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Bacterial skin and soft tissue infections are among the most common bacterial infections and constitute a major
burden for patients and healthcare systems. Care is complicated by the variety of potential pathogens, some
with resistance to previously effective antimicrobial agents, the wide spectrum of clinical presentations and the
risk of progression to life-threatening forms. More-efficient care pathways are needed that can reduce hospital
admissions and length of stay, while maintaining a high quality of care and adhering to antimicrobial steward-
ship principles. Several agents approved recently for treating acute bacterial skin and skin structure infections
have characteristics that meet these requirements. We address the clinical and pharmacological characteristics
of the fourth-generation fluoroquinolone delafloxacin, and the long-acting lipoglycopeptide agents dalbavancin
and oritavancin.

Introduction

Infections of the skin and subcutaneous tissue, muscle and fascia
are commonly referred to as skin and soft-tissue infections (SSTIs)
and are frequent reasons for medical visits in both inpatient and
outpatient settings worldwide,1–4 They include a wide variety
of conditions that range from simple superficial infections to
complicated surgical wound infections and rapidly progressing
necrotizing fasciitis.4,5 The most common types are cellulitis and
abscesses.3,6 A subset of severe SSTIs referred to in the literature
as complicated SSTIs (cSSTIs) or complicated skin and skin struc-
ture infections (cSSSI) require early prompt treatment that gener-
ally includes both surgery with drainage and debridement, and
appropriate antibiotic therapy.7,8 cSSTIs may be further classified
as necrotizing or non-necrotizing.8,9 Common cSSTIs include surgi-
cal site or traumatic wound infections, diabetic foot infections,
perianal abscesses, and extensive cellulitis, or infections occurring
in patients with significant comorbidities that affect the therapeut-
ic response.10,11 These infections represent a substantial health-
care burden.12

In 2013 the US FDA defined acute bacterial skin and skin
structure infections (ABSSSI) as the subset of cSSTIs that includes
cellulitis/erysipelas, wound infections, and major cutaneous abscess,
while excluding deeper infections of muscle and fascia, necrotizing
infections and diabetic foot infections.13 The definition of ABSSSI
imposes a minimum lesion surface area of �75 cm2, and the pri-
mary response criteria are defined as a �20% reduction in lesion
size with resolution of fever after 48–72 h in patients who are alive

and did not receive rescue therapy. For clinical practice, this defin-
ition may provide a framework for assessing the effectiveness
of treatment in terms of early response,14,15 although early re-
sponse can be influenced by factors other than antimicrobial
treatment,16 and the duration of response must be confirmed.

EMA guidelines on the evaluation of medicinal products for
treatment of bacterial infections indicate that registration studies
in ABSSSI may enrol patients with cellulitis, erysipelas, traumatic or
post-surgical wound infections, and major abscesses; whereas,
patients with confirmed or suspected osteomyelitis, septic arthritis
or severe necrotizing infections should be excluded.17 A minimum
infection area or estimated abscess dimensions should be
declared in the study protocol, and the proportion of patients with
abscesses should be limited to about 30%. Drainage, if necessary,
should be conducted around the time of randomization. The pri-
mary analysis should be the clinical outcome in the ITT population,
using a non-inferiority margin of 10%, assessed at the test-of-cure
visit, the timing of which is based on the maximum treatment
duration and the elimination half-lives of test and comparative
agents.17

Bacterial ecology

The choice of empirical antimicrobial treatment for SSTIs can be
challenging due to the geographically varied and changing local
epidemiology of community-acquired and healthcare-acquired
infections. Treatment choices should be informed by local surveil-
lance data. In general, Gram-positive organisms are involved most
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frequently, with Staphylococcus aureus, b-haemolytic strepto-
cocci, Enterococcus spp., and coagulase-negative staphylococci
representing the most common pathogens identified.11,18 Gram-
negative pathogens, especially Escherichia coli, may be more
common in healthcare-associated cSSTIs than in community-
associated cSSTIs,19 and are often associated with surgical
site infections (SSIs) after abdominal surgery and perineal
abscesses.11,20

In general, most ABSSSIs are caused by Staphylococcus aureus,
including MRSA, and Streptococcus pyogenes; less-common
causes include other Streptococcus species, and Gram-negative
bacteria.13,18

MRSA global prevalence

In many parts of the world, treatment of infections is complicated
by antimicrobial-resistant pathogens. MRSA is one of the most
important examples. Its prevalence varies by geographic region
and changes over time. In Europe, the involvement of MRSA
among surveyed infections varies widely by country (mean
16.4%, range 0%–43.0%) and has declined in many countries
in 2018.21 MRSA was the second most frequent resistant
pathogen responsible for cases and attributable deaths in the
European Union.22 In some geographic regions, community-
associated MRSA has emerged as a major threat,23 as virulent
clones arise and are disseminated,24,25 a phenomenon acceler-
ated by international travel.26

Considering specifically skin infections, a global survey of
community-acquired ABSSSI identified MRSA in 18.5% of cultured
pathogens, with substantial variability according to geographic
region, ranging from 15.8% in Eastern Europe and the
Mediterranean region to 21.4% in the Asia-Pacific region.18 In the
US, a retrospective population-based study of patients with
SSTIs revealed that 46% of cultured S. aureus were MRSA.20

The emergence of MRSA has changed antimicrobial prescribing for
skin infections.27

Recurrence and relapses

Staphylococcal infections show a tendency for recurrence despite
well-conducted treatment with antibiotics considered as suitable
based on susceptibility testing. This has been attributed to colon-
ization,28 and may also be associated with the capacity of staphy-
lococci to survive intracellularly,29,30 which has been suggested to
play a key role in treatment failure in chronic and relapsing
staphylococcal infections.31 Recently, persistent intracellular
presence has been implicated as an explanation for the relapse/
recurrence of S. aureus infections.32

Consequences of under- and over-treatment

An inappropriate level of care for patients with cSSTI can expose
the patient to avoidable risk and lead to unnecessary use of health
resources. Undertreatment of serious infections is a common prob-
lem.33,34 This occurs when an inappropriate empirical antimicro-
bial regimen does not cover the causative pathogen.35–38 cSSTIs
involving MRSA, Gram-negative pathogens or polymicrobial infec-
tions are associated with a higher risk of inappropriate empirical
treatment.37,38 Some MRSA strains are also resistant to other fre-
quently used agents, including macrolides, fluoroquinolones and

linezolid.39,40 Undertreatment, even with active antibiotics, may
contribute to the maintenance of persistent extracellular and
intracellular bacteria leading to recurrent infection. A large obser-
vational study conducted in 10 European countries revealed that
inappropriate initial treatment of cSSTI resulted in an approximate
doubling of the length of stay (LOS).41

Overtreatment of uncomplicated SSTIs (e.g. non-guideline-
concordant antibiotic prescription) is also a common problem.42–46

This results in avoidable exposure to the risk of drug-related ad-
verse events, unnecessary costs for healthcare systems and is at
odds with principles of antimicrobial stewardship. Current guide-
lines recommend that erysipelas, impetigo, folliculitis and simple
abscesses may be treated with antibiotics or drainage alone in im-
munocompetent patients without signs of systemic inflammatory
response.8,9 See the latest guidelines for indications for broad-
spectrum antibiotics.8

Available treatments

Traditional oral antimicrobial agents for SSTIs have included: (i) a
series of old but still effective antibiotics (depending on local trends
of resistance) such as clindamycin, doxycycline, or trimethoprim/
sulfamethoxazole, all of which can be given orally; (ii) b-lacta-
mase-resistant penicillins and cephalosporins (considered as first
choice for infections caused by methicillin-susceptible staphylo-
cocci); and (iii) vancomycin or linezolid (especially in a context of
methicillin-resistant organisms). More recent additions have
included daptomycin (a lipopeptide), tedizolid (an oxazolidinone),
and the anti-MRSA cephalosporins (ceftaroline and, in some mar-
kets, ceftobiprole). All these agents, with the notable exception of
linezolid and tedizolid, are strictly intravenous drugs; daptomycin
and tedizolid are administered once daily. Toxicity issues with older
drugs include bone marrow toxicity for linezolid and nephrotoxicity
for vancomycin and possibly for vancomycin plus piperacillin/
tazobactam.12,47

The emergence of multidrug-resistant MRSA and VRE, com-
bined with the need for extended-spectrum agents that are better
tolerated and more convenient to use, has led to the development
of new long-acting intravenous agents such as dalbavancin and
oritavancin that can be given once a week or even once only. Novel
agents with oral and IV formulations such as delafloxacin are also
of obvious interest. Effective agents for treating cSSTIs must cover
the likely causative pathogens and have high skin and soft tissue
penetration. The choice must also consider patient comorbidities,
potential side effects, and economic issues.

Economic issues

Healthcare providers in most countries are under pressure to im-
prove cost-effectiveness. In Europe, there has been a long-term
trend toward reduction in hospital capacity, while the population is
also ageing (Figure 1).48,49

The incidence of SSTIs was found to be higher in the elderly
population;20,50,51 moreover, several comorbidities that are more
common in the elderly, such as diabetes, liver and kidney disease
and vascular insufficiency, also increase the risk of developing
complicated/severe SSTI.52 Therefore, the current situation of an
ageing population with rising SSTI incidence is not compatible with
a reduction in hospital capacity. The economic burden of SSTI
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care in the US is nearly $14 billion per year.53 MRSA infections are
associated with higher clinical and economic burdens (Figure 2).

Strategies are needed to improve efficiency by avoiding un-
necessary admissions or by reducing LOS. Outpatient administra-
tion of antimicrobial therapy in patients who do not require
admission or are eligible for early discharge (ED) is an effective
strategy for transferring care to the outpatient setting.54 This has
the additional advantage of reducing the risk of healthcare-
associated infections (HCAIs), which cause considerable additional
healthcare burden.55

Where available, outpatient parenteral antibiotic therapy
(OPAT) programmes are effective for appropriate patients with
skin infections.56–58 They, however, do require additional resources
for organizing and managing the service.59,60 Programmes that
promote sequential treatment with IV and oral antimicrobials
(early switch, ES) represent an alternative strategy when the

appropriate antimicrobials are available also in oral formulations
with good bioavailability and penetration.61,62 Finally, long-acting
antimicrobials that provide reliable coverage with a single or
weekly IV administration offer an option that may reduce LOS,
while overcoming concerns regarding adherence and the need to
maintain IV access.63

Delafloxacin

Delafloxacin is a fourth-generation fluoroquinolone with broad-
spectrum coverage of Gram-positive and Gram-negative
bacteria.64,65 It is the only approved anionic fluoroquinolone
(Figure 3).66–69

This differentiates it from most other widely used fluroquino-
lones such as moxifloxacin, levofloxacin, and ciprofloxacin, which
are zwitterionic. Together with specific structural determinants
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Figure 1. Trends in European hospital capacity (beds per 100 000 inhabitants) and the proportion of the population age >65 years. Figure constructed
using data from Eurostat.48,49
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Figure 2. Summary of the clinical and economic burden of MRSA.
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(such as a heteroaromatic substituent at position 1 and a chlorine
at position 8), the anionic character of delafloxacin markedly con-
tributes to its very low MICs against Gram-positive organisms, such
as S. aureus, because it allows for much greater uptake by these
bacteria under acidic conditions,67 while an opposite trend is
observed for the zwitterionic agent moxifloxacin.66

Once inside bacteria, fluroquinolones bind to both DNA
topoisomerase IV and DNA gyrase and inhibit their activities, which
are both essential for replication. Fluroquinolones that bind with
higher affinity to DNA topoisomerase are more active against
Gram-positive bacteria, while fluroquinolones that bind with higher
affinity to DNA gyrase are more active against Gram-negative bac-
teria.70 Delafloxacin binds with similar affinity to both targets,
which may explain its activity against both Gram-positive and
Gram-negative bacteria and is believed to result in decreased
emergence of resistance because two simultaneous mutations
are required. In vitro experiments by Remy et al.71 showed indeed
that, in addition to lower MICs, delafloxacin has a lower mutation
prevention concentration/MIC ratio and a higher fitness cost
compared with levofloxacin or moxifloxacin.

Delafloxacin has 59% oral bioavailability and a steady-state
volume of distribution of 30–48 L,72 that combined with its
enhanced activity in acidic environments,67 make it appropriate
for skin infections. It is available in both intravenous and oral
formulations, with doses of 300 mg for IV and of 450 mg for oral
formulations that are bioequivalent, which facilitates parenteral to
oral switching.

Delafloxacin was approved for ABSSSI by the US FDA in 2017
and EMA in 2019.72,73 Approval was based on the results of two
similarly designed Phase III randomized, double-blind, studies
that compared delafloxacin with the active control vancomycin
plus aztreonam in a total of 1510 patients with ABSSSI stratified by
infection type. The studies differed primarily in how delafloxacin
was administered: in Study 302,74 delafloxacin was administered
at 300 mg IV every 12 h for 5–14 days; in Study 303,75 delafloxacin

was administered in an IV to oral switch regimen consisting of
delafloxacin 300 mg IV every 12 h for the first 3 days, followed by
the bioequivalent oral dose of 450 mg every 12 h for the remainder
of the treatment period. The studies differed also in enrolment cri-
teria and analysis of data from obese patients: in Study 302, body
weight was limited to 140 kg and patients were not stratified for
obesity at enrolment; in Study 303 body weight was limited to
200 kg, obese patients (BMI �30 kg/m2) were limited to �50% of
the population, and patients were stratified by BMI above or below
30 kg/m2 The primary efficacy endpoint (for the FDA)13 in both
studies was a�20% reduction in lesion size at 48 to 72 h in the ab-
sence of clinical failure in the ITT population. Response after
14 days and 21–28 days of follow-up were secondary endpoints
(primary efficacy endpoint for the EMA).17

Study 302 randomized 660 patients to IV delafloxacin (n = 331)
or vancomycin plus aztreonam (n = 329). S. aureus was the most
frequently isolated pathogen (66%), of which more than half
(52%) were MRSA. Delafloxacin was non-inferior to the active com-
parator for all endpoints and subgroups. Subsequently, Study 303
randomized 850 patients to the delafloxacin IV to oral switch regi-
men (n = 423) or vancomycin plus aztreonam (n = 427). S. aureus
was again the most frequently isolated pathogen (58%), of which
36% were MRSA. Sequential IV to oral delafloxacin was non-
inferior to IV vancomycin plus aztreonam for all endpoints and
subgroups.

An integrated analysis of efficacy data from these two Phase III
ABSSSI studies was conducted.76 The aggregate study population
had considerable characteristics that were evenly distributed
between the study arms and included vascular disease (29%),
diabetes (11%), obesity (BMI�30 m2, 42%); 13% of patients were
>65 years old. Analysis of aggregated efficacy data from both
studies revealed similar objective response rates with delafloxacin
and vancomycin/aztreonam after 48–72 h (81.3% versus 80.7%),
and investigator-assessed response rates at 14 days (84.7% versus
84.1%) and 21–28 days (82.0% versus 81.7%).76 In a study by
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Figure 3. Delafloxacin. The only ionizable group in biological media is the carboxylate carried in position C3 and with a pKa of 5.43 (the hydroxyazeti-
dine group at position 7 is not ionizable in biological media). This causes delafloxacin to be predominantly negatively charged (mono cationic) with
an almost equilibrated lipophilic/hydrophilic balance (logDpH7.4 = 0.59) in the extracellular milieu (pH 7.4), while becoming predominantly un-ionized
and more lipophilic [logDpH5 = 2.22 (close to its logP of 2.56)] at pH 5.5 (as can be observed in infected tissues and in intracellular compartments har-
bouring S. aureus). This causes increased accumulation, contributing to increased potency (lower MICs) of delafloxacin in these compartments.66,67

The other important features of delafloxacin include a chlorine substituent in position C8 which enhances activity, and a bulky heteroaromatic group
in N1 which increases the drug contact surface.68,69 Structures and calculations were made with Marvin sketch 21.13 (Chemaxon, Budapest,
Hungary).
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McCurdy et al.,64 microbiological response rates among
delafloxacin-treated patients were 98.4% for all S. aureus isolates
(245/249), 98.6% for MRSA isolates (70/71), 98.8% for
levofloxacin-non-susceptible S. aureus isolates (80/81), and 98.8%
for S. aureus isolates with documented mutations in the quinolone
resistance-determining region (81/82).64 Of note, Pfaller et al.65

showed that in 2014 only 91.2% and 95.3% of the US and EU
MRSA isolates, respectively, had an MIC that would qualify them as
non-resistant based on EUCAST breakpoints (R > 0.25 mg/L). In a
more recent surveillance study, 92.4% of 4484 European S. aureus
isolates from ABSSSI collected from 2014–19 were susceptible to
delafloxacin.77 Delafloxacin was more active than levofloxacin
(84.0% susceptible with increased exposure) and moxifloxacin
(84.3% susceptible). A 2017 surveillance study on 757 S. aureus
isolates from patients in seven Brooklyn, NY hospitals identified a
similar susceptibility rate for S. aureus (91%, 689/757), with 16
organisms having an MIC �2 mg/L, i.e. at or above the FDA resist-
ant breakpoint (�1 mg/L) however, only 78% of the MRSA isolates
(219/281) were susceptible to delafloxacin using a MIC50 value of
0.12 mg/L.78 Molecular typing of 16 delafloxacin-resistant MRSA
isolates revealed that most were healthcare-associated strains,
and sequencing of 6 isolates revealed mutations involving gyrase
and topoisomerase IV genes.78

Safety

The most frequent adverse events (AEs) associated with fluoroqui-
nolones are gastrointestinal symptoms, headaches, and altered
liver function tests.79 Rare AEs of special interest with fluoroquino-
lones include tendinitis and tendon ruptures, peripheral neur-
opathy, CNS effects, worsening of myasthenia gravis symptoms,
serum glucose disturbances, and development of Clostridioides
difficile-associated diarrhoea.80 In 2018, the FDA added a warning
about potential aortic aneurysm/dissections.81 A pooled analysis
(n = 1510) of adverse events in the delafloxacin Phase III studies
302 and 303 revealed similar rates of treatment-emergent AEs
(45.1% and 47.7%) and treatment-related AEs (22.1% and 26.1%)
in the delafloxacin and comparator (vancomycin ± aztreonam)
groups, respectively.82 Of interest, there were fewer treatment-
emergent AEs of special interest with fluoroquinolones in the dela-
floxacin arm (7.0%) than in the comparator arm (9.2%). No discon-
tinuation in the delafloxacin group was due to fluroquinolone-
related AEs.82 This was confirmed in a Phase III study of
community-acquired bacterial pneumonia in an older population
with more comorbidities, which randomized 431 patients to dela-
floxacin versus moxifloxacin and reported AEs of special interest
with fluoroquinolones in 7.9% (34/429) of patients in the delaflox-
acin arm and 7.5% (32/427) in the moxifloxacin arm.83 In healthy
volunteers, delafloxacin was not associated with the delayed ven-
tricular repolarization and resulting elongation of the electrocar-
diogram QT-segment that characterizes other agents in the
class,84 which may be important when treating patients at risk for
arrhythmias. Although delafloxacin was well tolerated in these
studies, as well as in early phase studies,80 these encouraging
results need to be confirmed by pharmacovigilance data able to
detect these rare events. Meanwhile, fluoroquinolone use is
reserved for severe infections and patients who do not have other
treatment options.

Delafloxacin has several characteristics that may make it an ap-
propriate choice for the treatment of skin infections. First, its bio-
availability and pharmacokinetic profile, with a 10 h half-life that
allows twice-daily administration, its primarily renal elimination,
weak interactions with liver cytochrome P-450 drug-metabolizing
enzymes, glucuronyltransferases, and drug transporters make its
use possible in most patients, with no dose adaptation needed in
case of liver insufficiency and dose reduction only necessary in
patients with severe renal impairment (creatinine clearance
<30 mL/min) who are receiving the IV formulation. These charac-
teristics allow safe and effective sequential IV to oral therapy in
most patients and may greatly facilitate the early discharge of
patients with ABSSSI and support antibiotic stewardship strategies
with significant benefits for healthcare resource utilization and
clinical outcomes.

Second, delafloxacin clinical breakpoints for Gram-positive
organisms are above the MIC90 for most clinical isolates (Table 1).

Third, unlike several other antibiotics narrowly oriented towards
Gram-positive organisms, delafloxacin shows useful activity
against a limited but significant proportion of important Gram-
negative pathogens. Thus, delafloxacin is approved by both
the FDA and the EMA for ABSSSI caused by E. coli, Klebsiella
pneumoniae, Enterobacter cloacae, and Pseudomonas aeruginosa,
plus, for the EMA, Klebsiella oxytoca and Proteus mirabilis. However,
susceptibility testing of Gram-negative organisms is probably
essential at both the population and individual levels, since the
MIC90 of several of them may exceed the resistance breakpoints
[�1 mg/L for Enterobacterales and P. aeruginosa for the FDA, and
>0.125 mg/L for EUCAST (Enterobacterales only; EUCAST found in-
sufficient evidence (IE) for setting breakpoints for P. aeruginosa
and the other Gram-negative organisms included in the list of
infections that could be treated with delafloxacin)].

Fourth, delafloxacin is effective against S. aureus from biofilms,
under conditions where many other antibiotics failed,85 probably
because of its enhanced activity at acid pH as discussed above,
combined with its bactericidal activity against intracellular
bacteria.85

Long-acting lipoglycopeptides

Basic data and assessment of value

Long-acting lipoglycopeptide antimicrobials represent another
strategy for achieving ED. Their long half-lives allow treatment of
ABSSSI with a single or weekly IV dose, providing long-term IV
treatment without requiring continuous IV access or inpatient
stay. Lipoglycopeptides are very large molecules compared with
most antibiotics. This prevents them from crossing the outer bac-
terial membrane and cell wall of Gram-negative organisms, strictly
limiting their spectrum of activity to Gram-positive bacteria. It also
explains their complete lack of bioavailability through the intestinal
barrier and requirement for parenteral administration.

Lipoglycopeptides were developed in response to the rise of
glycopeptide-resistant S. aureus,86 and an upward trend in vanco-
mycin MICs.87 Dalbavancin and oritavancin are characterized by
the presence of an additional hydrophobic moiety, which is shaded
yellow in Figures 4 and 5.88–95

These hydrophobic moieties determine their long half-lives but,
most importantly, markedly improve their antimicrobial activity
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by increasing their membrane affinity and thus their concentration
near the target.96 This enhancement is particularly strong for orita-
vancin, which is avidly taken up by macrophage and other eukary-
otic cells where it accumulates mainly in lysosomes.96 This may
partly explain its marked bactericidal effect against S. aureus, a
phagolysosome-associated microorganism.

Dalbavancin and oritavancin both target transglycosylation,
blocking elongation of peptidoglycan chains; oritavancin is more
effective at inhibiting transpeptidation, which further weakens the
cell wall by preventing chain crosslinking.97 In addition, oritavancin
has a third mechanism of action that involves anchoring in the
membrane through an interaction between its lipophilic chlorobi-
phenylmethyl moiety and bacterial lipid II, disrupting membrane
integrity and conferring it with a rapid, dose-dependent bacteri-
cidal activity.98,99 Oritavancin’s ability to destabilize bacterial and
model membranes88,89 further supports the concept of an anti-
microbial with a ‘triple mode of action’. Because of this, and its
interaction with bacterial lipid II mentioned above, oritavancin is
bactericidal also against non-dividing cells, whereas dalbavancin
and vancomycin are not.91

Oritavancin is active against some vancomycin-resistant enter-
ococci and staphylococci,100 including enterococci that resist
vancomycin through the VanA mechanism.101 Dalbavancin is not
active against vancomycin-resistant enterococci carrying the
VanA mechanism of resistance.92 This is because the 40-chlorobi-
phenyl methyl moiety in oritavancin, which is responsible for the
membrane interaction that causes depolarization and bacterial

death, also allows oritavancin to bind more tightly than vanco-
mycin to the D-Ala-D-Ala terminus of the cell wall peptide precur-
sor.93 The enhanced binding occurs through hydrophobic
interaction with the lateral methyl of D-Ala that adds to the
well-known hydrogen bonds that form between the aglycon part
of glycopeptides and this D-Ala-D-Ala motif. The formation of these
hydrogen bonds is severely hindered through dipole–dipole repul-
sive effects when the terminal D-Ala is replaced by D-Lac, such as in
vancomycin-resistant organisms carrying the VanA mechan-
ism,102 causing vancomycin resistance. However, the binding of
oritavancin is tight enough to maintain activity. Importantly, the
correct positioning of the 40-chlorobiphenyl methyl motif requires
the presence of a closely apposed positive charge (Figure 4). The
absence of a positive charge near the hydrophobic side chain of
dalbavancin (Figure 5) explains why it shares some properties
of oritavancin in relation to general membrane effects (e.g. bac-
tericidal activity) but has no useful activity against vancomycin-
resistant organisms carrying the VanA mechanism.

Dalbavancin and oritavancin are effective against a broad
range of Gram-positive pathogens, including MRSA;103,104 how-
ever, MICs against vancomycin-resistant enterococci, even for ori-
tavancin, remain too high for useful chemotherapeutic activity.
These agents are currently approved by the FDA and EMA only for
treating SSTIs. Breakpoints have been set at low values for lipogly-
copeptides compared with vancomycin because of their high pro-
tein binding, which was shown to cause an increase of MICs,105

and to accordingly reduce their effectiveness in vivo.106,107 FDA

Table 1. Breakpoints (mg/L) of delafloxacin for organisms causing acute bacterial skin and skin structure infections (ABSSSI)

Pathogen

FDAa EUCAST (EMA)b

Sc I R S R

Staphylococcus aureusd �0.25 0.5 �1 �0.25 >0.25

Staphylococcus haemolyticus �0.25 0.5 �1

Staphylococcus lugdunensis �0.03 e e

Streptococcus groups A, B, C and G �0.03 >0.03

Streptococcus pyogenes �0.03 e e

Streptococcus agalactiae �0.06 0.12 �0.25

Streptococcus anginosus groupf �0.06 e e �0.03 >0.03

Enterococcus spp. IEg IE

Enterococcus faecalis �0.12 0.25 �0.5

Viridans group �0.03 >0.03

Enterobacteralesh,i �0.25 0.5 �1 �0.125 >0.125

Pseudomonas aeruginosa �0.5 1 �2 IE IE

aUS FDA Recognized Antimicrobial Susceptibility Test Interpretive Criteria.
bEUCAST [acting under Standard Operating Procedures (SOP) for the EMA].
cS, susceptible; I, intermediate; R, resistant [FDA and EUCAST; see detailed definition in (i) Document M100 (Performance Standards for Antimicrobial
Susceptibility Testing) of the CLSI for the FDA and (ii) EUCAST documentation (EUCAST; no I category set for delafloxacin essentially because the
approved dosage is fixed)].
dMethicillin-resistant and methicillin-susceptible isolates.
eFor the FDA, the current absence of resistant isolates precludes defining any results other than ‘Susceptible’. Isolates yielding MIC results other than
‘Susceptible’ should be submitted to a reference laboratory for further testing.
fFor FDA: this includes S. anginosus, S. constellatus and S. intermedius.
gIE (EUCAST): insufficient evidence that the organism or group is a good target for therapy with the agent.
hNew nomenclature for Enterobacteriaceae.
iFor FDA: E. coli, K. pneumoniae, and E. cloacae only; for EUCAST: E coli only.
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Figure 4. Structure of oritavancin with emphasis on its ionizable functions and hydrophobic side chain. Oritavancin is a large molecule compared to
most other antibiotics (projection area: 183–281 Å2; van der Waals volume: 1254 Å3), which explains its lack of penetration through the outer mem-
brane of Gram-negative organisms, hence its lack of activity against these pathogens, as well as its complete lack of oral bioavailability and necessity
for parenteral administration. While the un-ionized form of oritavancin is highly lipophilic (logP = 9.32) due to the presence of the 40-chlorobiphenyl
methyl moiety (highlighted in yellow), the molecule is made polycationic at both pH 7.4 and 5.5 due to the presence of 3 amino functions with pKas
>8.5, and further gains in polarity due to the large number of ketones and hydroxyl functions with electronic de-localizations (several of which are
involved in the binding of the D-Ala-D-Ala termini of the peptidoglycan precursors), showing a globally strong negative logD at both neutral and acidic
pHs (#16.67 and #7.33 at pH 7.4 and 5.5, respectively). Oritavancin has, therefore, a marked amphiphilic character favouring its interaction with
negatively charged membrane phospholipids (abundant in Gram-positive bacteria). This causes membrane rigidification and permeabilization,88,89

which may contribute to, and enhance the bactericidal activity of oritavancin, including against intracellular,90 and biofilm-encased S. aureus.91,92

The 40 chlorobiphenyl methyl increases the binding of oritavancin to the D-Ala-D-Ala terminus of the cell wall precursor so that modification of the ter-
minal D-Ala to D-Lac in vancomycin-resistant organisms using the VanA mechanism is insufficient to markedly affect oritavancin activity.93 The cor-
rect positioning of the 40 chlorobiphenyl methyl moiety, however, requires the presence of a closely apposed positive charge (see arrow), which is
specific to oritavancin. Structures and calculations were made with Marvin sketch 21.13 (Chemaxon, Budapest, Hungary).
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susceptibility breakpoints are �0.12 mg/L for oritavancin against
S. aureus (whether MSSA or MRSA) and Enterococci spp, and
�0.25 mg/L against Streptococcus spp. (b-haemolytic or viridans),

while those of dalbavancin are�0.25 mg/L for all these organisms
(absence of resistant isolates precluded defining any results other
than ‘Susceptible’). EUCAST MIC breakpoints for S. aureus (whether
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Figure 5. Structure of dalbavancin with emphasis on its ionizable functions and hydrophobic side chain. Like oritavancin, dalbavancin is a large mol-
ecule (projection area: 223–332 Å2; van der Waals volume: 1557 Å3) with complete lack of activity against Gram-negative pathogens and no oral bio-
availability. Like vancomycin, it binds to the D-Ala-D-Ala termini of peptidoglycan precursors and, like oritavancin, its activity is also enhanced by a
long hydrophobic tail (highlighted in yellow). However, the logP of dalbavancin (un-ionized form) is less positive (3.04), and its logD (ionized form) less
negative (#0.25 at pH 7.4 and #1.28 at pH 5.5) than those of oritavancin, because the molecule has only two amino functions, with one having a pKa

of only 7.09. The molecule is thus predominantly monocationic at pH 7.4 and becomes dicationic only at acidic pH. Its weaker amphiphilic character
may decrease its interaction with bacterial membranes compared with oritavancin,94 although enhancement of activity compared with vancomycin
has been demonstrated.95 Note also that, in contrast to oritavancin, there is no ionizable group in close vicinity to the hydrophobic side chain.
Structures and calculations were made with Marvin sketch 21.13 (Chemaxon, Budapest, Hungary).
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MSSA or MRSA) are �0.125 mg/L for both drugs; breakpoints are
not provided for coagulase-negative staphylococci. Breakpoints for
streptococci of Groups A, B, C, G, and viridans group streptococci
(Streptococcus anginosus group only) are�0.25 mg/L for oritavan-
cin and �0.125 mg/L for dalbavancin. For enterococci, resistance
to dalbavancin is common, with both Enterococcus faecalis and
Enterococcus faecium displaying a bimodal MIC distribution in the
EUCAST database with modes at 0.06 and 16 mg/L; oritavancin
has a unimodal MIC distribution for enterococci with mode at
0.08 mg/L but significant spreading to 0.25 mg/L for E. faecium;
both drugs are classified as having insufficient evidence to
determine that Enterococcus spp. are a good target for therapy
(Table 2).

Phase III studies with lipoglycopeptides

Dalbavancin

Dalbavancin was approved in the US in 2014,108 and in Europe in
2015109 for treating adults with ABSSSI based on the pivotal Phase
III DISCOVER trials that used FDA endpoints13 for ABSSSI to assess
non-inferiority to twice-daily vancomycin for 10–14 days with the
option of switching to oral linezolid.110 Two identical trials were

conducted in a total of 1303 patients who were randomized to dal-
bavancin (n = 652) or to vancomycin with the option to switch to
oral linezolid after �3 days (n = 651). Early response rates at
48–72 h were similar in the dalbavancin group and the vancomycin
with optional switch to linezolid group (79.7% versus 79.8%) and
the proportion of patients with a �20% reduction in the infected
area was also similar (88.6% versus 88.1%). Clinical success in the
clinically evaluable population at day 14 (EMA endpoint) was
90.7% in the dalbavancin group versus 92.1% in the vancomycin
with optional switch to linezolid group. Serious AEs occurred in
2.6% of patients receiving dalbavancin and in 4.0% of patients
receiving vancomycin with optional switch to linezolid; discontinu-
ation for an AE occurred in 2.1% of patients with dalbavancin ver-
sus 2.0% with vancomycin with optional switch to linezolid.110

Analysis of pooled safety data from 3000 patients in controlled tri-
als of dalbavancin revealed AE rates of 44.9% with dalbavancin
(799/1778) versus 46.8% with comparator (573/1224).111

Subsequently, a randomized double-blind study comparing two IV
regimens of dalbavancin (1000 mg followed by a week later by
500 mg; or a single 1500 mg dalbavancin dose) established that
the single dose was not inferior in terms of early response and
14 day clinical outcomes for treatment of ABSSSI.112

Table 2. Breakpoints (mg/L) of dalbavancin, oritavancin and vancomycin for Gram-positive organisms causing acute bacterial skin and skin structure
infections (ABSSSI)

Pathogen Druga

FDA/CLSI M100 EUCAST

S I R S� R>

Staphylococcus spp. Dalbavancin �0.25 b b 0.125c 0.125d

Oritavancin �0.12 b b

Oritavancin, S. aureus 0.125c 0.125d

Vancomycin, S. aureus �2 4–8 �16 2 2

Vancomycin, coagulase-

negative

�4 8–16 �32 4 4

Enterococcus spp. Dalbavancine �0.25 b b IE IE

Oritavancin �0.12 b b IE IE

Vancomycin �4 8–16 �32 4 4

Streptococcus: Groups

A, B, C, and G

Dalbavancin 0.125c 0.125d

Oritavancin 0.25c 0.25d

Vancomycin 2 2

Streptococcus: b-haemolytic

group

Dalbavancinf �0.25 b b

Oritavancin �0.25 b b

Vancomycin �1 b b

Streptococcus: viridans

group

Dalbavancin, S. anginosus

group

�0.25 b b 0.125c 0.125d

Oritavancin, S. anginosus

group

�0.25 b b 0.25c 0.25d

Vancomycin �1 b b 2 2

IE, there is insufficient evidence that the organism or group is a good target for therapy with the agent.
aLipoglycopeptide MICs are method dependent (broth microdilution in the presence of 0.002% polysorbate-80 is the reference method).
bThe absence of resistant clinical isolates precludes defining any results other than ‘Susceptible’.
cIsolates susceptible to vancomycin can be reported susceptible to dalbavancin and oritavancin.
dNon-susceptible isolates are rare or not yet reported. The identification and antimicrobial susceptibility test result on any such isolate must be con-
firmed and the isolate sent to a reference laboratory.
eFor reporting against vancomycin-susceptible E. faecalis only.
fFor reporting against S. pyogenes, S. agalactiae, and S. dysgalactiae.
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Oritavancin

Oritavancin was approved for treating adult patients with
ABSSSI113,114 based on the pivotal SOLO I and SOLO II studies,
two studies with identical designs that demonstrated the non-
inferiority of a single 1200 mg oritavancin dose to 7–10 days of
twice-daily vancomycin in adults with SSTIs.115,116 The composite
primary efficacy endpoint assessed at 48–72 h was reduction in
lesion size or stop of spreading, absence of fever, and no require-
ment for rescue antimicrobial treatment (FDA endpoint assessed
in the modified ITT population); secondary endpoints were a
�20% reduction in lesion size after 48–72 h, and investigator-
assessed clinical cure at day 7–14 (EMA endpoint assessed in both
the modified ITT and clinically evaluable populations). Pooled
efficacy analysis of results from a total of 1959 patients showed
similar clinical response rates for oritavancin and vancomycin.117

Analysis of pooled safety data from the Phase 3 SOLO studies for
976 patients treated with oritavancin and 983 with vancomycin
did not reveal significant differences in AEs (55.3 versus 56.9%)
serious AEs (5.8 versus 5.9%) or treatment discontinuation for AEs
(3.7 versus 4.2%). Most AEs were mild; nausea, headache and
vomiting were the most frequent.118

A post hoc analysis exists of SOLO I and II patients stratified by
disease severity and site of care.119 Most patients (70.9%) were
categorized as Eron Class II (febrile, no unstable comorbidities) or
class III (significant systemic toxicity, �1 unstable comorbidity).
A study protocol variation had permitted outpatient care in US
centres, with care setting determined by the investigator.
Approximately 40% of patients with Class I–III infections had been
treated entirely in the outpatient setting (379 with oritavancin and
388 with vancomycin). There was no difference in response rates
according to disease severity or site of care. A second post hoc ana-
lysis showed that oritavancin was as effective as vancomycin in
the outpatient setting and revealed that oritavancin had signifi-
cantly better response rates for the primary endpoint among the
subgroup weighing �100 kg, and better clinical cure rates in
patients with wound infections.120

Retrospective assessment of real-world experience in a heter-
ogenous cohort of 440 patients (91% with SSTIs) who received ori-
tavancin at 26 US Centres revealed a clinical success rate of
88%.121 This is comparable to the combined results from the SOLO
studies (93%), considering that the cohort included 39 cases of
bacteraemia, osteomyelitis, synovitis, or prosthetic joint infection.
Multiple oritavancin doses had been administered in 5.2% of SSTIs
and 28% of other infections. MRSA was identified in 64 of 146
infections with culture results (44%).

Economics

Several studies have assessed the potential cost savings with long-
acting therapies versus inpatient treatments for SSTI.122,123 The
cost of treatment with dalbavancin from the US perspective is ap-
proximately equivalent to the cost of 1.5 days in hospital,124 while
a pragmatic trial comparing outcomes before (n = 43) and after
(n = 48) introduction of an ABSSSI care pathway including dalba-
vancin revealed that long-acting treatment reduced LOS by
2 days.125 A retrospective chart review in US patients with SSTIs
revealed that patients treated with oritavancin (n = 120) had
equivalent 30 day healthcare costs (12 695 versus 12 717 US$).126

The largest 30 day cost component with oritavancin was

associated with outpatient service visits (drug acquisition and ad-
ministration costs), while costs with vancomycin were largely
accounted for by inpatient admissions, emergency department
visits, and outpatient services.126 However, the study did not con-
sider indirect costs incurred by patients receiving IV therapy and
drug monitoring for 7–10 days, or benefits from reduced contact
with the healthcare setting.

In addition to cost savings associated with reduced LOS and
convenience of administration, the use of long-acting therapies at
early discharge is also associated with favourable clinical out-
comes. In the above-mentioned US retrospective chart review, ori-
tavancin was associated with a lower 30 day subsequent hospital
admission rate than vancomycin (6.1% versus 16.2%;
P = 0.003).126 This finding appears to be confirmed by the results of
a descriptive retrospective cohort of adult inpatients with SSTIs
who were discharged with single-dose oritavancin or oral step-
down antibiotic therapy, revealing fewer 30 day SSTI-related read-
missions in patients receiving oritavancin 7/99 (7.1%) compared
with 18/100 (18.0%) with oral step-down therapy; 6 of the 7 read-
missions in patients receiving oritavancin involved Gram-negative
pathogens.127 Meanwhile, a retrospective real world study
comparing single-dose dalbavancin to standard of care in age-
and BMI-matched adults with ABSSSI revealed more 30 day
SSTI-related readmissions in patients treated with dalbavancin
55/209 (26.32%) compared with standard of care 31/209
(14.83%; P < 0.01).128

There are no clinical trials that directly compare lipoglycopepti-
des, however a network meta-analysis of randomized controlled
trials revealed similar clinical response rates for dalbavancin,
telavancin and oritavancin compared with standard of care for
treatment of Gram-positive SSTIs.129 The associated cost analysis
estimated that use of long-acting antimicrobials for MRSA in the
US setting could save from 1442–6932 US$ for each cSSTI.

Summary and future perspectives

The value of new fluoroquinolones and long-acting
lipoglycopeptides in the treatment of ABSSSI

The development of new antimicrobials is driven in large part by
the urgent medical need for drugs to address multidrug-resistant
pathogens; however, new agents must also address the known
safety issues with the drugs already available and the high eco-
nomic burden associated with ABSSSI. New agents that match
these criteria are more than welcome. Dalbavancin, delafloxacin,
and oritavancin meet all three of these criteria and have a place in
the spectrum of antimicrobials for treating ABSSSI, where they can
bridge existing gaps and overcome obstacles to treatment.

Delafloxacin and long-acting agents provide cost-effective
treatment for eligible patients by allowing early discharge (dela-
floxacin and long-acting agents) or by avoiding admission al-
together (long-acting agents). Both long-acting agents provide
broad coverage for Gram-positive pathogens that includes MRSA;
while delafloxacin’s coverage of both Gram-positive and Gram-
negative pathogens makes it an appropriate choice for patients
with ABSSSIs caused by confirmed or suspected mixed pathogens,
perineal infections and abdominal surgical site infections. Long-
acting agents have the added benefit of guaranteed compliance,
which may provide a cost-effective alternative to hospitalization
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when treating infections in IV drug users when there are doubts
about adherence to treatment or possible misuse of an indwelling
venous access. All three of these new agents provide means to ad-
dress antimicrobial stewardship goals while responding to unmet
needs in ABSSSI treatment.

Research needed to determine the future value of
delafloxacin and the long-acting lipoglycopeptides
dalbavancin and oritavancin

Although safety data from Phase III studies support the good tol-
erability of these agents (e.g. delafloxacin does not increase the
risk of the QT prolongation and phototoxicity associated with other
agents in its class.72,73), real-life data from prospective observa-
tional trials and retrospective cohort studies, as well as careful
Phase IV post-marketing surveillance is necessary. Real world data
may allow personalization of treatment for patients with comor-
bidities and clarify the roles of these agents in evolving SSTI care
pathways.
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