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Abstract

R.A. Fisher’s 1922 paper On the dominance ratio has a strong claim to be the foundation paper for modern population genetics. It greatly
influenced subsequent work by Haldane and Wright, and contributed 3 major innovations to the study of evolution at the genetic level.
First, the introduction of a general model of selection at a single locus, which showed how variability could be maintained by heterozygote
advantage. Second, the use of the branching process approach to show that a beneficial mutation has a substantial chance of loss from the
population, even when the population size is extremely large. Third, the invention of the concept of a probability distribution of allele fre-
quency, caused by random sampling of allele frequencies due to finite population size, and the first use of a diffusion equation to investi-
gate the properties of such a distribution. Although Fisher was motivated by an inference that later turned out to lack strong empirical sup-
port (a substantial contribution of dominance to quantitative trait variability), and his use of a diffusion equation was marred by a technical
mistake, the paper introduced concepts and methods that pervade much subsequent work in population genetics.
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Introduction
In 1922, R.A. Fisher published his paper On the dominance ratio,
which can reasonably be thought of as the foundation paper for
modern population genetics (Fisher 1922b). It influenced much
subsequent work by J.B.S. Haldane and Sewall Wright, the other 2
“Founding Fathers” of theoretical population genetics, and made
3 major novel contributions to our understanding of genes in
populations.

1) The formulation of a general model of selection on a single
autosomal locus in an infinitely large population, and the
discovery that selection can actively maintain variation in a
population when there is heterozygote advantage at a locus
with 2 alleles.

2) The discovery that a selectively favorable mutation has a
substantial chance of loss from a very large population, and
the use of the branching process for studying this problem
quantitatively.

3) The invention of the concept of the probability distribution
of an allele frequency, and the introduction of the diffusion
equation method for analyzing the effects of random sam-
pling of allele frequencies in a finite population.

Despite these important innovations, it attracted little atten-
tion for several years. Even J.B.S. Haldane, who was scrupulous
about citing others, did not refer to it in his first 2 papers on the
theory of selection (Haldane 1924a, 1924b).

To modern readers, the title of the paper may seem mystify-
ing. Fisher’s main motivation was to examine the population ge-
netic basis for what he believed to be an important general

feature of the inheritance of quantitative traits, described in his

famous 1918 paper. In that paper, he showed how the biometrical

findings of Galton and Pearson on traits like human stature could

be explained by the joint effects of multiple loci with individually

small effects, together with nongenetic effects (Fisher 1918). He

estimated that the dominance component of the genetic variance

was often about 33% of the total genetic variance, and called this

fraction the “dominance ratio.” This value came from the empiri-

cal observation that the correlation between mid-parent value

and offspring value in human populations for traits like stature

was smaller than the correlation between full siblings. To Fisher,

this implied that a substantial component of variance is due to

dominance, i.e. departures from additive effects on heterozygotes

of the alleles at the individual loci contributing to variation. He

wanted to find out why the dominance ratio had such a high

value.
Fisher was also motivated by the proposal by the Dutch biolo-

gists, Arend Lourens Hagedoorn and Anna Cornelia Hagedoorn-

Vorstheuvel La Brand, that random fluctuations in allele fre-

quencies due to finite population size are of greater importance

than selection in determining the level of variability in a species

(Hagedoorn and La Brand 1921)—see Theunissen (2014) for an ac-

count of the Hagedoorns’ work in genetics and animal breeding.

Fisher wrote a hostile review of their book (Fisher 1922a), starting

with “An excellent title is followed by a disappointing book.” He went

on to say “. . . The authors believe. . . that the random selection of indi-

viduals to become the parents of the next generation is a more important

factor in reducing the variability than is the natural selection of advanta-

geous characters. . . . The whole question is worthy of a thorough
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discussion, but the authors evidently lack the statistical knowledge neces-
sary for its adequate treatment.” He then asserted that the rate of
loss of variability caused by what he called the “Hagedoorn effect”
[nowadays usually called “random genetic drift”; the term “drift” for
this process was introduced by Wright (1931)], is the reciprocal of
4 times the population size, and he contrasted this with the rate
of change in the frequency of a selectively favorable allele.

The introduction to the 1922 paper ended with the following
remarks (pp. 323–324), which bring out the importance that
Fisher attached to the dominance ratio. “The decay in the variance
of a species breeding at random without selection, and without mutation,
is almost inconceivably slow: a moderate supply of fresh mutations will
be sufficient to maintain the variability. When selection is at work even
to the most trifling extent, the new mutations must be much more nu-
merous in order to maintain equilibrium. That such is the case in man-
kind may be inferred from the fact that the frequency distribution of the
numerical proportion of the allelomorphs, calculated on the assumption
of selection maintained in equilibrium by occasional mutation, leads to
the value of the Dominance Ratio which is actually observed.”

As discussed below, Fisher’s belief that a dominance ratio of
one-third reflects a fundamental property of the population ge-
netic basis of quantitative trait variability was misplaced, and his
analyses of the probability distributions of allele frequencies un-
der different scenarios of selection and mutation were based on
an erroneous formula, which was not corrected until several
years later (Fisher 1930a). Nevertheless, the 1922 paper repre-
sents a major step forward in thinking about the causes of evolu-
tionary change and natural variation. Indeed, the question of the
nature of the population genetic processes maintaining variation
in quantitative traits was first posed in this paper, and remains a
very active research topic (Walsh and Lynch 2018, Chapter 28;
Sella and Barton 2019).

Fisher’s model of selection on a single locus,
and the first analysis of balancing selection
Part 1 of the paper deals with equilibrium under selection acting
on an autosomal locus, segregating for 2 alleles in an infinitely
large, randomly mating, discrete-generation population. It was
motivated by the fact that a loss of fitness under inbreeding is
widely observed—Fisher cited a recently published book on in-
breeding (East and Jones 1919). It had been known for several
years that such an effect of inbreeding can be produced when
heterozygotes at a biallelic locus have a higher fitness than the 2
homozygotes, but no population genetic analysis of this situation
had been carried out.

Fisher used a, b, and c to denote the relative fitness of the 3
possible genotypes at an autosomal biallelic locus (A1A1, A1A2,
and A2A2), and showed that only the cases when b> a, c or b< a, c
permit an equilibrium with both alleles present in the population.
He stated that the case b> a, c (heterozygote advantage) leads to
a stable equilibrium of allele frequency, and that the opposite re-
lation gives an unstable equilibrium, but did not formally prove
these results. He suggested that the maintenance of variation by
heterozygote advantage could cause hybrid vigor and inbreeding
depression. “Such factors should therefore commonly be found, and
may explain instances of hybrid vigour, and to some extent the deleteri-
ous effects sometimes brought about by inbreeding.” (Note that by
“factor” Fisher meant a locus segregating for more than 1 allele.)
The extent to which loci subject to heterozygote advantage con-
tribute to inbreeding depression is still debated (Charlesworth
and Willis 2009; Charlesworth 2015).

This discovery of Fisher’s was the first example of what came
to be known as balancing selection, the active maintenance of
variability by natural selection. Natural selection had initially
been thought of in terms of one form replacing another, less fit,
one. The first discovery of balancing selection was H.J. Muller’s
analysis of a case of balanced lethals (Muller 1918); this involved
2 different arrangements of a Drosophila chromosome, inverted
and standard arrangements, where both homozygotes were invi-
able because each arrangement carried a different recessive le-
thal mutation. Not until 1954 was the first example of
heterozygote advantage at a single locus convincingly docu-
mented, in the classic case of sickle-cell hemoglobin (Allison
2004).

Fisher later introduced the concept of the maintenance of
multiple phenotypic forms (morphs) by negative frequency-
dependent selection in systems of Batesian mimicry (Fisher 1925,
1930b, Chapter 7). Many other types of balancing selection are
now recognized (Charlesworth and Charlesworth 2010, Chapter
2), and searches for signatures of balancing selection are an im-
portant part of modern population genomics research (Fijarczyk
and Babik 2015).

The survival of a new mutation
In part 2, Fisher initiated the analysis of stochastic effects on al-
lele frequencies by examining the fate of a mutant gene in a very
large, discrete-generation population. Fisher realized that, when
a mutation has newly arisen and is very rare, its carriers can be
studied in isolation from the rest of the population, either in the
case of a haploid population, or the heterozygous carriers of a
mutant allele in a randomly mating, diploid population. In both
cases, the mutant allele is initially transmitted clonally. In the
simplest situation, the population itself is assumed to be station-
ary in size, so that the expected number of successful offspring
per carrier of a neutral mutation is 1. Denoting the number of off-
spring for carriers of a favorable mutation by m, the case when
m> 1 implies that the mutation is favored by selection, with a se-
lective advantage of s¼m � 1.

Fisher treated the problem by using a probability-generating
function (p.g.f.), a concept that traces back to De Moivre in the
18th century. He assumed that there is random variation among
individuals of the same genotype, such that pi is the probability
that i offspring are contributed by an individual to the next gener-
ation (usually defined as the interval from zygote to zygote). The
fact that each carrier of a mutation gives rise to an uncertain
number of descendants is the essence of the branching process,
whose study long predates Fisher’s application of it to genetics,
although it is unclear whether Fisher was aware of this (Kendall
1966; Bru et al. 1992).

The p.g.f. is defined as:

f xð Þ ¼ p0 þ xp1 þ x2p2 þ ::þ xipi þ . . . (1)

If there were only a single copy of the mutant gene in the first
generation after its occurrence, the probability that there are i
copies in the next generation is the coefficient of xi in the p.g.f.
After 1 generation, the generating function becomes f(f(x)), after
another generation f(f(f(x))), and so on. This provides a useful
method of iterating the probability distribution of the numbers of
copies of the mutation over the generations. However, once the
mutation becomes sufficiently common, the rest of the popula-
tion cannot be ignored and the method is no longer applicable,
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but by then the mutation is unlikely to be lost from the popula-
tion and its spread can be treated deterministically.

Fisher proposed that it is biologically realistic to assume that
the offspring number of individuals follows a Poisson distribution
with mean m, because the chance that a given offspring individual
comes from a specified parent is very small when the population
size is large. In this case, the p.g.f. has the form exp [m(x � 1)], and
p0 ¼ exp (�m), which is the chance of loss in the first generation af-
ter the appearance of the mutation. If m¼ 1.10 (i.e. there is a 10%
selective advantage), p0 ¼ 0.333. Fisher asserted that, for a neutral
mutation with m¼ 1, there is only a 2% chance that it will survive
100 generations, and that the survivors will be represented on av-
erage in 50 individuals. He concluded by writing:

“Only when the number of individuals affected becomes large will the

effect of selection predominate over that of random survival, though

even then only a very small minority of the population may be

affected.”

This aspect of Fisher’s paper attracted the attention of J.B.S.
Haldane, who wrote a famous paper that considerably extended
Fisher’s treatment (Haldane 1927). In particular, Haldane realized
that the probability of ultimate loss of a mutation is given by the
smaller solution with 0� x� 1 of the equation x¼ f(x). This result
had been found previously by the French mathematician I.J.
Bienaym�e in 1845, in the context of the survival of human family
names (Bru et al. 1992). In the case of a Poisson distribution of off-
spring number, and a value of s that is sufficiently small that s2 is
negligible compared with s, this formula leads to Haldane’s well-
known approximation 2s for the ultimate survival probability of a
weakly selected mutation.

It is often a surprise to students to learn that a mutation with
a selective advantage of, say, 10% has an approximately 80%
chance of being lost from a large population. One important im-
plication is that different populations exposed to the same selec-
tion pressure may adapt by establishing mutations at different
nucleotide sites or in different genes, since it is a matter of
chance which beneficial mutation will succeed in a given popula-
tion (Mani and Clarke 1990; Charlesworth and Charlesworth
2010, Chapter 3; Ralph and Coop 2010); human resistance to ma-
laria is an example of such a multiplicity of independent genetic
responses to the same selection pressure (Kwiatkowski 2005).

In his 1930 paper, much of which is reproduced in Chapters 4
and 5 of The Genetical Theory of Natural Selection (GTNS for short),
Fisher made elegant use of the branching process method to
study the probability distribution of allele frequencies for allele
frequencies near zero or 1 (Fisher 1930a, 1930b). He also provided
an independent derivation of Haldane’s approximation for the
survival probability of a mutation, using the diffusion equation
method discussed below. These results on survival probabilities
have been very widely used in evolutionary genetics, especially in
models of molecular evolution (Kimura and Ohta 1971; Kimura
1983), the theory of adaptive walks (Orr 2005; Walsh and Lynch
2018, Chapter 27), and models of selective sweeps (Walsh and
Lynch 2018, Chapter 10; Stephan 2019).

The effects of finite population size on neutral
variability
This section of the paper introduced the mathematical study of
stochastic changes in allele frequencies due to finite population
size into evolutionary biology. Fisher used what is now often called
the “Wright-Fisher model” (Ewens 2004, p. 21), in which a discrete-
generation population of n adult individuals is assumed to follow a

binomial sampling process with respect to the allele frequency at
a diploid, biallelic locus. If the frequencies of alleles A1 and A2 are
p and q¼ 1 � p, respectively, the variance of p after 1 generation is
pq/(2n). This dependence on p is a complication, which Fisher
wished to avoid. He used the trick of transforming to a variable h

such that cos(h) ¼ 1 � 2p; with p varying from 0 to 1, cos(h) lies be-
tween 1 and �1, and h and 0 � h � p (where h is measured in radi-
ans). On this scale, the variance of h due to 1 generation of
sampling is approximately 1/(2n); the error in this approximation
is negligible for the large values of n assumed by Fisher.

The underlying assumption is that the process of random sam-
pling creates a frequency distribution representing the behavior of
a large number of loci. These loci are all initially segregating for
pairs of alleles at the same frequencies. They are then allowed to
evolve independently under random sampling each generation, so
that the allele frequencies at different loci diverge; in each genera-
tion, there is a nonzero chance that a given locus become fixed for
one or other allele. Fisher was especially interested in the rate at
which loci become fixed and hence lose variability, and in the
mean number of loci that remain segregating. This is obviously
relevant to the Hagedoorns’ ideas, mentioned in the Introduction.

To analyze this problem, Fisher assumed that the population
size n is sufficiently large that, to a good approximation, p can be
treated as a continuous variable; in reality, p varies between 0
and 1 in increments of 1/(2n). The probability density function
(p.d.f.) for h in generation T can be written as y(h, T). Fisher as-
sumed a normal distribution of changes in h due to sampling
over 1 generation (p. 327), and set up an integral equation for the
value of y(h, T) in the next generation by assuming that changes
per generation in h are small (normality need not be assumed; it
is sufficient to neglect third- and higher-order powers of the
changes, e.g. Kimura 1964).

This procedure yielded the following partial differential equa-
tion for y(h, T) in the case of neutrality, where T is time measured
in generations:

@y
@T
¼ 1

4n
@2y

@h2 (2)

This is the first example of the use of a diffusion equation in
population genetics, and is identical in form to the equation derived
by Einstein to describe Brownian motion (Einstein 1905). Following
the example of Wright (1945), diffusion equations have become a
powerful tool for theoretical population geneticists, especially in the
hands of Warren Ewens, Motoo Kimura, and Tomoko Ohta (Kimura
1964, 1983; Kimura and Ohta 1971; Ewens 2004).

Equation (2) tacitly assumes that the mean change of h be-
tween 2 generations, conditioned on a given value of h, is zero;
this is an error, as discussed below. By a rather complex argu-
ment, Fisher concluded that the rate of change per generation of
y is asymptotically �y/(4n) (p. 330). This result can be reached
more easily: assume that y reaches an asymptotic state such that
the left-hand side of Equation (2) is equal to �ky, where k is a pos-
itive constant. There is then a constant proportional rate of de-
cline in the probability density of a given h value, due to fixation
of one of the 2 alleles at a segregating locus, and Equation (2)
gives the following equation:

@2y

@h2 ¼ �
1

4n
ky (3)

This property is expected on general principles, but was only
formally derived in 1955 by the use of a complex general
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expression for the p.d.f. of the allele frequency itself (Kimura
1955). McKane and Waxman (2007) have extended the treatment
of this case to include the frequencies of the 2 fixed classes as
well as the p.d.f. for the segregating loci.

Assume that y(h, T) can be expressed as the product of a func-
tion of T and a function of h, as is usual in treatments of this type
of equation (Kimura 1955; Ewens 2004, p. 151, 159). Equations (2)
and (3) then have the solution y(h, T) ¼ A sin(h) exp(�kT), with
k¼ 1/(4n), where A is a constant determined by the initial value of
h. The term sin(h) can be interpreted as the p.d.f. for h at segregat-
ing loci. This implies that, in the long run, the proportion of segre-
gating loci declines at a rate of 1/4n.

Fisher believed that n is likely to be in the millions for most
species so that the rate is negligibly small, contradicting the
Hagedoorns’ argument (p. 330). “This is a very slow rate of diminu-
tion, a population of n individuals breeding at random would require 4n
generations to reduce its variance in the ratio of 1 to e, or 2.8 to halve it.
As few specific groups have less than 10,000 individuals between whom
interbreeding takes place, the period required for the Hagedoorn effect, in
the entire absence of mutation, is immense.”

Fisher’s error
The error in Equations (2) and (3) came to light in the following
way. According to William Provine’s biography of Sewall Wright
(Provine 1986, Chapter 8), Fisher met Wright when he was on a
tour of the USA in 1924, having been impressed by Wright’s 1921
papers on inbreeding and quantitative inheritance (Wright 1921a,
1921b). He later sent Wright a copy of the 1922 paper, which stim-
ulated Wright to start to think about evolution in terms of popu-
lation genetics. By 1925, Wright had written a lengthy
manuscript, which evolved into his classic paper Evolution in
Mendelian populations (Wright 1931). He assumed the same model
as Fisher, and used his path coefficient method to deduce the
rate of decline in 1 – F (where F is the inbreeding coefficient), find-
ing it to be 1/(2n), not 1/(4n). Wright struggled to understand
where the discrepancy came from, assuming that the rate of de-
cline in 1 – F should be the same as Fisher’s rate of loss of segre-
gating loci. He also used an alternative method of handling the
distribution of allele frequencies (without using a transform), and
found the rate of loss of segregating loci to be 1/(2n).

As a result of correspondence with Wright about this problem,
Fisher realized that he was mistaken in assuming that a mean
change in h over 1 generation under pure random sampling is
zero; this is true of the allele frequency itself, but the correct ex-
pression for the mean change in h is—y cot(h)/4n. The full differ-
ential equation for y when there is a mean change in h per
generation of Mdh is:

@y
@T
¼ � @ yMdhð Þ

@h
þ 1

4n
@2y

@h2 (4)

Neither Fisher nor Wright realized that this expression is an
example of the equation already known to physicists as the
Fokker–Planck equation, which was discovered independently by
Adriaan Fokker in 1914 and Max Planck in 1917 (Fokker 1914;
Planck 1917); Wright was informed of this much later by a col-
league (Wright 1949). It was also found independently by the emi-
nent Russian mathematician A. N. Kolmogorov in 1931
(Kolmogorov 1931), and is often referred to as the “Kolmogorov
forward equation.” Kolmogorov himself used it for solving a pop-
ulation genetics problem (Kolmogorov 1935). He later wrote to
Wright, who published a paper applying it to the allele frequency

rather than to Fisher’s transform (Wright 1945). This method has
now become standard practice in population genetics (Kimura
1964; Ewens 2004, Chapters 4 and 5; Charlesworth and
Charlesworth 2010, Chapters 5, 6, and 8; Walsh and Lynch 2018,
Appendix A1). The use of the transform to h now seems like a dis-
traction (and the use of the transform certainly contributes to
the difficulty in following Fisher’s calculations).

In 1930, Fisher revised his 1922 calculations; for the case of
pure drift, he showed that y is still proportional to sinh, but that
the (asymptotic) rate of loss of segregating loci is equal to
Wright’s value of 1/(2n) (Fisher 1930a). Using the rule for a change
of variable in a p.d.f., it is straightforward to show that y¼A sinh

transforms to a uniform distribution of allele frequency p, in
agreement with Wright’s analysis (Wright 1931). Fisher preferred
to work with the logit transform, z ¼ ln(p/q), which ranges from
z ¼ �1 to z ¼ 1. For the case of a constant rate of loss of segre-
gating loci, this gives the curve in Figure 1 of Fisher (1922b).
Kimura later showed that it can take a very long time (of the or-
der of 4n generations) to reach this state (Kimura 1955), so that
this result is of limited value as far as biology is concerned.
In contrast, and in agreement with Wright’s finding using the
inbreeding coefficient, the mean heterozygosity at a locus, 2pq,
always declines at a constant proportional rate of 1 � 1/(2n).

It is interesting to note that Kolmogorov had great respect for
Fisher’s 1930 work. In an anecdote related by Kendall (1990), at a
1967 conference on branching process theory, Kolmogorov was ir-
ritated by the highly abstract work presented by several mathe-
maticians, and decided to remind them of the biological origins
of the subject, referring to the GTNS as “das wundervolle Buch von
R.A. Fisher [the wonderful book of R.A. Fisher].” Kendall wrote
that “Two United States mathematicians sitting near to me were heard
to whisper ‘It can’t be the R.A. Fisher we know’. There is another half to
that story. Will Feller used to say that if Kolmogorov had not written his
1931 paper, the whole of stochastic diffusion theory would have eventu-
ally been pieced together starting with the ideas in Fisher’s book.”

Fisher used his 1922 formula for y to calculate the expected
dominance ratio given by the distribution of allele frequencies,
using his 1918 formulae for the additive and dominance varian-
ces (denoted here by VA and VD), and assuming complete domi-
nance of one or other allele at a given locus. As was done by
Wright (1931), it is easier to work directly with the p.d.f. for allele
frequency p, /(p), and to integrate the products of VA and VD with
/(p) over the uniform distribution of p between 0 and 1 at segre-
gating loci. For a single biallelic locus with allele frequency p,
writing the difference between homozygotes A1A1 and A2A2 as
2a1, and the difference between the heterozygotes’ value and the
mean of the 2 homozygotes as d, we have VA ¼ 2a1

2pq [a1 þ d(q �
p)]2 and VD ¼ 4d2p2q2. With complete dominance (d ¼ a1), VA ¼
8a1

2pq3 and VD ¼ 4a1
2p2q2. Integrating these expressions to obtain

the mean values, VAM and VDM, where M denotes a mean, we
have VAM ¼ 2a1

2/5 and VDM ¼ 2a1
2/15, so that VDM/(VAM þVDM) ¼

1/4, as was found by Fisher.
Fisher also considered the stationary neutral case when the

loss of variability due to sampling is balanced by rare mutations,
assumed to be equally frequent in each direction. In this case,
the derivative of the frequency distribution is set equal to zero,
and the solution for Fisher’s (incorrect) 1922 diffusion equation is
a uniform distribution in h. Using the formula for the p.d.f. of a
transformed variable, the p.d.f. for p is proportional to 1/�(pq).
This is wrong, for the reasons described above, and the correct
distribution for p is a beta distribution (Wright 1931). With muta-
tions in each direction at rate u, and writing 4nu ¼ U, the distribu-
tion has the form:

4 | GENETICS, 2022, Vol. 220, No. 3



/ pð Þ ¼
CðUÞ2

Cð2UÞ p
U�1 qU�1 (5)

where C(U) is the gamma function (for a derivation, see

Charlesworth and Charlesworth 2010, pp. 233–234). The

moments of the beta distribution are well known, so it easy to ob-

tain expressions for VAM and VDM.
When U� 1, which is the most likely situation for a single ge-

netic locus given that mutation rates are generally very small

compared with 1/n (Walsh and Lynch 2018, p. 106), /(p) is in-

versely proportional to pq, so that most allele frequencies at seg-

regating loci are close to 0 or 1. Assuming complete dominance of

one or other of the 2 alleles, we then have:

VAM ¼
8
3

a2
1 U; VDM ¼

2
3

a2
1U;

VDM

VAM þ VDM
¼ 0:2 (6)

This dominance ratio of 0.2 is close to Fisher’s value of 0.2308.

The effects of selection
Fisher also considered the effects of directional selection at a

biallelic locus. He first considered what he called “uniform genetic

selection”: the heterozygotes’ fitness is the geometric mean of the

homozygotes’ fitnesses, i.e. it is the square root of the product of

the homozygotes’ fitnesses. If a, b, and c are the relative fitness of

the 3 genotypes, A1A1, A1A2, A2A2, we can write r¼ a/b¼ b/c. The

recurrence relationship for allele frequency then has an explicit

solution. If pt is the frequency of allele A1 in generation t and

there is random mating, we have:

pt

qt
¼ rt p0

q0
(7)

Fisher assumed that r is close to 1, and used a ¼ ln (r) as a

measure of the strength of selection (this is approximately the

same as assuming that the heterozygote is exactly intermediate

in fitness between the homozygotes, i.e. there is semidominance

with respect to fitness). The mean change in allele frequency per

generation is now approximately equal to apq, which can be

plugged into the diffusion Equation (4) after a change of variable

to h.
Fisher analyzed the distribution of allele frequencies under

this model, and evaluated the dominance ratio; given his errone-

ous assumption about the diffusion equation, this approach was

necessarily flawed. However, the correct distribution under drift,

mutation and semidominant selection was obtained by Wright

(1931), and has the form:

/ pð Þ ¼ C exp 4napð ÞpU�1qU�1 (8)

where C is a constant that ensures that the distribution integra-

tes to 1.
Even for this case, the expressions for the moments for arbi-

trary 4na are quite complicated, involving confluent hypergeo-

metric functions (Kimura et al. 1963; Charlesworth and Jain

2014). However, if selection on individual loci is very weak, as

may reasonably be supposed to be true for a quantitative trait

controlled by many loci, this can be approximated by a beta dis-

tribution similar to that in Equation (5) by setting the exponential

term to one, which reduces to the previous neutral case with a

dominance ratio of 0.2.

If selection is strong, so that 4na � 1, the distribution can be
approximated by another beta distribution, assuming that devia-
tions from the mean of p are small (Charlesworth and
Charlesworth 2010, p. 354). In this case, the mean frequency of
the selectively disadvantageous allele A2 is approximately the
same as the infinite population equilibrium value, q* ¼ u/a, with
q* � 1 (Haldane 1927). If each selected locus affects a quantita-
tive trait, with a difference of 2a1 between the 2 homozygotes as
before, then the assumption that there are equal frequencies of
loci with dominant and recessive effects (as was done by Fisher)
gives:

VAM � 4a2
1u=a; VDM � 4a2

1u=na (9)

The dominance ratio in this case is close to zero, since VDM �
VAM if n� 1.

Fisher (p. 334) made some interesting remarks concerning var-
iability under selection and drift, which are qualitatively correct
and were followed up in his 1930 paper and book (Fisher 1930a,
1930b). “The existence of even the slightest selection is in large popula-
tions of more influence in keeping variability in check than random sur-
vival. A further effect of selection is to remove preferentially those factors
[segregating loci] for which a is high, and to leave a predominating
number in which a is low. In any factor a may be low for one of two rea-
sons: (1) the effect of the factor on development may be very slight, or (2)
the factor may effect changes of little adaptive importance. It is therefore
to be expected that large and easily recognised factors in natural organ-
isms will be of little adaptive importance, and that the factors affecting
important adaptations will be individually of very slight effect. We
should thus expect that variation in organs of adaptive importance
should be due to numerous factors, which individually are difficult to
detect.”

Fisher also considered the case of what he called “uniform ge-
notypic selection,” i.e. complete dominance in the fitness effect
of A1, so that the relative fitnesses of A1A1, A1A2, A2A2 are
a¼ b 6¼ c. He showed that the recurrence relation is then:

pt

qt
¼ pt�1

qt�1

a
apn�1 þ c

� pt�1

qt�1
1þ qt�1bð Þ (10)

where b ¼ (a/c) � 1, which is what we would now call a selection
coefficient (pp. 334–335).

He went on to remark that “Genotypic selection resembles genetic
selection in diminishing the amount of variability which a given fre-
quency of mutation can maintain. . . it differs, however, in being compar-
atively inactive in respect of factors in which the dominant allelomorph is
in excess, and consequently in allowing a far greater number of factors to
exist in this region.” The inefficiency of selection against deleteri-
ous recessive alleles had previously been pointed out by R.C.
Punnett (1917) in an argument against eugenics, using a calcula-
tion supplied by the mathematician G.H. Hardy, and was later
strongly emphasized by Haldane (1924a, 1927). Fisher (1924) later
countered Punnett’s argument by pointing out that it is not nec-
essarily true that traits such as mental disability are simple
Mendelian traits, as was assumed by Punnett [for a discussion of
Fisher’s view on eugenics, see Bodmer et al. (2021)].

To calculate the dominance ratio, Fisher assumed that the
effects of the alleles at each locus on the trait are unidirectionally
dominant with respect to increases in the trait value (A1 is domi-
nant over A2), and that the recessive alleles at each locus are se-
lected against according to the genotypic selection model with
b > 0. Fisher’s treatment of the distribution of allele frequency
using h was, of course, flawed, so that his quantitative treatment
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is inaccurate. He also briefly analyzed assortative mating with re-
spect to a quantitative trait and concluded that it would have lit-
tle effect on the dominance ratio.

To do this, he studied the dynamics of selection under this
model, and the resulting probability distribution of allele fre-
quencies, assuming that the assortative mating causes negligible
deviations from Hardy–Weinberg proportions at individual loci.

The correct distribution of allele frequencies under weak se-
lection with arbitrary dominance and random mating was not
found until 1937 (Wright 1937). For complete dominance and
symmetrical mutation, we have:

/ pð Þ ¼ C exp �2nbq2
� �

pU�1qU�1 (11)

Once again, the moments of this distribution do not have a
simple form, so that it is not possible to get simple and general
expressions for the variance components. However, some
insights can be obtained without exact results. With very weak
selection, this case reduces to the neutral one already considered,
with a dominance ratio of 0.2. But, as Fisher noted, selection
against deleterious recessives means that the distribution is
more skewed to low values of q than under neutrality. With com-
plete dominance of A1 alleles, loci with low q contribute more to
VD than to VA, so we expect a larger dominance ratio than under
neutrality. In the limiting case of 2nb � 1, the mean of q � �(u/b)
(the deterministic value) and deviations from it can be neglected.
This gives:

VAM � 8
u
b

� �3
2

a2
1; VDM � 4

u
b

� �
a2

1 (12)

The dominance ratio therefore approaches one, since
VDM=VAM � 1

2

ffiffiffiffiffiffiffiffi
b=u

p
� 1.

Conclusions about the dominance ratio
Fisher was correct in thinking that there are circumstances under
which the dominance ratio can be substantial when selection is
sufficiently weak that drift has a substantial effect on allele fre-
quencies, or with unidirectional dominance and selection against
recessive alleles. Not surprisingly, Fisher asserted (p. 337) that
the latter is the case “which most nearly reproduces natural con-
ditions.” He summarized (p. 338) by writing: “In the light of the above
discussion in which we have deduced the distribution of allelomorphic ra-
tios from the conditions of equilibrium with selective influences from
which condition it is probable that species do not widely depart, we find
that the value 1/3 for the dominance ratio is produced by the asymmetry
of the distribution, and in such a manner as to be independent of the ac-
tivity of the selective agencies, provided that this exceeds a very low
level. When differential survival to the extent of only about 1 % in a gen-
eration affects the different Mendelian factors, in a population of only a
million, and far more for more powerful selection or a larger population,
the dominance ratio will be very close to its characteristic value of 1/3.”

However, this claim is not well-justified theoretically, as
shown above. It was criticized by Wright (1931), who pointed out
that there was little evidence to support Fisher’s assumption of
complete dominance at individual loci affecting quantitative
traits. Wright stated that the value 1/3 was based on Fisher’s
(1918) use of data on human sibling and parent offspring correla-
tions. He wrote (p. 138): “It is to be noted, however, that similarity in
the environment of brothers as compared with parent and offspring may
also contribute to a higher fraternal correlation and that in any case one

cannot reason from the dominance ratio deduced from correlations to the
distribution of factor frequencies without making some assumption as to
the prevalence of dominance.”

The modern consensus is that quantitative traits such as hu-
man body size show a predominance of additive genetic variance,
with little evidence for dominance or epistatic contributions (Hill
et al. 2008; Visscher and Goddard 2019). However, there is a para-
dox that has apparently gone unnoticed. The most widely used
model for explaining the maintenance of variability in quantita-
tive traits is a balance between new mutations and stabilizing se-
lection, whereby individuals with the extreme values of a trait
are selected against (Walsh and Lynch 2018, Chapter 28). Fisher
introduced the first population genetic model of this process in
Chapter 5 of the GTNS, where he assumed that fitness declines as
the square of the deviation of the trait value from the optimum
(Fisher 1930b).

This model was later analyzed in detail by Wright in 2 influen-
tial papers (Wright 1935a, 1935b). Importantly, with additive
effects of individual loci on the trait (no dominance), the strength
of selection on a given locus is proportional to the product of the
measure of the strength of selection on the trait as a whole and
the square of the effect of a locus on the trait, a1

2 (for a deriva-
tion, see Charlesworth and Charlesworth 2010, p. 190). Under the
widely accepted “infinitesimal model,” which dates back to Fisher
(1918), where most trait variation results from a large number of
loci with very small effects, this implies that selection on each lo-
cus is very weak, so that variants behave almost neutrally.
Wright showed that this means that a large proportion of the ge-
netic variance in fitness (as opposed to the trait itself) is then
caused by dominance and epistasis, i.e. it is nonadditive. Most
studies have, however, found little evidence for nonadditive vari-
ance in traits related to fitness (Charlesworth and Hughes 2000;
Charlesworth 2015). It is unclear how this paradox is to be re-
solved.

Conclusions
Although Fisher’s belief that the dominance component of the
genetic variance of quantitative traits is usually substantial
appears to be incorrect, and was due to his neglect of environ-
mental causes of resemblances between relatives, his work intro-
duced most of the basic concepts and methodology used in later
research in theoretical population genetics, in an astonishingly
profound paper. At the time of writing, he was employed as a
statistician at the Rothamsted Experimental Station; he pub-
lished 7 statistical papers in 1922, including his monumental pa-
per laying the foundations of modern statistical theory (Fisher
1922c), so that his work on population genetics was very much a
side show. His analysis of the effects of selection on a single locus
anticipated some of the slightly later results of Haldane (Haldane
1924a, 1924b, 1932). Fisher himself seems to have been unaware
of the earlier work of the Cambridge mathematician H.T.J.
Norton, who provided a table of changes in allele frequencies at
loci under selection for Punnett’s book on mimicry (Punnett
1915); this table is reproduced on p. 138 of Provine (1971).

The 1922 paper was the first analysis of stochastic changes in
allele frequencies; it led to Fisher’s great 1930 paper, which laid
the foundations of the neutral theory of molecular variation, and
to Wright’s extensive work on this problem. After 1930, Fisher
made only one further original contribution to the theory of ran-
dom genetic drift: his reexamination of the probability distribu-
tion of the frequencies of self-sterility alleles on pp. 104–110 of
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the second edition of the GTNS (Fisher 1958), where he criticized
Wright’s pioneering work on this problem (Wright 1939).

Although Fisher consistently discounted the significance of
random genetic drift in contributing to evolutionary change, in
1922 he drew the far-sighted conclusion (p. 324) that: “In all cases
it is worth noting that the rate of mutation required [to maintain a
given level of variability] varies as the variance of this species, but
diminishes as the number of individuals is increased. Thus, a numerous
species, with the same frequency of mutation, will maintain a higher var-
iability than will a less numerous species: in connection with this fact we
cannot fail to remember the dictum of Charles Darwin, that ‘wide rang-
ing, much diffused and common species vary most’ (1, chap ii).”

Fisher strongly emphasized this point at the beginning of
Chapter 5 of the GTNS.

This view of how the level of variation between individuals
within a population is determined is remarkably similar to the
modern view of molecular variation in natural populations
(Kimura 1983; Walsh and Lynch 2018, Chapter 4), with some im-
portant qualifications regarding the effects of selection at linked
sites on levels and patterns of variability (Walsh and Lynch 2018,
Chapter 8).
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