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ABSTRACT The breeder’s equation is a cornerstone of quantitative genetics, widely used in evolutionary
modeling. Noting the mean phenotype in parental, selected parents, and the progeny by E(Z0), E(ZW), and
E(Z1), this equation relates response to selection R = E(Z1) 2 E(Z0) to the selection differential S = E(ZW) 2
E(Z0) through a simple proportionality relation R = h2S, where the heritability coefficient h2 is a simple
function of genotype and environment factors variance. The validity of this relation relies strongly on the
normal (Gaussian) distribution of the parent genotype, which is an unobservable quantity and cannot be
ascertained. In contrast, we show here that if the fitness (or selection) function is Gaussian with mean m, an
alternative, exact linear equation of the form R9 = j2S9 can be derived, regardless of the parental genotype
distribution. Here R9 = E(Z1) 2 m and S9 = E(ZW) 2 m stand for the mean phenotypic lag with respect to the
mean of the fitness function in the offspring and selected populations. The proportionality coefficient j2 is
a simple function of selection function and environment factors variance, but does not contain the genotype
variance. To demonstrate this, we derive the exact functional relation between the mean phenotype in the
selected and the offspring population and deduce all cases that lead to a linear relation between them.
These results generalize naturally to the concept of G matrix and the multivariate Lande’s equation
D�z ¼ GP21S. The linearity coefficient of the alternative equation are not changed by Gaussian selection.
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The breeder’s equation for the evolution of quantitative traits for
additive genetic effects, introduced by Lush (Lush 1943), is widely
used both in artificial and natural selection theory and experiments
(Lande 1976; Falconer and Mackay 1995; Lynch and Walsh 1998;
Heywood 2005) and appears in all textbooks of quantitative genetic.
This equation can be stated as follow: consider a continuous pheno-
typic trait Z subject to selection. Noting the mean phenotype in pa-
rental, selected parents and the progeny by E(Z0), E(ZW) and E(Z1),
we can define the selection differential S = E(Zw) 2 E(Z0) and the
response R = E(Z1) 2 E(Z0). The scalar breeder’s equation reads R =
h2S and ascertains that the response to selection and the selection
differential are related through a proportionality relation that is the
ratio of genotype to phenotype variances, h2. The equation naturally

extends to selection on multiple traits and its vectorial version reads
D�z ¼ GP21S

Use of the breeder’s equation and its underlying assumptions has
been criticized by many authors (Kruuk 2004; Heywood 2005;
Pigliucci 2006; Gienapp et al. 2008; Pemberton 2010). One fundamen-
tal assumption of the breeder’s equation is the normal (Gaussian)
distribution of the breeding value (genotype) and environment factors.
Authors who demonstrate the linear relation (Kimura and Crow 1978;
Lande 1979; Lande and Arnold 1983; Nagylaki 1992; Falconer and
Mackay 1995; Lynch and Walsh 1998; Crow and Kimura 2009) as-
sume normal distribution for the aforementioned quantities or the
analogous hypothesis of linearity of the parent2offspring regression
(see Appendix/Parent2offspring regression). When this assumption
is relaxed, the breeder’s equation is no longer valid, and one has to
resort to a system of hierarchical moment (or alternatively, cumulant)
equations to describe the changes; in general, this system is not closed,
and the moments of a given order depend on moments of higher
order (Turelli and Barton 1990).

The assumption of a Gaussian distribution of the genotype can be
criticized on several grounds (Pigliucci and Schlichting 1997; Pigliucci
2006; Geyer and Shaw 2008). For example, the very act of selection
causes the genotype distribution to deviate from a Gaussian (Turelli
and Barton 1990; Turelli and Barton 1994) (see also equation 6
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below). Another important case is when the genotype is a cross be-
tween different breeds due to external gene flow or the breeder’s
scheme. In many cases, the phenotype can have a bell shape and thus
is assumed to be Gaussian, when the genotype is indeed far from it
(see, for example, Figure 2A). It is sometimes argued that even if the
breeding value does not follow a normal distribution, a scale can be
used to restore it to a normal distribution. Such a scale, however, will
also distort the distribution of environment factors and the assump-
tions of breeder’s equation are violated even in this case.

For additive genetic effects and in the absence of epistasis and
dominance, I derive here a precise functional relation between the
mean of the trait in the selected subpopulation and in their progeny
for the general case. The mathematical formulation is close to the
framework used by many authors such as Slatkin, Lande and Karlin
(Slatkin 1970; Karlin 1979; Lande 1979). I then use a standard tool of
functional analysis, the Fourier transform (FT), to deduce all the cases
that lead to a linear relation between the response R and the selection
differential S, regardless of the selection function. These cases imply
a precise form of the distributions of genotype and environment
factors, and I show that the proportionality factor between R and S
is the heritability coefficient h2 only if these distributions are normal.

The genotype, however, is not observable or controllable, and its
normal distribution cannot be assumed a priori. I show that if instead
of the genotype, the fitness function and environment factors are
Gaussian, then a new proportionality relation can be obtained in
the form of

R9 ¼ j2S9 (1)

regardless of the genotype distribution. Noting the mean of the
Gaussian selection function by m, R9 = E(Z1) 2 m and S9 = E
(ZW) 2 m are the mean phenotypic lag with respect to the mean
of the fitness function of the progeny and the selected population
(Figure 1). As E(Z1), E(ZW), and m are all measurable, R9 and S9 are
both measurable in the same way as R and S are. The j2 coefficient
contains only the width of the fitness function and environment
factors. The use of a Gaussian selection function, both in artificial
and natural selection (as an approximation of stabilizing selection),
is widespread (Lewontin 1964; Lande 1976; Kimura and Crow 1978;
Zhang and Hill 2010) and the aforementioned relationship is poten-
tially as useful as the standard breeder’s equation.

The advantage is more critical when the breeder’s or Lande’s
equations are used in long-term evolution, where the variance of
the genotype (or the G matrix) also varies and h2 cannot be assumed
to remain constant (Gavrilets and Hastings 1995; Pigliucci and
Schlichting 1997; Roff 2000) ; in contrast, the relation (1) remains
valid if each round of selection uses a Gaussian fitness function.

The aforementioned results generalize naturally to multivariate
trait selection where the alternative Lande’s equation is

R9 ¼ ðVþ EÞV21S9 (2)

where R9 and S9 are the vectorial phenotype lag, andV and E are the
covariance matrices of the fitness function and the environment
respectively.

This article is organized as follows: in the Results section, I first
derive the general functional relationship between R and S; the second
subsection is devoted to all the cases where these two quantities can be
linearly related, including the special case of the breeder’s equation.
The alternative breeder’s equation is derived in the third subsection,
and all the results are generalized to selection on multiple traits in the

fourth subsection. The aforementioned results are put into perspective
in the Discussion section. Technical details, such as the use of FTs, are
treated in the Appendix.

RESULTS

General results
Consider a continuous phenotype Z, which is the result of additive
genetic effect Y and the environment j (Fisher 1918; Lynch andWalsh
1998; Visscher et al. 2008)

Z ¼ Y þ j

The term environment encompasses here any source of noise that
causes the observed phenotype z to deviate from the (unobserved)
breeding value y (Wright 1920; Lynch and Walsh 1998; Raj and van
Oudenaarden 2008). In the following, the population distribution of
the breeding value (genotype) and its variance in the parental gen-
eration are denoted p0(y) and s2

A. The environment effect is cap-
tured by the distribution law f(z|y), the probability density of
observing phenotype z with the given genotype y. We will suppose
that f is a symmetric function of its argument of the form f(z|y) =
f(z 2 y) and denote its width by s2

E .
A subpopulation among the parental generation is selected accord-

ing to a fitness or selection functionW(z), the proportion of phenotypes
in [z, z + dz] to be selected for the production of the next generation.
The selected individuals produce offspring which will constitute the
next generation. As we will show herein, the response R (the mean of
the phenotype trait in the offspring) and the selection differential S (the
mean of the phenotype trait in the selected parents) are given by

R ¼ EðZ1Þ ¼ 1
�W

ZZ
ℝ2
yp0ðyÞWðzÞf ðz2 yÞdydz (3)

S ¼ EðZwÞ ¼ 1
�W

ZZ
ℝ2
zp0ðyÞWðzÞf ðz2 yÞdydz (4)

where �W is the mean fitness of parental generation. Equations (3)
and (4) are used, for example, by Lande (1979), although their
derivation there depended on the normal distribution of the geno-
type. I derive these equations here for the more general case.

Before going into the details of calculations, note that the genotype
distribution p0(y) and the selection function W(z) play a symmetric
role in the aformentioned expressions. In the following sections, we
will explore specific functional forms of p0(y) andW(z), which lead to
a linear relationship between R and S. Because of the symmetric role
of these two functions however, once a particular relation is obtained
for a specific form of p0(y) regardless of W(z), an analogous relation-
ship can be obtained for a similar form of W(z) regardless of p0(y).
This is what leads us to an alternative form of the breeder’s equation.

Let us now derive the equations (3,4). We note that the
distribution of the phenotype Z in the parental generation is given by

q0ðzÞ ¼
Z
ℝ
p0ðyÞf ðzjyÞdy (5)

We will denote its variance by s2
P .

The distribution of the phenotype z in the parental population
selected according to the fitness function W(z) is

qwðzÞ ¼ 1
�W
q0ðzÞWðzÞ
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where �W is the mean fitness of the parental generation

�W ¼ R
ℝq0ðzÞWðzÞdz

¼ RR
ℝ2p0ðyÞWðzÞf ðzjyÞdydz

The genotype distribution of the selected population is (Turelli and
Barton 1994)

pwðyÞ ¼ 1

�Wy

Z
ℝ
p0ðyÞf ðzjyÞWðzÞdz (6)

¼ 1

�Wy p0ðyÞWyðyÞ (7)

where

WyðyÞ ¼
Z
ℝ
WðzÞf ðzjyÞdz (8)

is the genotype fitness function, i.e., the convolution of the pheno-
type fitness function by the environment factors. �Wy is the mean
genotype fitness:

�Wy ¼ R
ℝp0ðyÞWyðyÞdy

¼ RR
ℝ2p0ðyÞWðzÞf ðzjyÞdydz

Note that �W ¼ �Wy as both these quantities are defined by the same
double integration over the domains of y and z.

For a large, randomly mating population, reproduction gives for
the distribution of breeding values in the next generation (Slatkin
1970; Karlin 1979; Bulmer 1985; Turelli and Barton 1994)

p1ðyÞ ¼
ZZ

ℝ2
pw

�
ya
�
pw

�
yb
�
L
�
y2

�
ya þ yb

��
2
�
dyadyb

The exact form of the probability density L(y) that captures the
inheritance process (recombination, segregation, . . .) is not impor-
tant here; Turelli and Barton (1994), for example, use a normal
distribution for L(y) in the framework of the infinitesimal model.
For our purpose, it is enough to suppose that the mean of the
distribution L(y) is zero, i.e.,

R
yyLðyÞdy ¼ 0 which is valid in the

absence of dominance and epistasis effects (Turelli and Barton 1990)
(see also Appendix/Segregation density function).

The phenotype distribution of the progeny is

q1ðzÞ ¼
Z
ℝ
p1ðyÞf ðzjyÞdy (9)

We now make the further assumption that (1) the environment
and genotype are independent random variables, so that f ðzjyÞ ¼
f ðz2 yÞ and therefore the variances are additive: s2

P ¼ s2
A þ s2

E and
(2) environment effects are of zero mean ðRxxf ðxÞdx ¼ 0Þ and sym-
metric (f(2x) = f(x)). An environmental noise with such a distribu-
tion law does not change the mean of the random variable: E(Z) =
E(Y + j) = E(Y). Therefore, the mean phenotype of the offspring is

R ¼ EðZ1Þ ¼ EðY1Þ
¼ R

ℝyp1ðyÞdy
¼ ð1=2Þ∬ℝ2

�
ya þ yb

�
pw

�
ya
�
pw

�
yb
�
dyadyb  

¼ R
ℝypwðyÞdy

(10)

¼ 1
�W

ZZ
ℝ2
yp0ðyÞWðzÞf ðz2 yÞdydz (11)

which is equation (3). Note that the first lines of the above equations
merely state that the expectations of the breeding’s value of parent
and offspring are equal for purely additive traits.

On the other hand, the mean phenotype of the selected parents is

S ¼ EðZwÞ ¼
R
ℝzqwðzÞdz

¼ 1
�W

R
ℝzq0ðzÞWðzÞdz

¼ 1
�W

RR
ℝ2zp0ðyÞWðzÞf ðz2 yÞdydz

(12)

which is equation (4).
For an asexually reproducing organism, or for a sexually repro-

ducing population which remains at Hardy-Weinberg equilibrium
after selection-reproduction, we would have p1(y) = pw(y) ; this would
again lead to the same equation (10) and the same response (11). The
conditions for the existence of multilocus Hardy-Weinberg equilib-
rium were analyzed by Karlin and Liberman (1979a,b), who con-
cluded that for additive traits, the equilibrium is stable for a wide
range of recombination distributions. The general relation between
R and S can also be studied in the context of the Price equation.
A detailed study of this relation has been performed by Heywood
(2005).

Conditions for proportionality of R and S

The relations (3) and (4) show that the selection differential S and the
response R to it are related through a functional equation involving
three factors: genotype distribution, the selection function and the
environmental noise. It is far from obvious that R and S could be
proportional, a question we will investigate by using FTs.

FTs in functional analysis play a role analogous to logarithms in
algebra. They are useful for clarifying the R2 S relation, where we can

Figure 1 Schematic representation of the selection lag S9, the response
lag R9, and their relation to the selection differential S and the response
R. The mean phenotype of parental generation �z0, selected population
�zw , the progeny �z1, and the peak of selection function m are repre-
sented on the phenotype axis z. Dashed curves represent a sketch of
the distributions of parental phenotype q0(z), selected parents qw(z), the
progeny q1(z), and the selection function W(z).
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transform the double integrations into simple ones. The FT of the
function u(x) is the function ~uðkÞ defined as (see Appendix/Fourier
Transforms)

~uðkÞ ¼
Z N

2N
e2ikxuðxÞdx:

For example, the FT of the function u(x) = exp(2a|x|) is
~uðkÞ ¼ 2a=ða2 þ k2Þ. Part of the usefulness of FT is due to the fact
that they transform convolution products into simple products:
given two functions u(x) and v(x) and their convolution product
h(z):

hðzÞ ¼
Z N

2N
uðxÞvðz2 xÞdx

the relation between their FT is a simple product:

~hðkÞ ¼ ~uðkÞ~vðkÞ

As the general relations (11) and (12) involve convolutions, FT
proves to be very useful in their handling. Using the various
properties of FT (see Appendix/Fourier Transforms), the relation
between R and S in the Fourier space reads:

R ¼ i
2p �W

Z
ℝ

~W�ðkÞ d
dk

�
~p0ðkÞ

�
~f ðkÞdk (13)

and

S ¼ i
2p �W

R
ℝ
~W�ðkÞ d

dk

�
~p0ðkÞ~f ðkÞ

�
dk

¼ Rþ i
2p �W

R
ℝ
~W�ðkÞ~p0ðkÞ d

dk

�
~f ðkÞ�dk (14)

where the mean fitness �W is itself defined in Fourier space as

�W ¼ 1
2p

Z
ℝ

~W�ðkÞ~p0ðkÞ~f ðkÞdk:

Here a� designate the complex conjugate of a, i2 = 21 and we have
set the origin of the breeding values at its mean in the parental
population, i.e.,

R
ℝyp0ðyÞdy ¼ 0.

In general, the FT of a function is complex. However, as the
function in direct space here are real, it can be shown that expressions
(13) and (14) are indeed real; the fact that i appears in these expres-
sion insures this fact (see Appendix/Fourier Transforms). It is worth-
while to consider a particular case to clarify the above expressions. The
detailed computations for a truncation selection in which breeding
value and environmental factors are normally distributed are provided
in Appendix/Truncation selection.

We see from equations (13) and (14) that S and R can be pro-
portional if the second term of the r.h.s. of equation (14) is propor-
tional to R; this will be true, regardless of the selection function W, if

~p0ðkÞ
d~f ðkÞ
dk

¼ a
d~p0ðkÞ
dk

~f ðkÞ (15)

where a is an arbitrary constant. Equation (15) is the necessary and
sufficient condition that defines the functional shape of the genotype

distribution and the environment noise compatible with the propor-
tionality of R and S regardless of the selection function. If condition
(15) is fulfilled, then

R ¼ ð1þ aÞ21S

On the other hand, equation (15) can be seen as a differential
equation whose solution is given by

~f ðkÞ ¼ b~p0ðkÞa (16)

where b is another arbitrary constant. Let us consider some partic-
ular case where the aforementioned relation is obeyed.

Normal distributions
If ~f ðkÞ and ~p0ðkÞ are both Gaussians, i.e.,

~f ðkÞ ¼ exp
�
2s2

Ek
2=2

�
~p0ðkÞ ¼ exp

�
2s2

Ak
2=2

�
then the relation (16) is satisfied by

a ¼ s2
E=s

2
A

and we retrieve the usual breeder’s equation R = h2S where
h2 ¼ s2

A=ðs2
A þ s2

EÞ. Of course, if ~f ðkÞ and ~p0ðkÞ are of the above
form, their inverse FTs represent normal distributions of width sE

and sA respectively (see Appendix/Fourier Transforms).

Stretched exponentials
We see, however, that even if the strict condition (16) is fulfilled, the
proportionality constant need not be h2. Consider, for example, the
class of stretched exponential functions f(k) = exp(2|k|a), which
generalizes Gaussians (case a = 2). Set ~f ðkÞ ¼ fðsEkÞ, ~p0ðkÞ ¼
fðsAkÞ. The inverse FT of these functions gives the distribution of
the genotype Y and environment effect E and it is straightforward to
show that as for the Gaussian case, VarðEÞ=VarðYÞ ¼ s2

E=s
2
A. Con-

dition (16) however is satisfied this time with a ¼ sa
E=s

a
A and there-

fore the realized heritability ha = R/S is

ha ¼ sa
A

sa
A þ sa

E

The aforementioned examples were to emphasize the fact that
selection-independent proportionality is achieved only for particular
pairs of genotype/environment distributions. In general, as shown in
Figure 2, the realized heritability is not constant and depends crit-
ically on the selection function W(z).

Alternative breeder’s equation
Optimal phenotypic selection approximated by Gaussians has been
considered by many authors both in artificial (as early as Lush 1943)
and in natural selection (as early as Wright 1935; Haldane 1954) and it
is widespread in the literature (Lewontin 1964; Lande 1976; Kimura
and Crow 1978; Karlin and Liberman 1979a; Zhang and Hill 2010). If
the selection function is Gaussian, a new linear relation can be
extracted from the general relations (3) and (4), regardless of the
(unobservable) breeding value distribution.

Note that a symmetric role is played by W(z) and p0(y) in the
general expressions (3) and (4). Hence permuting their role will lead

100 | B. Houchmandzadeh



us, following the same line of arguments, to deduce all linear cases
regardless of genotype. Equations (3) and (4) are obtained by multi-
plying the function F(y, z) = W(z)p0(y)f(z 2 y) either by y or z and
integrating over ℝ2. To obtain the breeder’s equation of the previous
section, we wrote the integration over the y variable as a convolution
product and performed the FT on the z variable.

On the other hand, we could have proceeded by writing equations
(3) and (4) first as a convolution product on z and then perform a FT
on the variable y (see Appendix/Fourier Transform). In this case, we
get

S ¼ i
2p �W

Z
ℝ
~p�ðkÞ d

dk

�
~WðkÞ�~f ðkÞdk (17)

and

R ¼ i
2p �W

Z
ℝ
~p�ðkÞ d

dk

�
~WðkÞ~f ðkÞ�dk (18)

The arguments of the previous section can be repeated. Let us center
the selection function by setting W(z) = Wc(z 2 m) where

m ¼
Z
ℝ
zWðzÞdz

Then

S9 ¼ ðS2mÞ ¼ i
2p �W

Z
ℝ
~p�ðkÞe2ikm d

dk

�fWcðkÞ
�
~f ðkÞdk (19)

and

R9 ¼ ðR2mÞ ¼ i
2p �W

Z
ℝ
~p�ðkÞe2ikm d

dk

�fWcðkÞ~f ðkÞ
�
dk (20)

The quantities S9 and R9 are alternative selection differential and
response and represent the lag with respect to the mean of the
selection function (Figure 1). In the case in which the selection
function and the environment factors are both normally distributed
with width sW and sE, a repetition of the arguments of the previous
sections leads to

R9 ¼ j2S9 (21)

where

j2 ¼ s2
W þ s2

E

s2
W

We stress that relation (21) is obtained regardless of the unknown
genotype distribution p0(y).

The alternative breeder’s equation (21) may seem unusual as it
does not contain the genetic variance. Such a result may seem at first
glance in contradiction with our basic understanding of the selection
process. Fisher fundamental’s theorem for example explicitly relates

Figure 2 A simple example in which R/S 6¼ h2. (A) The parental breed-
ing value distribution (thin red line) is a double Gaussian p0(y) = (N (m, s;
y) +N (2m, s; y))/2; the environmental effects distribution (thin blue line)
follows a normal distribution f(x) = N (0, sE; x). The phenotype distribu-
tion q(z) (equation 5), (thick black line), has the appearance of a normal
distribution. The result of a truncation selection, selecting only and all
individuals with phenotype value . z0 is shown in (B). (B) Right scale:
The Response R (red line, circle) and the Selection differential S (orange
line, triangle) as a function of the truncation selection z0. Left scale: the
value of R/S (thick black line) as a function of z0 and its comparison to h2

(thin dashed line). All integrations (equations 11 and 12) can be per-
formed exactly for this case: R(z0) and S(z0) are combination of Gaussian
and erf(z0) functions, their exact expressions are given in Appendix/
Computation of truncation selection. The parameters of the figures
are m = 3, s = 2 and sE ¼ sA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ s2
p ¼ ffiffiffiffiffiffi

13
p

, therefore h2 = 1/2.
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the rate of increase in fitness to the genetic variance. There is, how-
ever, no contradiction: Both R9 and S9 are dependent on the genetic
variance, as can be seen in the general equations (3) and (4) ; however,
their ratio, i.e., the coefficient of the linear equation (21) relating them,
is free of genetic variance. A similar situation occurs for the classical
breeder’s equation, where both R and S depend on the selection func-
tion W(z) but their ratio contains only the heritability coefficient,
independently of W(z).

Equation (21) has been obtained through the tools of functional
analysis and its demonstration may seem a little abstract. It is
worthwhile to further illustrate this equation by considering few
examples where the computations can be carried out explicitly. Let us
designate the normally distributed selection function W(z) and the
environment factors as:

WðzÞ ¼ N ðm;sW ; zÞ

f ðxÞ ¼ N ð0;sE; xÞ
where Nða; b; uÞ ¼ ð1= ffiffiffiffiffiffi

2p
p

bÞexpð2 ðu2aÞ2=2b2Þ.

No genetic variance
The first example we consider is the extreme case in which there is no
genetic variance (sA = 0) in the parental generation. The distribution
of the breeding value then becomes a Dirac’s delta function p0(y) =
d(y). The basic rule of Dirac’s delta, i.e.,

R
IdðyÞfðyÞdy ¼ fð0Þ reduces

the double integrations of equations (11) and (12) to simple integra-
tions which involve only Gaussian functions. Note that for the general
case, reduction of double integration to simple one was achieved by
the use of FTs. The value of R and S are therefore readily obtained in
this case:

�W ¼
Z
ℝ
WðzÞf ðzÞdz ¼ 1ffiffiffiffiffiffi

2p
p

exp
�
2 m2

2ðs2
Eþs2

WÞ
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
E þ s2

W

q (22)

R ¼ 0 (23)

S ¼ 1
�W

Z
ℝ
zWðzÞf ðzÞdz ¼ m

s2
E

s2
W þ s2

E
(24)

As expected, in the absence of genetic variance, there is no response
to selection. The response and selection lag R9 and S9 read:

R9 ¼ R2m ¼ 2m

S9 ¼ S2m ¼ 2
s2
W

s2
W þ s2

E
m

Therefore, R9 = j2S9, and equation (21) is verified. This example
shows explicitly that there is no contradiction between the alterna-
tive breeder’s equation and Fisher’s fundamental theorem.

Gaussian breeding values distribution
Let us now consider a less-extreme case in which there exists a normal
genetic variability

p0ðyÞ ¼ Nð0;sA; yÞ
The double integrations (11,12) giving S and R can again be carried
out exactly, as all the integrands are Gaussian:

S ¼ am (25)

R ¼ ah2m (26)

where a = (j2 2 1)/(j2 2 h2). Therefore,

R9
S9

¼ R2m

S2m
¼ ah2 2 1

a2 1
¼ j2

and equation (21) is verified.
Note that in the aforementioned case, R and S are both propor-

tional to the mean of the selection function m. Applying a Gaussian
selection function can therefore be used as a test of the normal dis-
tribution of the breeding values.

Non-Gaussian breeding values distribution
Let us now consider a case in which parental breeding values are not
normally distributed but are concentrated around two particular
values:

p0ðyÞ ¼ 1
2
ðdðy2sAÞ þ dðy þ sAÞÞ (27)

and therefore E(Y0) = 0 and VarðY0Þ ¼ s2
A. The computation of the

expressions (11) and (12) can be again carried out exactly:

S ¼
ms2

E þ sAs
2
W   tanh

�
sAm

s2
Wþs2

E

	
s2
W þ s2

E

R ¼ sA   tanh



sAm

s2
W þ s2

E

�

We note that in this case, the ratio R/S 6¼ h2 and the classical
breeder’s equation does not hold. The alternative breeder’s equation
however is again verified:

R9
S9

¼ R2m

S2m
¼ s2

W þ s2
E

s2
W

¼ j2

Figure 3 illustrates the accuracy of the alternative relation compared
to the usual breeder’s equation for this case.

The aforementioned few examples were to illustrate the alternative
breeder’s equation. Many other examples of the breeding value dis-
tributions, such as a double Gaussian or a rectangular function can be
computed exactly and lead of course always to the alternative breeder’s
equation. The last example can indeed be generalized and used as an
alternative demonstration of equation (21), as any function can be
seen as a superposition of Dirac’s deltas: p0ðyÞ ¼

R
ℝp0ðuÞdðu2 yÞdu.

The demonstration we provided using FT is, however, more
straightforward.

Selection on multiple traits
The results of the aforementioned sections are naturally generalized to
selection on multiple traits. Consider the vectors of parental breeding
values y0 = (y1, y2, . . ., yN), environmental effects e = (e1, . . ., eN) and
their phenotype z0 = y0 + e, to which a selection function W(z) is
applied. Using the same notations as in the previous sections, we find
without difficulty that

�z1 ¼
Z
ℝN ·ℝN

yp0ðyÞWðzÞf ðz2 yÞdydz
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�zw ¼
Z
ℝN ·ℝN

zp0ðyÞWðzÞf ðz2 yÞdydz

As before, using FT, these relations transform into

�z1 ¼ i
2p

Z
ℝN

~W�ðkÞ�=~p0ðkÞ�~f ðkÞdMk

�zw ¼ i
2p

Z
ℝN

~W�ðkÞ=�~p0ðkÞ~f ðkÞ�dMk

where = is the gradient operator: =f = (@f/@x1, . . . @f/@xN). We see
again that �z1 and �zw are linearly related if

~p0ðkÞ
�
=~f ðkÞ� ¼ A

�
=~p0ðkÞ

�
~f ðkÞ

where A is a constant matrix. The linear relation is automatically
satisfied if both p0 and f follow a Gaussian distribution

p0ðyÞ} exp



2
1
2
yTG21y

�

f ðxÞ} exp



2
1
2
xTE21x

�

where G and E are the covariance matrices for the genotype and
environmental effects. Defining P = G + E as the phenotype co-
variance matrix, it is straightforward to show that in this case A =
EG21 and therefore (Lande 1979)

�z1 ¼ GP21�zw

which is the usual breeder’s equation for multiple traits. We stress
that the limitation of this relation is the same as that of the scalar
version: it relies on the normal distribution of the genotype. On the
other hand, if the selection function W(z) is Gaussian

WðzÞ} exp



2
1
2
ðz2mÞTV21ðz2mÞ

�

the arguments of the previous section 2 can be repeated and lead to
the generalization of the alternative vectorial breeder’s equation (21)

�z1 2m ¼ ðVþ EÞV21��zw 2m
�

which, in analogy with equation (21) we write as

R9 ¼ ðVþ EÞV21S9

DISCUSSION AND CONCLUSION
The breeder’s equation is a cornerstone of quantitative genetics and
appears as a fundamental equation in all the important textbooks of
this field (Lynch and Walsh 1998; Falconer and Mackay 1995; Crow
and Kimura 2009). It is widely used in artificial selection (Lush 1943;
Hill and Kirkpatrick 2010); its usage in natural selection was popu-
larized by Lande (1976), when he formalized the main idea of phe-
notypic evolution and it is now commonly used in many articles based
on Lande’s work (see, for example, Hansen et al. 2011; Manna et al.
2011; Svardal et al. 2011). The mathematical foundation of this equa-
tion rests upon the hypothesis that the breeding value is normally
distributed. This hypothesis is plausible for a continuous trait in
a population not subject to selection (see, however, Appendix/Segre-
gation density function). The normal distribution of the breeding value
is more fragile in populations subjected to selection on this trait
(Turelli and Barton 1990), as the genotype of selected parents is given
by (equation 7)

pwðyÞ ¼ p0ðyÞ:WyðyÞ= �W

whereWy(y) is the genotype fitness function defined by equation (8).
Even if p0(y) were Gaussian, the very act of multiplying it by an
arbitrary function makes pw(y), and hence p1(y) non-Gaussian.
Therefore after the first round of selection, the normal distribution
hypothesis of parental genotype cannot be sustained. Turelli and
Barton (1994) have shown that for the infinitesimal model, the
non-normality may not have large effects on the predictions of the
breeder’s equation, but they argued that when the number of loci is
limited the discrepancy can grow much larger. Of course even p0(y)
cannot be assumed to be Gaussian if different breeds are crossed to
constitute the parental generation, which happens in artificial selection and
in natural selection when gene flow from nearby patches is important.

The breeding value is not an observable quantity. The fitness or
selection function W(z) is more quantifiable and many authors have
considered a Gaussian selection function. In artificial selection, it dates
back at least to the work of Lush (Lush 1943), p140). In natural
selection, it is used by most authors as a model for stabilizing selec-
tion. If Gaussian selection is used to evolve a population, then the
alternative breeding equation (21) we derived is more precise and
predictive and rests on more robust mathematical grounds while
retaining the same simplicity of the standard breeder’s equation. Note
that the analysis of this article is not restricted to the infinitesimal
model, but applies to all inheritance processes involving purely addi-
tive genetic effects. The alternative breeder’s equation generalizes to
selection on multiple traits in a way similar to the standard breeder’s
equation and can therefore be incorporated in the “adaptive land-
scape” formalism (Arnold et al. 2001) with the same ease.

In conclusion, we believe that in all cases where Gaussian selection
functions are used to evolve a population, the alternative breeder’s
equation we develop above is a useful alternative approach to the
standard method.

Figure 3 Gaussian selection function: deviation d from theoretical pre-
diction of the breeder’s and alternative equations as a function of the
mean of the selection function m. The breeding value distribution cor-
responds to equation (27). Black line (squares): (R 2 m)/(S 2 m) 2 j2;
red line (circle): R/S2 h2. Parameters used here are sA = 2, sW = 1 and
sE = 3 and therefore h2 = 4/13 and j2 = 10.
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APPENDIX

FTs and convolutions
Logarithm was invented to simplify algebraic operations: a multiplication in the direct space transforms into an addition in the logarithm space,
were it can be performed easily and the result brought back to direct space via the inverse transformation. FT plays a similar role in functional
analysis, where derivation/integration of functions in direct space are transformed into multiplication/division by the variable in the Fourier
space.

The FT of a function f(x) is defined here as (Byron and Fuller 1992)

~f ðkÞ ¼ TF½f ðxÞ� ¼
Z þN

2N
f ðxÞe2ikxdx

where i2 = 21. For example, the FT of the function f(x) = exp(2a|x|) is

~f ðkÞ ¼ R 0
2N eða2ikÞxdx þ RN

0 e2ðaþikÞdx

¼ 1
a2 ik þ 1

aþik ¼ 2a
a2þk2:

The main properties of FT we use here are

1. Parseval’s theorem Z þN

2N
f �ðxÞgðxÞdx ¼ 1

2p

Z þN

2N

~f
�ðkÞ~gðkÞdk

where a� stands for the conjugate complex of a. Note that if f(x) is a real function, the ~f �ðkÞ ¼ ~f ð2 kÞ, which ensures that the right hand side of
the above expression is always real if both functions f and g are real.

2. Derivation property

i
d
dk

~f ðkÞ ¼
Z þN

2N
xf ðxÞe2ikxdx ¼ TF½xf ðxÞ�

3. Convolution property

FT½ð f � gÞðxÞ� ¼ FT½ f ðxÞ�:FT½gðxÞ� ¼ ~f ðkÞ:~gðkÞ

where

ð f � gÞðxÞ ¼
Z N

2N
f ðuÞgðx2 uÞdu

4. Translation property

FT½ f ðx2mÞ� ¼ e2ikmFT½ f ðxÞ�

On the basis of the aforementioned properties, and the fact that all the aforementioned functions are real i.e., for example W�(z) = W(z), we see
that relation (3) can be written as RR

ℝ2yp0ðyÞW�ðzÞf ðz2 yÞdydz ¼R
ℝW

�ðzÞ�yp0 � f �ðzÞdz
¼ i

2p

R
ℝ
~W�ðkÞ d

dk

�
~pðkÞ�~f ðkÞdk

where we have used the fact (i) that FT½ yp0ðyÞ� ¼ i~p9ðkÞ ; (ii) FT transforms a convolution product into a simple product in reciprocal space
and (iii) Parseval’s theorem.

The same set of rules leads to RR
ℝ2zp0ðyÞW�ðzÞf ðz2 yÞdydz ¼R

ℝW
�ðzÞz�p0 � f �ðzÞdz

¼ i
2p

R
ℝ
~W�ðkÞ d

dk

�
~pðkÞ~f ðkÞ�dk
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Note that we can exchange the order of integration on y and z, write the first integral as a convolution product on functions of z and proceed
to the second integral by using the FT on y. For R, we have

∬ℝ2yp0ðyÞWðzÞf ðz2 yÞdydz ¼ R
ℝp

�
0ðyÞyðW�f ÞðyÞdy

¼ i
2p

R
ℝ~p

�ðkÞ d
dk

�
~WðkÞ~f ðkÞ�dk

and for S we get

∬ℝ2zp0ðyÞWðzÞf ðz2 yÞdydz ¼ R
ℝp

�
0ðyÞðzW � f ÞðyÞdy

¼ i
2p

R
ℝ~p

�ðkÞ d
dk

�
~WðkÞ�~f ðkÞdk

The translation property was used in the derivation of the functional lags (eqs 19,20).
Finally, note that the FT of a Gaussian is a Gaussian:

FT
1ffiffiffiffiffiffi
2p

p
s
exp 2 x2=

�
2s2

� ¼ exp
�
2 s2k2=2

��



Computation of truncation selection with FT
Consider a normal breeding value and environmental factor distribution

p0ðyÞ ¼ Nð0;sA; yÞ

f ðxÞ ¼ N ð0;sE; xÞ
where Nða; b; uÞ ¼ ð1= ffiffiffiffiffiffi

2p
p

bÞexpð2 ðu2aÞ2=2b2Þ to which we apply a truncation selectionW(z), whereW(z) = 1 if z0 , z, z1 and 0 other
wise. The FT of these functions read:

~p0ðkÞ ¼ e2s2
Ak

2=2

~f ðkÞ ¼ e2s2
Ek

2=2

~WðkÞ ¼ i
q

�
e2iqz1 2 e2iqz0

�
The mean fitness of the parental generation is

�Wðz1; z0Þ ¼ ∬ℝ2p0ðyÞWðzÞf ðzjyÞdydz
¼ 1

2p

R
ℝ
~W�ðkÞ~p0ðkÞ~f ðkÞdk

¼ 1
2

�
erf

�
z1ffiffi
2

p
D

	
2 erf

�
z0ffiffi
2

p
D

		
where D2 ¼ s2

A þ s2
E and erf(u) is the error function. As

d
dk

h
e2s2q2=2

i
¼ 2 s2qe2s2q2=2

the computation of R and S, using their expression (13,14) is simple (the integrands are exact differentials) and leads to

R ¼ 1
�W

s2
Affiffiffiffiffiffi

2p
p

D

�
e2z20=2D

2

2 e2z21=2D
2
	

S ¼ 1
�W

Dffiffiffiffiffiffi
2p

p
�
e2z20=2D

2

2 e2z21=2D
2
	

and it is trivially verified that R=S ¼ s2
A=D

2 ¼ h2.
The same computations can be extended to the case where the breeding value distribution is a double Gaussian (Figure 2):
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p0ðyÞ ¼ 1
2
ðN ð2m; s; yÞ þ N ðm; s; yÞÞ

~p0ðkÞ ¼
1
2

�
eimk þ e2imk

	
e2s2k2=2

The computations, although more cumbersome, involve the same level of technicality. For simplicity, we give the result only for extreme
truncation z1 /N (selecting all individuals with phenotype . z0). Noting

�WðmÞ ¼ 1
2



12 erf



z0 2mffiffiffi

2
p

D

��

AðmÞ ¼ s2ffiffiffiffiffiffi
2p

p
D
e2ðz0 2mÞ2=2D2 þm

2
erfc



z0 2mffiffiffi

2
p

D

�

BðmÞ ¼ Dffiffiffiffiffiffi
2p

p e2ðz0 2mÞ2=2D2 þm
2
erfc



z0 2mffiffiffi

2
p

D

�

Where D ¼ s2 þ s2
E . The selection and response function read:

R ¼ AðmÞ þ Að2mÞ
�WðmÞ þ �Wð2mÞ

S ¼ BðmÞ þ Bð2mÞ
�WðmÞ þ �Wð2mÞ

The simple Gaussian case can be recovered from these expressions by m = 0 and sA = S.

Parent-offspring regression
The derivation of the breeder’s equation sometimes uses the parent-offspring regression coefficient as an intermediate(Nagylaki 1992; Lynch and
Walsh 1998). The linear regression between parent and offspring phenotype however is based on the same assumption of normal distribution of
genotype and environmental factors.

The probability density of observing the phenotype z9 in the offspring and za, zb in the parents is

pðz9; za; zbÞ ¼ ∬ℝ2p
�
ya
�
f
�
zajya

�
p
�
yb
�
f
�
zbjyb

�
L
�
y1 2

�
ya þ yb

��
2
�
f
�
z9jy1

�
dy1dyadyb

and the conditional expectation of z9 given z is

E
�
z9jza; zb

� ¼ Z
z92I

z9pðz9; zÞdz9
�Z

z92I
pðz9; zÞdz9 ¼ Fðza; zbÞ

It is not difficult to check that the function F(za, zb) is a linear function of its argument

Fðza; zbÞ ¼ bðza þ zbÞ=2
if both the genotype and environment factors obey a normal distribution, in which case, the linearity coefficient is indeed b ¼ s2

A=ðs2
A þ s2

EÞ.
However, even if the parental generation follows a normal distribution, the selected parents do not (equation 7) and the use of parent-offspring
regression poses even more of a problem than the direct method.

Segregation density function
Let p0(y) be the distribution of breeding value in the parental generation. In the absence of selection, after recombination-segregation, the
distribution of breeding value in the progeny is

p1ðyÞ ¼ ∬ℝ2p0
�
ya
�
p0
�
yb
�
L
�
y2

�
ya þ yb

��
2
�
dyadyb (28)

where the function L(y) is the segregation density function capturing the inheritance process of the breeding value (Karlin 1979). L(y) is
a probability density function and in the absence of epistasis and dominance effect, its average is zero:

R
ℝyLðyÞdy ¼ 0. In the infinitesimal

model framework, L(y) is a normal distribution of variance s2
A=2 . However, any distribution probability L(y) will lead to a stable, although

not necessarily normal, probability distribution of breeding values after few round of reproduction. Let us set the origin of the breeding value
at its average in the parental distribution, i.e.

R
ℝyp0ðyÞdy ¼ 0. In Fourier space relation (28) is
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~p1ðkÞ ¼ ~p20ðk=2Þ~LðkÞ
and after n rounds of reproduction,

~pnðkÞ ¼ ~p2
n

0 ðk=2nÞ
Yn2 1

i¼0

~L
2i�

k=2i
�

As both p0(y) and L(y) are probability distribution functions of zero mean, we have

~p0ð0Þ ¼ ~Lð0Þ ¼ 1

~p09ð0Þ ¼ ~L9ð0Þ ¼ 0

and therefore

~pn$ð0Þ ¼
1
2n

~p0$ð0Þ þ


22

1
2n21

�
~L$ð0Þ

Let V ¼ R
ℝy

2LðyÞdy . We see then that

VarðYnÞ ¼ 1
2n

VarðY0Þ þ


22

1
2n21

�
V

So the variance of the breeding values converges fast to twice the variance of the segregation density function. The distribution function pn(y),
however, converges to a normal distribution only if L(y) is normal.
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