analysis with five steps: 1)

construct appropriate PS models; 2) check the overlap in
PS; 3) apply appropriate weighting or matching methods
according to the target of inference; 4) check the balance
of covariates; and 5) estimate the effect of exposure
appropriately. Researchers should follow these steps to
perform PS analysis. Furthermore, they must understand
the advantages of PS analyses over conventional multi‐
variable regression.
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