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Analysis of protein-protein interaction networks has 
revealed the presence of proteins with multiple inter-
action ligand proteins, such as hub proteins. For such 
proteins, multiple ligands would be predicted as interact-
ing partners when predicting all-to-all protein-protein 
interactions (PPIs). In this work, to obtain a better 
understanding of PPI mechanisms, we focused on protein 
interaction surfaces, which differ between protein pairs. 
We then performed rigid-body docking to obtain infor-
mation of interfaces of a set of decoy structures, which 
include many possible interaction surfaces between a 
certain protein pair. Then, we investigated the specificity 
of sets of decoy interactions between true binding part-
ners in each case of alpha-chymotrypsin, actin, and 
cyclin-dependent kinase 2 as test proteins having mul-
tiple true binding partners. To observe differences in 
interaction surfaces of docking decoys, we introduced 
broad interaction profiles (BIPs), generated by assem-
bling interaction profiles of decoys for each protein pair. 
After cluster analysis, the specificity of BIPs of true bind-
ing partners was observed for each receptor. We used 

two types of BIPs: those involved in amino acid sequences 
(BIP-seqs) and those involved in the compositions of 
interacting amino acid residue pairs (BIP-AAs). The 
specificity of a BIP was defined as the number of group 
members including all true binding partners. We found 
that BIP-AA cases were more specific than BIP-seq cases. 
These results indicated that the composition of inter-
acting amino acid residue pairs was sufficient for deter-
mining the properties of protein interaction surfaces.
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Protein-protein interaction (PPI) networks provide key 
information for understanding living cells. In yeast, PPI net-
works have been classified as free-scale networks [1,2]. This 
type of network has proteins with multiple partners, called 
hub proteins, including calmodulin, p53, and kalirin, among 
others [3].

Large-scale PPI prediction provides information regard-
ing the presence or absence of protein interactions. How-
ever, when all-to-all PPI predictions are performed, some 
false-positive pairs can be found [4–6] owing to our lack 

Three proteins interacting with multiple ligand proteins (true partners) were analyzed to determine the specificity of 
interaction surfaces among true partners. Then, to observe interaction surfaces, broad interaction profiles (BIPs) 
were defined as the sum of interaction profiles of decoys, generated by the rigid-body docking process. Two types of 
BIPs were introduced; one was involved in amino acid sequences as its elements (BIP-seq), and the other was com-
posed of interacting amino acid pairs (BIP-AAs). Notably, the specificity of BIP-AAs for true ligand proteins was higher 
than that of BIP-seqs.
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surfaces of protein pairs. Thus, we can obtain information 
regarding broad protein interaction surfaces or information 
of interaction surfaces. In this work, we focused not on each 
protein interaction surface as ‘local’ protein interaction sur-
face but on the sum of protein interaction surfaces derived 
from decoys as ‘broad’ protein interaction surfaces. A set of 
interaction surfaces of a protein pair, ‘local’ protein inter-
action, may differ from sets of pairs with different docking 
partners because of differences in the shapes of protein sur-
faces and physicochemical properties of exposed amino acid 
residues. However, it is unclear how different ‘broad’ pro-
tein interaction surfaces are among multiple partners or 
between partners and nonbinders.

Therefore, we attempted to obtain an indicator of broad 
protein interaction surfaces for discriminating true partners 
of a receptor protein from other nonbinders using docking 
decoy sets. Then, we introduced profiles of broad protein 
interaction surfaces. Profile methods are applied to protein- 
small molecules or protein-protein interactions in postdock-
ing analysis, including cluster analysis [11–13]. Profiles can 
easily be compared, and other properties can be added, e.g., 
flags of donors, acceptors, cations, anions, and aromatic 
 residues, for protein-small molecule interactions [11,12]. To 
investigate PPIs, it is favorable to set interacting amino acid 
residue pairs for elements of an interaction profile. This type 
of profile results in better classification of decoys in cluster 
analysis compared with cases measured by root mean square 
deviation (RMSD) [13].

Therefore, in this work, we examined three proteins, i.e., 
alpha-chymotrypsin (PDB-chainID: 1ACB-E), CDK2 
(1BUH-A), and actin (1ATN-A), which had multiple bind-
ing partners and were deposited in protein-protein docking 
benchmark dataset ver. 5.0 [7]. These proteins, used as 
docking receptors, interacted with multiple true partners, as 
described in Table 1. To generate decoy sets, rigid-body 
docking was performed for each docking receptor using 
MEGADOCK ver. 4.0 [14], and proteins were docked with 
44 different ligand proteins, including their true partners. We 
then introduced the concept of broad interaction profiles 

of knowledge regarding PPI pairs. A typical benchmark 
dataset, e.g., protein-protein docking benchmark dataset 
ver. 5.0 [7], includes some proteins that exhibit interactions 
with multiple partners, such as alpha-chymotrypsin, cyclin- 
dependent kinase 2 (CDK2), and actin. The accuracy of PPI 
prediction thus depends on whether we have knowledge of 
interacting protein pairs. When we predict two proteins as 
binders and we do not have information on the specific bind-
ing of the pair, the prediction will be evaluated as false- 
positive; this problem is directly associated with our under-
standing of PPI mechanisms.

The protein surface is one of the most important factors in 
protein sciences for understanding PPI mechanisms. We can 
determine the properties of a protein surface from the ter-
tiary structure of a protein. Databases of protein surface 
geometries and electrostatic potentials, such as the eF-site 
[8], are important for predicting the functions of proteins or 
determining the details of interaction mechanisms. When 
investigating PPI mechanisms, more information is obtained 
from analysis of the surface of each protein and the struc-
tures of protein complexes, which are associated with their 
amino acid sequences and physicochemical properties. 
Additionally, computational simulations provide informa-
tion for understanding PPI mechanisms. Molecular dynamic 
simulations provide information regarding numerous states 
of protein interactions using ab initio calculations [9,10]. 
Docking simulations can also be used to predict protein 
complex structures by generating many candidate complex 
structures (decoys) that exhibit various interaction states. 
In general, for PPI predictions, near-native structures are 
 evaluated from decoy sets, and most decoys are ignored as 
false-positives. For example, in drug design, near-native 
structures are refined to generate high-resolution predicted 
docking structures. After this process, we can observe the 
interaction mechanisms in detail with the protein surface 
area obtained from the small number of near-native struc-
tures. In contrast, based on a comprehensive view of protein 
interaction surfaces, a decoy set, generated by the docking 
process, includes information for many possible interaction 

Table 1 List of proteins used in docking processes. Parentheses indicate PDBIDs of unbound states

Docking receptors True partner proteins Receptors in crystal  
structuresf

Names PDB IDs Names PDB IDs

Alpha-chymotrypsin 1ACB (2CGA)
eglin C 1ACB (1EGL) Alpha-chymotrypsin
PSTIa 1CGI (1HPT) Alpha-chymotrypsinogen
BPTIb 1EAW (9PTI) Matriptase

Actin 1ATN (1IJJ)
DNase I 1ATN (3DNI)

ActinGelsolin 1H1V (1D0N)
DBPc 1KXP (1KW2)

CDK2d 1BUH (1HCL)
CKSHS1 1BUH (1DKS)

CDK2CDKN3e 1FQ1 (1FPZ)

a: pancreatic secretory trypsin inhibitor, b: pancreatic trypsin inhibitor, c: human vitamin-D binding protein, d: cyclin-dependent 
kinase 2, e: cyclin-dependent kinase inhibitor 3, f: names of receptors in X-ray crystal structure data with each true partner
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chymotrypsin (1ACB) as the docking receptor. For actin and 
CDK2, 1ATN and 1BUH were used as the docking recep-
tors. We also used unbound states of tertiary structures for 
the docking processes, corresponding with ligands of the 
bound state [7]; PDBIDs for these are shown in Table 1. In 
order to observe differences in protein interaction surfaces 
between true ligand partners and other nonbinders, the fol-
lowing 44 ligands were also docked to generate decoy sets 
(chain IDs are shown in parentheses): 1ACB(I), 1AK4(D), 
1ATN(D), 1AVX(B), 1AY7(B), 1B6C(B), 1BUH(B), 
1BVN(T), 1CGI(I), 1D6R(I), 1DFJ(I), 1E6E(B), 1E96(B), 
1EAW(B), 1EWY(C), 1F34(B), 1FC2(D), 1FQ1(B), 
1FQJ(B), 1GCQ(C), 1GHQ(B), 1GRN(B), 1H1V(G), 
1HE1(A), 1HE8(A), 1I2M(B), 1IBR(B), 1KAC(B), 
1KTZ(B), 1KXP(D), 1KXQ(A), 1M10(B), 1MAH(F), 
1PPE(I), 1QA9(B), 1SBB(B), 1TMQ(B), 1UDI(I), 
1WQ1(G), 2BTF(P), 2PCC(B), 2SIC(I), 2SNI(I), and 
7CEI(B). For unbound states, PDBID and chain IDs are as 
follows: 1EGL, 1E6J(P), 3DNI, 1BA7(B), 1A19(B), 
1IAS(A), 1DKS(A), 1HOE, 1HPT, 1K9B(A), 2BNH, 
1CJE(D), 1HH8(A), 9PTI, 1CZP(A), 1F32(A), 1FC1(A), 
1FPZ(E), 1FQI(A), 1GCP(B), 1LY2(A), 1RGP, 1D0N, 
1HE9(A), 1E8Z(A), 1A23(A), 1F59(A), 1F5W(B), 
1M9Z(A), 1KW2(B), 1PPI, 1M0Z(B), 1FSC, 1LU0(A), 
1CCZ(A), 1SE4, 1B1U(A), 2UGI(B), 1WER, 1PNE, 1YCC, 
3SSI, 2CI2(I), and 1M08(B) (same order as the bound state 
list). To calculate conformation changes between bound and 
unbound states, we used the TMscore program [24].

BIPs
First, we generated each profile from a decoy generated 

by the rigid-body docking process (Fig. 1). A profile was 
composed of elements when an interaction residue pair was 
detected, and the value of the corresponding element was set 
to 1. Otherwise, the value was set to 0. To determine inter-
action residue pairs, we used the dimplot command of the 
 LIGPLOT program, whose default cut-off distance between 
nonhydrogen atoms is 3.9 Å [25], which is longer than the 
distance between hydrogen and acceptor atoms (2.5 Å) [26]. 

(BIPs), which were made by assembling interaction profiles 
of decoys and provided information of broad protein interac-
tion surfaces. These profiles of protein pairs were compared 
in cluster analysis, allowing us to observe differences in 
their profiles.

Materials and Methods
Docking process

For obtaining decoy sets, we performed docking processes 
using MEGADOCK ver. 4.0, an FFT-grid-based exhaustive 
rigid-body docking tool with multiparallel calculations 
[14,15]. In this work, docking processes were performed 
on an Intel Xeon E7-4870 CPU (2.4 GHz, 10 cores) at the 
National Institute of Genetics. A total of 2000 docking 
decoys were used for analysis.

Tertiary structures of protein pairs
We examined proteins interacting with multiple binding 

proteins and used the tertiary structures of proteins for 
docking processes. We defined binding partners within the 
protein docking benchmark by searching “low-throughput-
like” direct interactions derived from public databases (Dr. 
 Vachiranee Limph, personal communication, data retrieved 
on August 2011). Protein pairs were screened in multiple 
PPI databases (BIND [16], BioGRID [17], DIP [18], HPRD 
[19], IntAct [20], MINT [21], MPact [22], MPPI [23]), and 
high-throughput-like data found only in references that 
reported 50 or more interactions were eliminated. Then, 
three proteins, i.e., alpha-chymotrypsin, actin, and CDK2, 
referred to as the receptor proteins, were chosen from protein- 
protein docking benchmark dataset ver. 5.0 [7]. Table 1 
shows the interactions of each receptor protein with multiple 
interacting proteins. Alpha-chymotrypsin interacts with 
Eglin C, pancreatic secretory trypsin inhibitor (PSTI), and 
pancreatic trypsin inhibitor (BPTI), which form various 
 quaternary structures. For example, for BPTI, x-ray crystal 
structures are available showing a complex with matriptase 
(PDBID: 1EAW). We used the tertiary structure of alpha- 

Figure 1 Flowchart for generating BIPs. After generating 2000 decoys by the rigid-body docking process with MEGADOCK, their tertiary 
structures were converted to interaction profiles with a reranking process. Broad interaction profiles (BIPs) were generated by assembling certain 
numbers (N-values) of profiles.
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could be described as BIPAA(N; m, n) = 
N
∑
k=1

  ∑
(i,j)∈S

Pk(i, j), where 

m and n are types of amino acids in receptor and ligand pro-
teins, respectively. The condition of the second summation 
is S={(i, j) | aa(i)=m & aa( j)=n}, where aa(i) is a type of 
amino acid located at the i-th amino acid residue in a sequence. 
Then, BIPAA(m, n)≠BIPAA(n, m), indicating that, for exam-
ple, the element of interaction between ALA belonging to 
the receptor protein and GLY of the other protein was differ-
ent from that between GLY of the receptor and ALA of the 
other  protein.

Calculation of distance between BIPs and cluster analysis
For cluster analysis, it was necessary to compare all pro-

tein pairs between BIPs. We use the Tanimoto coefficient 
(Tc) to measure the similarities between profiles, which were 
converted to distance by calculating 1–Tc. Because the ele-
ments of BIPs could be integers, the following equation was 
used to calculate the Tanimoto coefficient between BIPa and 
BIPb:

Tc =
∑L

k=1BIPa(N; k)BIPb(N; k)
∑L

k=1BIP2
a(N; k)+∑L

k=1BIP2
b(N; k)–∑L

k=1BIPa(N; k)BIPb(N; k)

where k is the element index of BIPs, and L is the number of 
elements (Table 2 in [28]). This equation indicates that each 
BIP was used as a vector. For example, when BIP(N; 0, 0) 
was converted to BIP(N; 1), and BIP(N; 0, 1) was converted 
to BIP(N; 2), etc., we obtained the L-dimension BIP vector. 
Then, the numerator and the third term in the denominator 
corresponded to the inner product between BIPa and BIPb. 

This type of profile was introduced for comparisons between 
decoys, as described by Uchikoga and Hirokawa [13]. After 
generating profiles of decoys, to investigate broad protein 
interacting surfaces, we introduced the profiles involved in 
all interaction surfaces included in a decoy set, named BIPs. 
Each corresponding element of the interaction profile of 
decoys was added to generate BIPs by assembling decoys 
after reranking with ZRANK [27].

Decoys with low interaction energy scores were regarded 
as high-ranking decoys. Then, the number of assembled 
decoys could influence the results of cluster analysis because 
a set of high-ranking decoys was expected to generate more 
specific profiles involved in true partners than those gener-
ated by low-ranked decoys. In this work, the N-value was 
defined as the number of top ranked decoys for generating 
BIPs. Therefore, the BIP depended on a pair of docking pro-
teins and the number of assembled decoys, i.e., the N-value.

We used two types of BIPs. The first type of BIP included 
each element corresponding to the interacting amino acid 
residue pairs along with amino acid sequences. If two dock-
ing protein pairs had lengths of La and Lb amino acid 
sequences, the number of elements in this type of profile was 
La×Lb. We called this type BIP-seq. For example, when ele-
ments of a profile of a decoy are P1(i, j), P2(i, j), ..., PN(i, j) 
with i-th and j-th amino acids in receptor and ligand pro-
teins, respectively, and N is the number of decoys, the ele-
ment of a BIP with an N-value was BIP(N; i, j)=∑N

k=1Pk(i, j). 
Elements of profiles of a decoy, Pk(i, j), were 0 or 1. There-
fore, elements of BIPs were not only 0 or 1, but could also be 
integers. The other type of BIP was composed of amino acid 
residue types, including 400 (20×20) elements. This type 
was called BIP-AA. Elements of BIP-AA with an N-value 

Table 2 List of the number of ligands in a classified group including all true partners (M-values)

Tanimoto Distance

Receptor protein

Bound state Unbound state

N-value N-value

100 500 1,000 2,000 100 500 1,000 2,000

Alpha-chymotrypsin BIP-seq 5 20 17 43 41 42 43 34
BIP-AA 20 8 12 11 22 26 9 7

Actin BIP-seq 41 40 39 28 44 23 16 16
BIP-AA 41 21 14 12 25 27 21 13

CDK2 BIP-seq 41 16 32 43 44 44 44 43
BIP-AA 43 25 43 39 15 43 43 43

Euclidean Distance

Alpha-chymotrypsin BIP-seq 6 16 35 14 44 12 6 19
BIP-AA 22 24 20 10 25 15 5 8

Actin BIP-seq 44 44 42 41 25 12 13 15
BIP-AA 41 22 23 12 17 43 10 13

CDK2 BIP-seq 41 14 15 42 43 43 43 43
BIP-AA 40 43 39 39 40 33 40 38
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of decoys can be used for the postdocking analysis, e.g., the 
reranking process, and can provide information regarding 
broad interaction surfaces in a pair of proteins. In order to 
observe information regarding broad protein surfaces, we 
introduced the concept of BIPs, which were generated by 
assembling high-ranking decoys after reranking.

BIP depended on protein pairs and the number of assem-
bled decoys (i.e., N-values). We used the BIP of a receptor 
molecule to calculate their similarities. Even if an identical 
receptor protein was used for the docking process, the BIP 
pattern depended on various ligand proteins, indicating that 
they were not the same.

Cluster analysis and specificity of BIPs including true 
partners

To investigate differences in the interacting surfaces with 
various ligands, we performed cluster analysis using BIPs. 
Figure 2A shows tree diagrams with the BIP of alpha- 
chymotrypsin as a bound state receptor. The number of 
assembled decoys for generating a BIP (N-values) was 
changed from 100 to 2000, and we examined ligand proteins 
known as the true partners of a certain receptor. We then 
counted the number of ligands classified into a group, includ-
ing all true partner ligands interacting with the receptor (i.e., 
the M-value). The specificity of BIPs including true partners 
corresponded to the M-values. When N=100, the distance 
was greater than that when N≠100 for all receptor cases 
(Fig. 2). These data indicated that BIPs for which N was 100, 
involving a small number of high-ranking decoys, were 
more different in cases with multiple ligands than in cases 
with larger N-values.

Figure 2 also shows tree diagrams generated using the two 
types of BIPs and various N-values for all receptor proteins, 
alpha-chymotrypsin, actin, and CDK2. For example, in the 
case of bound alpha-chymotrypsin (PDBID-chainID: 1ACB-
E), which is known to interact with Eglin C (1ACB-I), PSTI 
(1CGI-I), and BPTI (1EAW-B), we obtained a group com-
posed of five ligands (M=5), including all three true partners 
of alpha-chymotrypsin in the case of BIP-seq cases in which 
N=100. When the N-value was 2000, most ligand cases were 
classified into a single group, including all true partners 
(M=43), indicating that this situation (BIP-seq) did not allow 
for the distinction of true partners from other ligand cases. 
Additionally, the case of N=100 for BIP-seq was consistent 
with the results of reranking decoys because high-ranking 
decoys generated specific protein interaction surfaces for true 
partners. Notably, cluster analysis using BIP-AAs showed 
fewer group members (M-values) for all N-values than for 
BIP-seq cases, except in the case of N=100. For cases in 
which N=500, when the M-value was low (M=8), the speci-
ficity of BIP-AAs required more low-ranked decoys com-
pared with the BIP-seq case of N=100. Moreover, every 
Tmin-value in BIP-AA cases was smaller than that in BIP-seq 
cases, indicating that BIP-AAs had smaller distances between 
each other than BIP-seq cases, e.g., alpha-chymotrypsin in 

The other terms corresponded to the squares of the length 
of vectors BIPa and BIPb, respectively. This indicator of 
 Tanimoto distance was used to classify interaction profiles 
for effective exploration of docking spaces [29]. However, 
in the case of integer vectors of BIPs, this indicator cannot 
satisfy triangle inequality. Therefore, we only discussed the 
specificity of true partners (M-values) without detailing the 
topologies of tree diagrams. Additionally, we also calcu-
lated distances between BIPs as Euclidean distances: 
Ed=√ ∑L

k=1(BIPa(N; k)–BIPb(N; k))2 in order to observe M- 
values.

When comparing between BIP-AAs, L was 400 because 
of the 20 types of amino acid residues in each docked pro-
tein. From this equation, because different pairs had differ-
ent numbers of elements of BIP-seqs, we calculated Tc 
between BIPs using common receptor information. There-
fore, when comparing BIP-seqs, if docked proteins had 
lengths of amino acid sequences of L=La, which is the length 
of common receptor amino acid sequences, the elements of 
the BIP vector were BIP(N; i)=∑Lb

j=1BIP(N; i, j), where Lb is 
the length of an amino acid sequence of a ligand protein. On 
the other hand, in the case of BIP-AAs, although all profiles 
included the same elements constructed in a 20×20 shape, 
we used information for receptors in BIP-AAs. Then, dis-
tance matrices were generated for docking results of pairs, 
which included each receptor and all 44 ligands.

After distance calculations for all combinations of BIPs, 
we performed hierarchical clustering using software for sta-
tistical analysis (R ver. 3.2.1.) with the function ‘hclust’ with 
the group average method option.

Specificity of BIPs (M-value) with the Tmin-value
To investigate differences between BIPs of true partners 

and other proteins, we examined the specificity of BIPs. 
After cluster analysis, a group including all true partners was 
evaluated. For this process, a tree diagram was divided using 
various thresholds from 0.01 to 0.5 with 0.01 step in R 
ver. 3.2.1 software. Next, we obtained the minimum thresh-
old, Tmin-value by iterative searching from the smallest 
T-value (0.01) until all target ligands were classified into the 
same group. At the same time, we counted the number of 
members in the group, i.e., the M-value. If the M-value was 
small, BIPs of true partners were more similar than BIPs of 
other docking ligands, indicating BIPs with higher specific-
ity. When the M-value was 44, corresponding to the nonspe-
cific BIP, the Tmin-value was indicated as N/A (Fig. 2).

Results and Discussion
A decoy set generated by the rigid-body docking process 

includes information for protein surfaces. Decoys are gener-
ated using the docking score involved in shape complemen-
tarity, electrostatic parameters, and desolvation-like parame-
ters in MEGADOCK ver. 4.0 [14]. Each decoy provides 
information regarding the quaternary structure. Thus, a set 
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found at N=500, which was comparable to the N-value of 
alpha-chymotrypsin.

In the unbound state (Fig. 2B and Table 2), the lowest 
M-values for BIP-seq cases were greater than those for 
bound cases. The lowest M-values for both types of BIPs 
were found at N=2000 for all receptor cases, except CDK2 

Figure 2 (other cases of Tmin-values are not shown). M-values 
for all receptor protein cases are shown in Table 2. In the 
bound state for BIP-seq cases, we found the lowest M-values 
at N=2000 for actin, indicating that more decoys were need 
for highly specific BIP-seq cases compared with those for 
other receptor cases. For CDK2, the lowest M-values were 

Figure 2 Tree diagrams from cluster analysis by BIP similarities as Tanimoto distances. Each square includes all true partners. M-values are the 
numbers of ligands included in each square with minimum threshold Tmin-values. The true partners with the quaternary structure of the bound state 
and the corresponding unbound state protein of PDBIDs are marked as “o_”. The other true partners are marked as “x_”.
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The hydrophobic properties of ligands decreased to negative 
 values as N-values increased because increasing the number 
of interacting residue pairs was associated with the number of 
assembled decoys. In receptors in the bound state (Table 3), 
negative hydrophobic properties were also found in ligand 
cases, indicating that these ligands had hydrophilic prop-
erties, with the exception of 1ACB (alpha-chymotrypsin) 
when N=100. The condition of N=100 in 1ACB yielded 
more hydrophobic receptors. We also observed interaction 
residues using x-ray crystal complex structure data. Figure 
3A shows interaction sites and aligned amino acid sequences 
for alpha-chymotrypsin (1ACB), alpha-chymotrypsinogen 
(1CGI), and matriptase (1EAW). Interestingly, the amino 
acid sequences and interaction sites were similar, as were the 
physicochemical properties of these interacting residues, as 
determined using hydropathy parameters assigned by Kyte 
and Doolittle [30] and electrostatic charges (Arg, Lys, and 
His: +1; Asp and Glu: –1; and other amino acids: 0) [31]. 
The net charges and the hydrophobic parameters were 
defined as the sum of parameters assigned to their residues 
composing the interaction site. The net charges (E values) of 
the interaction sites were 10.0, 10.0, and 11.0, and the hydro-
phobic parameters (H values) were 25.7, 50.7, and 61.30 for 
the receptors 1ACB, 1CGI, and 1EAW, respectively. For the 
ligand sides, the following E and H values were obtained for 
1ACB, 1CGI, and 1EAW, respectively: –2.0 and 16.40, 
–12.0 and –145.0, and 66.0 and –242.60. In the unbound 
state of alpha-chymotrypsin (1ACB), BIPs showed hydro-
philic properties (Table 4). These results were associated 
with the lowest M-value at N=2000 for the unbound case 
(Table 2), implying that more decoys were necessary to 
obtain BIPs specific to the true partners. In the other cases, 
actin (1ATN) had interaction sites with physicochemical 
properties (E and H values) for 1ATN, 1H1V, and 1KXP as 
follows: 18.0 and –35.90, –7.0 and –22.90, and 4.0 and 
–167.60, respectively. In this case, the ligands had E and H 
values of 6.0 and –83.80, 0.0 and –43.50, and 7.0 and –41.30 
for 1ATN, 1H1V, and 1KXP, respectively, in the absence of 
interaction sites. The interaction sites of receptors were 
 similar, except for that of 1ATN (Fig. 3B). For actin in the 
bound state, the ligand of 1ATN was consistent at all N- 
values, indicating the positive net charge of 1ATN receptor 
and ligand of BIPs at all N-values (Table 3). Moreover, for 
the 1ATN pair, assembled high-ranking decoys had native-
like interaction properties, and N-values were sufficient for 
obtaining specific BIPs.

The BIPs of CDK2 (1BUH) exhibited hydrophilic and 
positive net charges in receptor proteins in both the bound 
and unbound states (Tables 3 and 4). In the unbound state, 
the ligand sides of BIPs exhibited positive net charges for 
both ligands (Table 4). In contrast, negative net charges for 
the 1BUH ligand and positive net charges for the 1FQ1 
ligand were found in the bound state (Table 4). For the 
receptors, the interaction sites exhibited E and H values of 
–18.0 and –45.40 for 1BUH and –18.0 and –110.90 for 

in the case of BIP-AA. However, the M-value decreased as 
the N-values increased. Therefore, it was possible to obtain 
lower M-values when the N-values were higher. Moreover, 
the lowest M-value for CDK2 in the case of BIP-AA in the 
unbound state was found at N=100, indicating that this num-
ber of decoys was sufficient to obtain highly specific BIP-AA 
information. In BIP-AA cases, we also found that the lowest 
M-values in the unbound state were lower than those in the 
bound state, except for actin. However, analysis of actin 
indicated comparable results between M=12 in the bound 
state and M=13 in the unbound state. Comparisons between 
BIP-seq and BIP-AA cases in the unbound state revealed 
that the lowest M-values of BIP-AAs were lower than those 
of BIP-seq cases for each receptor case. We also obtained 
M-values by calculating Euclidean distances of BIPs (Table 
2). In this case, the lowest M-values in each case were found 
to be comparable to those of Tanimoto distance cases. How-
ever, for alpha-chymotrypsin, smaller M-values were found 
in the unbound state, particularly for BIP-seq. For actin, in 
the bound state of BIP-seq, larger M-values were observed 
than those in Tanimoto distance cases, indicating that the 
specificity of interaction surfaces of true partners was 
reduced. For CDK2, we found specificity (low M-values) for 
BIP-seq in the bound state, although nonspecificity was 
found for BIP-AA in the bound state.

In the case of the BIP-AA of actin, M-values in the 
unbound state were reduced compared with those in the 
bound state owing to differences between the tertiary struc-
tures of receptor proteins. The RMSDs ranged from 13.27 Å 
to 19.21 Å in the bound state for all combinations of the 
three receptors in the tertiary complex structures, i.e., 1ATN-
A, 1H1V-A, and 1KXP-A. On the other hand, receptors in 
the unbound state were similar because of the use of identi-
cal structures (1IIJ-B). Thus, structural deviations of recep-
tors influenced their protein surfaces. Additionally, low- 
specificity BIPs were found in the bound state, indicating 
that these cases exhibited larger M-values than those in the 
unbound state. However, for BIP-AAs, the lowest M-values 
were comparable between the bound (M=12) and unbound 
states (M=13), indicating that interacting protein surfaces 
were more specific than those in cases of other ligands. 
Notably, the results for CDK2 were different. RMSDs were 
calculated using two receptors in tertiary complex struc-
tures, yielding RMSDs of 12.46 Å in the bound state and 
8.49 Å in the unbound state. Thus, these data provided 
information regarding the number of high-ranking decoys 
suitable for achieving the most specific BIP-AA in the 
unbound state.

Physicochemical properties of protein-interacting inter-
faces

Because BIPs included information for interacting amino 
acid pairs, we could evaluate the physicochemical properties 
of BIPs. Tables 3 and 4 show the net charge and hydropho-
bic parameters of the three receptors and their true partners. 
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in some cases. In contrast, more decoys appeared to be nec-
essary to obtain specific BIPs in the unbound state.

Conclusion
In this work, we examined proteins that could bind with 

other multiple proteins, e.g., hub proteins. Generally, hub 
proteins have disordered regions, interacting with various 
proteins through large conformation changes [2]. In this 
work, we examined globular-type proteins selected from a 
docking benchmark dataset. These proteins can be catego-
rized into three types in terms of conformational changes 
between the bound and unbound states, i.e., difficult, moder-
ately difficult, and rigid-body [7]. Alpha-chymotrypsin and 
actin are classified into the difficult type, with RMSDs 

1FQ1, respectively (Fig. 3C). Interaction sites on ligands 
had E and H values of –15.0 and –106.60 for 1BUH and 1.0 
and –99.30 for 1FQ1, respectively, in the absence of inter-
action sites. Although the positive net charges in the ligand 
of 1FQ1 were close to zero, these parameters appeared to be 
consistent with the physicochemical properties of BIPs in 
the bound state (Table 3), in contrast to the results for the 
unbound state shown in Table 4, indicating that large M- 
values were found as nonspecific BIPs in the unbound state 
(Table 2). However, we found that M=15 for BIP-AA in the 
unbound state, suggesting that high-ranking decoys gener-
ated specific BIP-AAs for true partners.

We observed the physicochemical properties of BIPs 
under different conditions. Particularly in the bound state, 
consistent properties were found with actual interaction sites 

Table 3 Physicochemical properties of the bound state

PDBID Net charge Hydrophobicity Number of interacting 
residue pairsReceptor Ligand N-value Receptor Ligand Receptor Ligand

1ACB

1ACB
100

82 320 392 –1428 3111
1CGI 250 –23 365.4 –3708.9 2935
1EAW 105 794 137.7 –2664.8 2765

1ACB
500

478 1566 –139.2 –9223.6 14692
1CGI 1012 4 –1556.8 –17940.2 13539
1EAW 420 3786 –2240.4 –14204.09 13323

1ACB
1000

1062 2970 –5023.4 –18962.71 28487
1CGI 1803 0 –7359 –37655.49 26563
1EAW 886 7247 –8434.5 –29224.91 26576

1ACB
2000

2392 5668 –21928.2 –41395.51 55915
1CGI 3022 195 –24285.7 –78172.12 52376
1EAW 2136 14199 –26546.41 –60223.99 53624

1ATN

1ATN
100

219 139 –4507.6 –3973.2 3743
1H1V 109 121 –4634.1 –4588 3864
1KXP 3 –1 –4614.3 –2721.1 4255

1ATN
500

387 894 –25735.1 –21367.5 18486
1H1V 202 798 –23722.7 –21893.59 18350
1KXP –33 –4 –23312.5 –22638.71 19491

1ATN
1000

582 2058 –52365.68 –45610.88 36613
1H1V 71 1451 –51153.1 –44999.39 36763
1KXP –159 22 –50730.7 –49853.99 39312

1ATN
2000

230 4587 –113680.8 –97211.3 75000
1H1V –709 2824 –108758.3 –96134.17 74603
1KXP –1028 –130 –112267.11 –111733.74 80426

1BUH

1BUH 100 377 –221 –3076.9 –4293 2843
1FQ1 398 325 –4381.1 –3722.9 3375

1BUH 500 1924 –701 –16989.3 –19486.2 13554
1FQ1 2306 1489 –23405.9 –19446.6 16929

1BUH 1000 3778 –838 –34932 –37541.2 26969
1FQ1 4434 3003 –47284.79 –39759.89 34296

1BUH 2000 7430 –703 –74073.6 –76021.42 54585
1FQ1 9194 6874 –100196.3 –83359.69 70848
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between interfaces of the bound and unbound states of 2.26 
and 3.28, respectively. CDK2 is a rigid-body type, with an 
RMSD of 0.75. Profile methods may be useful for studies of 
proteins with large conformation changes. For example, 
interaction fingerprints have been applied to docking prob-
lems using calmodulin with large conformation changes, 
indicating that profile methods are useful for analysis of 
 protein interaction surfaces [13].

In summary, we observed the specificities of BIPs for true 
partners and the physicochemical properties of BIPs; these 
properties were not directly related to the PPI predictions. 
However, the information provided by analysis of broad 
possible protein interfaces can yield clues for understanding 
PPI mechanisms.

Table 4 Physicochemical properties of the unbound state

PDBID Net charge Hydrophobicity Number of interacting 
residue pairsReceptor Ligand N-value Receptor Ligand Receptor Ligand

1ACB

1ACB
100

58 –5 –204.5 –2073.2 2052
1CGI 81 273 –162.3 –4592.4 2126
1EAW 61 674 –366.9 –3512.1 2087

1ACB
500

321 –120 –2411.8 –10528.2 9534
1CGI 387 977 –617.5 –19018.4 9720
1EAW 241 2916 –2067.9 –14417.5 9673

1ACB
1000

676 –289 –5191.5 –19787.2 18498
1CGI 700 1669 –2326.6 –35923.51 18394
1EAW 511 5334 –4467.3 –26688.4 18413

1ACB
2000

1300 –598 –10210 –36639.5 35574
1CGI 1427 2502 –6335 –66801.51 34904
1EAW 1101 9754 –9848.8 –49854.51 35037

1ATN

1ATN
100

–120 333 –3963 –4298.8 3291
1H1V –164 53 –5074.8 –5474.2 3613
1KXP –199 –42 –4733.2 –5231.8 3579

1ATN
500

–566 1437 –18381.8 –19863.8 14534
1H1V –711 –173 –20845.99 –25009.81 16389
1KXP –665 –496 –20928.3 –26045.5 15840

1ATN
1000

–1173 2545 –36763.21 –39000.9 27991
1H1V –1481 –142 –40160.8 –47217.21 31144
1KXP –1220 –1088 –38860.49 –50446.61 30127

1ATN
2000

–2468 4780 –70724.91 –74852.81 53554
1H1V –3070 –194 –77328.7 –89695.49 59364
1KXP –2573 –2230 –75127.91 –97115.8 57889

1BUH

1BUH 100 479 161 –3238.3 –3294 2361
1FQ1 308 365 –3496.7 –3946 2782

1BUH 500 1795 722 –13457.1 –17625.7 10622
1FQ1 1485 1516 –14542.7 –18653.81 12177

1BUH 1000 3128 1254 –24678.2 –34111.51 19918
1FQ1 2885 2905 –28007.2 –36008.7 23171

1BUH 2000 5802 2160 –46804.9 –65434.8 37755
1FQ1 5221 5405 –52693.5 –66785.11 43747
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