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Abstract: Understanding abandoned mine land (AML) changes during land reclamation is crucial
for reusing damaged land resources and formulating sound ecological restoration policies. This
study combines the linear programming (LP) model and the CLUE-S model to simulate land-use
dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation
scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1),
maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3).
Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The
results show that the coupled model presented can simulate the dynamics of AML effectively and
the spatially explicit transformations of AML were different. New cultivated land dominates in
scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3,
respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most
closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability
and maintain the stability of the landscape ecological system in study area. These findings contribute
to better mapping AML dynamics and providing policy support for the management of AML.

Keywords: land conservation; abandoned mine land transformation; scenario simulation; linear
programming model; CLUE-S model; ecological restoration

1. Introduction

The intensive extraction of mining resources has pushed a considerable number of mines toward
resource exhaustion, leading to large abandoned mine land (AML) areas. AML refers to land that
has been disturbed or contaminated by mining or exploration activities and thus cannot be utilized
without some type of remediation [1]. AML not only occupies large valuable land resources, but also
leads to some detrimental effects, such as high levels of soil pollution, soil erosion, landslides, and
land desertification [1–4]. Resource-exhausted cities are in urgent need of industrial transformation to
realize sustainable development, which means that large amounts of construction land are required
to build new factories, while cultivated land is also needed to support the increasing population.
Moreover, most AML sites are in the center or on the edges of cities [1], which can severely affect
urban development and public safety during rapid urbanization. In China, land consolidation (land
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reclamation included [1,5]) is an indispensable way of spatial reconstruction, which is praised as a
means to share the benefits of providing new arable land and strengthening the utilization of already
available land resources [6,7]. The government has committed huge investments to convert AML into
other land-use types such as cultivated land, construction land, and forest land in order to adjust
land-use structure and protect regional ecological safety. Therefore, scientifically simulating the change
of AML and then exploring the ecological sustainable scheme have become necessary for sustainable
development and ecological restoration in mining cities.

However, current research on AML mostly focuses on soil and vegetation rehabilitation at the
micro level. For example, Bendfeldt et al. [8] studied the long-term effects (i.e., over 16 years) of organic
amendments on soil quality of amended mine soils in Virginia (United States), while Alday et al. [9]
examined how soil and environmental factors influence the vegetation succession on reclaimed coal
wastes in Spain. Previous scholars have also demonstrated some interest in legislation, policy, and
management at the macro level. Soltanmohammadi et al. [10] offered an analytical approach for
post-mining land-use determination in Iran. Sullivan et al. [11] proposed hardwood tree planting and
a forest reclamation policy for improving reclaimed surface mine land in the Appalachian coal region
of the United States. Mishra et al. [12] analyzed the costs of abandoned coal mine reclamation in Ohio
(United States) and provided evidence of potential Pareto improvement by investing limited resources
in reclamation projects. Hu et al. [13] revealed concurrent mining and land reclamation plans can
enhance the quality of cultivated land and provide better land protection and food security in mined
areas in China. However, limited information is available on how to conduct the spatial reconstruction
of AML and on which reclamation scenario is more suitable for ecological restoration in mining cities.

The core objective of AML reclamation is to convert AML into other land-use types. Land/cover
change models are an important tool to understand the driving forces and processes of land-use
changes, assess the ecological impact of land-use changes, and make decisions regarding land-use
planning [14–27]. Several models have been used to map land-use changes, such as the Agent-based
model, Cellular Automata model, System Dynamic model, and the Conversion of Land Use and its
Effects at Small Regional Extent (CLUE-S) model.

The CLUE-S model was developed to simulate land use change using empirically quantified
relations between land use and its driving factors in combination with dynamic modeling of
competition between land use types [28–41]. This model has been recognized as an excellent tool to
simulate land-use changes. However, although the CLUE-S model is preferred to address the spatial
allocation of land-use change, it also has some limitations because it requires another mathematical
model to calculate future land-use demand.

Based on the foregoing, this study adopts the linear programming (LP) model to take full
consideration of AML dynamics and understand future land requirements for all land-use types. The
CLUE-S model is used to map the spatial transformations of AML for 2020 in the Mentougou District
(Beijing, China). Three scenarios are created to map the spatial distribution of land-use types by using
2007 as a baseline: the planning scenario based on the general land-use plan in Mentougou District
(scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (ESV)
(scenario 3). Next, landscape pattern changes are analyzed by using several landscape-scale metrics.
Briefly, this study addresses the following objectives: (i) how to design multi-scenario characteristics
for simulating AML transformations using the coupled LP and CLUE-S models and (ii) how to analyze
landscape pattern changes based on simulated maps and determine which scenario is better for
ecological sustainable development.

2. Materials and Methods

2.1. Study Area

Mentougou District (39˝481–40˝10” N, 115˝251–116˝10” E) is located in the western region of
Beijing, China, where mining resources are rich and the main minerals are coal and limestone. It
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was once the energy base of Beijing; however, in 2007, the Beijing Municipal Government shifted its
attention to mining in the district, where ecological preservation was later proposed. Thus, the local
government began shutting down mines for land reclamation. From 2002 to 2008, 267 mines were
closed, resulting in 4130 hm2 of AML. According to the General Land-Use Plan in Mentougou District
(2006–2020), reclaiming and utilizing AML is an effective way of improving the ecological environment
and adjusting land-use structures in mining cities. Seven towns in Mentougou District were selected
as research areas: Junzhuang, Yongding, Miaofengshan, Wangping, Longquan, Tanzhesi, and Datai.
However, the spatial allocation of Yongding is not continuous: while one part is located in the middle
of the study area, the other is in the southeast. Similarly, for Wangping, two parts of the town are
located in the east and west of the Datai, respectively. The site and elevation map of the study area are
shown in Figure 1.
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Figure 1. Site and elevation map for the study area.

2.2. Data and Driving Factors

2.2.1. Land-Use Categories Classification

Based on land use properties in study area and Current Land Use Classification in China
(GB/T 21010–2007), the land-use map was classified into eight first land-use categories, including
cultivated land, garden land, forest land, grassland, construction land, AML, water, and
unutilized land.

Data for the spatial distribution of land-use types in the base year were taken from the 2007
land-use map of Beijing from Bureau of Land Resources, Beijing. The respective areas for eight
land-use types are 831 hm2, 1678 hm2, 30165 hm2, 3686 hm2, 2733 hm2, 3573 hm2, 905 hm2, and
3063 hm2 (Figure 2).



Int. J. Environ. Res. Public Health 2016, 13, 354 4 of 20

Int. J. Environ. Res. Public Health 2016, 13, 354 4 of 20 

The land-use information for 2013, which was extracted from Landsat TM image data (acquired 
in 2013; resolution: 30 m) and processed by human-computer interactive operations, was used to 
evaluate the accuracy of the CLUE-S model’s simulation. 

 
Figure 2. Land-use map of the study area (2007). 

2.2.2. Choices of Driving Factors 

CLUE-S model is driven by geophysical and socioeconomic variables. In this study, 15 driving 
factors were included on the basis of their availability, stability, relevance, and data suitability: 
elevation (X1), slope (X2), distance to the nearest road (X3), distance to the nearest railroad (X4), 
distance to the nearest river (X5), distance to the nearest main town (X6), distance to the nearest rural 
resident site (X7), soil organic matter (X8), population density (X9), per capita income (X10), 
agricultural population (X11), mining industry practitioners (X12), crop yield (X13), annual rainfall 
(X14), and annual afforestation areas (X15). 

All the driving factors (X1–X15) were selected on the basis of expert knowledge, with taking the 
availability, stability, and suitability of data into consideration. Experts marking method was used to 
determine the driving variables. We consulted ten experts whose research interests focus on mined 
land reclamation and they selected 20 driving factors at first. Afterwards, we examined the 
correlation of the selected factors and removed the highly relevant factors through redundancy 
analysis, leaving 15 factors finally. 

Specifically, X1 and X2 were used to describe the terrain conditions in the study area. Higher 
evaluation and slope can restrict the transformation of AML into cultivated land. X3, X4, X5, X6, and 
X7 were used to describe transportation accessibility. A good transport condition can be suitable for 
AML shifted into construction land. X8 was one of the most important indicators of soil properties, 
which is essential for the reclamation of AML for cultivation. X9, X10, X11, X12, and X13 were the key 
socioeconomic factors influencing the transformation of all land-use categorises. X14 and X15 were the 
indicators reflecting climatic conditions and the policy-oriented behaviours of ecological protection, 
respectively. Figure 3 shows the maps of the driving forces in the study region. 

As for the geophysical variables, elevation and slope data were acquired by using a digital 
evaluation model (DEM). Besides, soil organic matter was derived from a 1:5 million soil map, and 
the distance to the nearest road, railroad, river, main town, and rural resident sites were calculated 
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The land-use information for 2013, which was extracted from Landsat TM image data (acquired
in 2013; resolution: 30 m) and processed by human-computer interactive operations, was used to
evaluate the accuracy of the CLUE-S model’s simulation.

2.2.2. Choices of Driving Factors

CLUE-S model is driven by geophysical and socioeconomic variables. In this study, 15 driving
factors were included on the basis of their availability, stability, relevance, and data suitability: elevation
(X1), slope (X2), distance to the nearest road (X3), distance to the nearest railroad (X4), distance to the
nearest river (X5), distance to the nearest main town (X6), distance to the nearest rural resident site (X7),
soil organic matter (X8), population density (X9), per capita income (X10), agricultural population (X11),
mining industry practitioners (X12), crop yield (X13), annual rainfall (X14), and annual afforestation
areas (X15).

All the driving factors (X1–X15) were selected on the basis of expert knowledge, with taking the
availability, stability, and suitability of data into consideration. Experts marking method was used to
determine the driving variables. We consulted ten experts whose research interests focus on mined
land reclamation and they selected 20 driving factors at first. Afterwards, we examined the correlation
of the selected factors and removed the highly relevant factors through redundancy analysis, leaving
15 factors finally.

Specifically, X1 and X2 were used to describe the terrain conditions in the study area. Higher
evaluation and slope can restrict the transformation of AML into cultivated land. X3, X4, X5, X6, and
X7 were used to describe transportation accessibility. A good transport condition can be suitable for
AML shifted into construction land. X8 was one of the most important indicators of soil properties,
which is essential for the reclamation of AML for cultivation. X9, X10, X11, X12, and X13 were the key
socioeconomic factors influencing the transformation of all land-use categories. X14 and X15 were the
indicators reflecting climatic conditions and the policy-oriented behaviours of ecological protection,
respectively. Figure 3 shows the maps of the driving forces in the study region.
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to the nearest road (m); (d) Distance to the nearest railroad (m); (e) Distance to the nearest river (m);
(f) Distance to the nearest main town (m); (g) Distance to the nearest rural resident site (m); (h) Soil
organic matter (g kg´1); (i) Population density (person ha´1); (j) Per capita income (CNY person´1);
(k) Agricultural population (person); (I) Mining industry practitioners (person); (m) Crop yield
(million kg); (n) Annual rainfall (mm); (o) Annual afforestation areas (hm2).

As for the geophysical variables, elevation and slope data were acquired by using a digital
evaluation model (DEM). Besides, soil organic matter was derived from a 1:5 million soil map, and the
distance to the nearest road, railroad, river, main town, and rural resident sites were calculated by using
ArcGIS 10.0 to describe transport accessibility. What is more, the DEM; soil map; and distribution of
road, railroad, river, main town, and rural resident sites were obtained from Beijing Digital Soil System.

Socioeconomic variables for 2007 such as population density, per capita income, agricultural
population, mining industry practitioners, crop yield, annual rainfall, and afforestation area were
obtained from the Statistical Yearbooks of the Mentougou District, Beijing.

The CLUE-S model is a grid-based model, and the spatial scale refers to spatial resolution
(i.e., the raster cell size). In this study, all GIS data were converted into an equal-area projection
and gridded by using a basic grid size of 100 ˆ 100 m. The same approach was followed for the
socioeconomic variables.

2.3. Methods

Generally, in this study, we developed LP and CLUE-S models to characterize the land-use
change process after land reclamation. The scenario simulation of AML conversions markedly differed
from general land-use changes, given that the types of AML significantly changed before and after
reclamation. The LP model depicted the direction of land-use shifts and calculated future land-use
requirements for land-use categories by taking account of the Mined Land Suitability (see Section 2.3.1)
constraints and land-use planning restrictions. All land-use changes should identify with the general
land-use plan issued by the local government. For example, the areas of certain land-use types such
as cultivated land and forest land should not be lower than the specified numbers in the land-use
plan during the process of urbanization to maintain the ecological balance in urban cities. The specific
numbers above were considered constraints of the LP model. All the demand for land-use categories
can be calculated via LP model. So given these features, LP model was suitable for predicting future
demand in the study area with a large amount of AML needed to be reclaimed to other land-use types.
The CLUE-S model can allocate the land requirements to spatial allocation driven by the driving forces.
The details about the method can be found below.
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2.3.1. Mined Land Suitability (MLS) Assessment

The suitability of mined land is a critical factor for AML conversion. According to the natural
and socioeconomic conditions of the Mentougou District, Beijing, AML has potential to be reclaimed
into cultivated land, garden land, forest, and construction land. Hence, a limit condition method was
employed to assess the suitability of mined land. Each AML patch was treated as one assessment unit
(in total 93 patches were included).

(1) Indexes system and evaluation criterion

Seven factors were selected to assess mined land suitability. The main limiting factors of land
reclamation and evaluation criteria of cultivated land, garden land, forest, and construction land are
shown in Table 1.

Table 1. The main limiting factors of land reclamation and evaluation criteria of cultivated land, garden
land, forest land, and construction land.

Limiting Factors Index Grading Evaluation for
Cultivated Land

Evaluation for
Garden Land

Evaluation for
Forest Land

Evaluation for
Construction Land

Slope

<5˝ 1 1 1 1

5˝–10˝ 2 2 2 2

10˝–15˝ 3 2 2 3

>15˝ N 1 3 3 N

Surface material
composition

Loam, sandy loam 1 1 1 1

Mixture of rock and soil N 2 or 3 2 or 3 2

Sand, gravelly soil N 3 3 3

Soil organic matter
>1% 1 or 2 1 1 1

0.5%–1% 3 2 or 3 2 or 3 2

<0.5% N 3 3 3

Soil layer thickness

>80 cm 1 1 1 1

60–80 cm 1 or 2 2 2 2

40–60 cm 2 or 3 2 or 3 2 or 3 3

20–40 cm 3 or N 3 or N 3 or N 3 or N

<10 cm N N N N

Irrigation and
drainage condition

Fully satisfied 1 1 1 1

Basically satisfied 2 2 2 2

Without irrigation N 3 or N 3 or N N

Transport
accessibility
(distance to

nearest road)

0–2000 m 1 1 1 1

2000–4000 m 2 2 2 2

4000–6000 m 3 3 3 3

>6000 m N 3 or N 3 or N N

Land damage
conditions 2

Light damage 2 2 2 1

Moderate damage 3 3 3 2

Severe damage N 3 or N 3 or N 3
1 N means it is not suitable for reclamation for the land-use category; 2 According to the Regulation on Compiling
Land Reclamation Plan in China (TD/T 1031.1–2011), light damage refers to horizontal deformation ofď8 mm/m,
additional tilt (caused by mining activities) of ď20 mm/m, subsidence of ď2 m, or a decrease in production of
ď20%. Moderate damage refers to the horizontal deformation of 8–20 mm/m, additional tilt (caused by mining
exploring activities) of 20–50 mm/m, subsidence of 2–6 m, or a decrease in production by 20%–60%. Severe
damage refers to horizontal deformation of >20 mm/m, additional tilt (caused by mining exploring activities)
of >50 mm/m, subsidence >6 m, or a decrease in production by >60%.

Based on the investigation of land quality, the actual score of each assessment factor of the
assessment unit can be compared with the evaluation criteria in Table 1. The two-level evaluation
system was divided into suitability categories and suitability classes. Suitability categories contained
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suitable as well as unsuitable categories (i.e., N in Table 1), while suitability classes were subdivided
into the first, second, and third classes (i.e., 1, 2, 3 in Table 1).

(2) Confirmation of suitable land-use types for AML

The limit condition method, which is based on the “cask principle”, emphasizes the function of
dominant limiting factors:

Yi “ minpYijq (1)

where Yi is the score of the evaluation unit of i and Yij is the score of the evaluation factor of j in the
evaluation unit of i.

Finally, we should account for policy, ecological, and economic factors as well as public
participation to finalize the results. The MLS assessment result can be used as a constraint in the
LP model.

2.3.2. LP Model

The CLUE-S model was divided into two modules: the non-spatial module and the spatial module.
We used the LP model to calculate the demand for all land use in the non-spatial module, while the
spatial module translates this demand into land-use changes according to the probabilities and rules
of different land-use types in the CLUE-S model.

Three land-use maps were simulated for 2020, assuming three potential modes of development
on the basis of land reclamation rules, and policy-oriented behaviors. Demand for all land-use types in
scenario 1 was obtained from the General Land-Use Plan for Mentougou District (2006–2020) and that for
scenarios 2 and 3 was derived from the results of the LP model on the basis of the objective function of
the niche method of land use [42] and ESV method [43], respectively.

Scenario 1

The restrictions on land use in this scenario conform to General Land-Use Plan for Mentougou
District (2006–2020). This plan stated that during reclamation and urbanization development, the
cultivated land, garden land, forest land, and construction land in the study area for 2020 should be
kept at least 1656 hm2, 1678 hm2, 29,738 hm2, and 6688 hm2, respectively, to balance the local land-use
structure. Demand for the other land-use types was also derived from the general land-use plan.

Scenario 2

The LP model based on the niche method of land use was applied to optimize the reutilization of
AML. A land-use type niche refers to the structural relationship among different land-use types, area
ratio, utilization efficiency, and the mutual transformation between different types. It includes three
parts: a natural niche (i.e., land quality, utilization intensity, and food security), an economic niche
(economic benefits), and a social niche (i.e., policies and regulations). The total niche of land use is
the capacity of a land-use type to take over a new environment. Theoretically, land-use changes are
subject to the total niche of land use. The total land-use niche is calculated as follows:

TNi “ NNi ˆ 0.4` ENi ˆ 0.4` SNi ˆ 0.2 (2)

where TNi is the total niche of a certain type of land use. NNi, ENi, and SNi are the natural, economic,
and social niches, respectively. The weights of NNi, ENi, and SNi are, respectively, 0.4, 0.4, and 0.2 [42].
The i values range from 1 to 8 for the eight land-use categories. The parameters are shown in Table 2.
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Table 2. Natural, economic, social, and total niches for the eight land-use types (CNY¨ hm´2) [42].

Land-Use Types Natural Niche Economic Niche Social Niche Total Niche

Cultivated land 16,453 6250 10,000 11,081.2

Garden land 17,082 8630 0 10,284.8

Forest land 30,011 430 1650 12,506.4

Grassland 19,110 330 1650 8106.0

Construction land 0 1000 58,594 12,118.8

AML 0 0 0 0

Water 12,803 68,880 1600 32,993.2

Unutilized land 11,906 0 0 4762.4

The objective function for scenario 2 can be seen in Equation (3):

Z “ max

˜

TN1 ˆ px1 ` x9q ` TN2ˆpx2 ` x10q ` TN3ˆpx3 ` x11q ` TN4ˆx4

`TN5ˆpx5 ` x12q ` TN6 ˆ x6 ` TN7ˆx7 ` TN8ˆx8

¸

(3)

where Z is the objective function for scenario 2. x1, x2, x3, x4, x5, x6, x7, and x8 represent the eight
land-use types. x9, x10, x11, and x12 represent the areas of AML reclaimed to cultivated land, garden
land, forest land, and construction land, respectively. All xs can be calculated by using the constraints
of the LP model as follows:
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x1 ` x2 ` x3 ` ...` x11 “ 46634
x9 ` x10 ` x11 ` x12 “ 3072
x6 “ 501
x9 ď 85.3
x10 ď 176.1
x11 ď 1729.0
x12 ď 1081.5
x1 ` x9 ě 1656
x2 ` x10 ě 1678
x3 ` x11 ě 29738
x5 ` x12 ě 6688

(4)

where the first three inequations represent the total area of the study region, total reclamation area of
AML, and area of AML in 2020 without reclamation, respectively. The following four inequations are
the results for MLS and x9, x10, x11, and x12 are the respective areas of AML suitable for reclamation to
cultivated land, garden land, forest land, and construction land. The last four inequations denote the
minimal area of cultivated land, garden land, forest land, and construction land in the study area for
2020 according to the General Land-Use Plan in Mentougou District (2006–2020).

Scenario 3

ESV method was used to evaluate the ecological benefits of the simulated maps. Ecosystem
services comprise the flows of material, energy, and information from natural capital stocks, which
combine with manufactured and human capital services to produce human welfare [43]. The ESVs for
the eight land-use types are shown in Table 3.
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Table 3. ESVs for the eight land-use types (CNY¨ hm´2) [43].

Cultivated
Land

Garden
Land 1

Forest
Land Grassland Construction

Land AML Water Unutilized
Land

ESV 3296.98 7516.28 11,735.57 4870.35 0 0 18,926.32 580.10
1 Since Xie did not assign an ESV to garden land, the median ESV of cultivated land and forest land was taken
to roughly estimate that of garden land in the study area.

AML can be reclaimed as cultivated, garden, forest and construction land on the basis of the
natural and social conditions in the study area. However, the ESV of construction land (0 CNY¨hm´2)
is much lower than that of forest land (11,735.57 CNY¨hm´2) (Table 3). Therefore, it is suitable for
reclamation to forest land to meet the demand of maximal ESV. Equation (5) is the objective function
for this scenario and the constraints are the same as in scenario 2 (but with x12 = 0). All the xs can be
calculated by using the constraint and the objective function can be seen as follows:

Z1 “ max

˜

ESV1 ˆ px1 ` x9q ` ESV2 ˆ px2 ` x10q ` ESV3 ˆ px3 ` x11q ` ESV4 ˆ x4

`ESV5 ˆ x5 ` ESV6 ˆ x6 ` ESV7 ˆ x7 ` ESV8 ˆ x8

¸

(5)

where Z’ is the objective function for Scenario 3. ESV1, ESV2, ESV3, ESV4, ESV5, ESV6, ESV7, and
ESV8 represent the ESVs of the eight land-use categories. Therefore, demand for all land-use types
under the three scenarios for 2020 can be calculated as above. Further, the land requirements for these
land-use types between 2007 and 2020 can be obtained by using the linear interpolation method.

2.3.3. CLUE-S Model

The spatial module in the CLUE-S model comprises a spatially explicit allocation procedure.
The spatial distributions of the land-use types are quantified by using a binomial logit model with
the percentages of the types as the dependent variables and geomorphologic, transportation access,
soil-related, and socioeconomic driving factors as the independent variables.

In this study, 15 driving factors were included as showed in Section 2.2.2. The probabilities of the
conversion of location characteristics were defined by using the following logit model:

lnp
Pi

1´ Pi
q “ β0 `β1X1,i `β2X2,i ` ...`βnXn,i (6)

where Pi is the probability that a grid cell in location i contains a particular type and the Xi represent
the driving factors . The coefficient (β) is estimated by using a logit regression with the actual type
as the dependent variable and i values ranging from 1 to 8 for the eight land-use categories. The
n values range between 1 and 15 for X1–X15, respectively. The conversion between the different
types determines the changes that will eventually take place. The specific conversion settings of the
eight types affect the temporal dynamics of the simulation, which are composed of two parameters:
conversion elasticity (ELAS) and the transition matrix. The first parameter, which ranges from 0
(easy conversion) to 1 (irreversible change), is determined on the basis of expert knowledge and
observed behavior in recent years. The value for the second parameter, the transition matrix, is 0
(irreversible transition) or 1 (easy conversion) and indicates the possible conversions for each type. In
this study, the other seven land-use types were not allowed to be converted into AML. In addition,
construction land and water were not allowed to be converted into other land-use types because of
their stable characteristics. The CLUE-S model operates in discrete time steps and uses conversion
rules to simulate demand for all patterns and the most likely changes in the different types on the basis
of Equation (6). For each grid i, the total probability (TPROPi,u) was calculated for each type according
to the following formula:

TPROPi,u “ Pi,u ` ELASu ` ITERu (7)
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where TPROPi,u is the suitability of location i for type u, ELASu is the conversion elasticity for type u,
and ITERu is an iteration variable specific to type u and indicative of the relative competitive strength
of type u.

2.3.4. Landscape-Scale Graph Metrics Selection

Landscapes contain complex spatial patterns in the distribution of resource that vary over time.
Landscape pattern analysis quantifies these patterns and their dynamics. The landscape patterns
of simulated maps tend to differ by patch area and by the spatial location of patch types under
various reclamation scenarios. It is widely known that landscape indices can describe information on
landscape patterns, reflect the characteristics of structural compositions and spatial configurations, and
quantitatively describe and monitor landscape structural changes over time. In this study, we used
nine landscape-level graph metrics to reflect the range of the landscape characteristics of the simulated
maps according to their ecological meanings (Table 4) in order to determine the optimal scenario.

Table 4. Landscape-scale graph metrics used in the study and their ecological significance.

Graph Metric Ecological Description Reference

Mean patch size The area occupied by a particular patch type divided by the
number of patches of that type. [44]

Patch size coefficient of variation Patch size standard deviation divided by the mean patch size;
a measure of relative variability. [44]

Landscape shape index
Landscape shape index provides a standardized
measure of total edge or edge density that adjusts for the size
of the landscape.

[44]

Area-weighted mean patch contiguity index
The contiguity index assesses the spatial connectedness, or
contiguity, of cells within a grid cell patch to provide an index
of patch boundary configuration and thus patch shape.

[45]

Contagion index A quantitative index for measuring the degree of the
clumpiness of the overall landscape patterns. [46]

Mean Euclidean nearest neighbor distance
A patch-level distance (m) to the nearest neighboring patch of
the same type, based on the shortest edge-to-edge distance, is
averaged over all patches in the landscape.

[47]

Connectance index Connectance is reported as a percentage of the maximum
possible connectance given the number of patches. [48]

Shannon’s diversity index
A measure of patch diversity in a landscape determined by
both the number of patch types and the proportional
distribution of the area among these types.

[49]

Shannon’s evenness index

A measure of patch distribution and abundance, which is
equal to zero when the observed patch distribution is low and
approaches one when the distribution of patch types becomes
more even.

[50]

3. Results

3.1. Quantitative Analysis of Land-Use Categories

The demand for all land-use categories calculated by LP model under the three scenarios for 2020
is shown in Table 5. The interplay among the land requirements, land-use policy, and competition for
the eight land-use types resulted in differences in land-use dynamics among these scenarios.

The land-use conversions were simulated by CLUE-S model from 2007 to 2020. To reveal the trend
of land-use changes, we compared the simulated results with the demand to analyze the dynamics of
land-use types (Table 5). We can see that the relative error between them were small.
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Table 5. The precision of the CLUE-S model simulation and its validation results in the
non-spatial module.

Land-Use Types
Demand (hm2) Simulation Results (hm2) Relative Error (%)

Scenario Scenario Scenario

1 2 3 1 2 3 1 2 3

Cultivated Land 1656 1656 1656 1670 1675 1669 0.85 1.15 0.79

Garden Land 1678 1678 1678 1681 1671 1682 0.18 ´0.42 0.24

Forest Land 29,738 31,035 32,784 29,805 31,161 32,802 0.23 0.41 0.05

Grassland 2643 1692 1109 2659 1702 1098 0.61 0.59 ´0.99

Construction Land 6688 6689 6688 6689 6661 6680 0.01 ´0.42 ´0.12

AML 501 501 501 498 481 516 ´0.60 ´3.99 2.99

Water 955 1691 1109 950 1640 1080 ´0.52 ´3.02 ´2.61

Unutilized Land 2775 1692 1109 2682 1643 1107 ´3.35 ´2.90 ´0.18

3.2. Regression Analysis of Land-Use Changes

A logistic regression model was used to explore the relationship between land-use changes and
the related driving forces. The logistic regression results were further examined by using Receiver
Operating Characteristic (ROC) curves. An ROC greater than 0.7 suggests strong correlations and
abilities to explain the conversion between the different types using the selected driving forces. ROCs
for eight land-use types were 0.910, 0.874, 0.789, 0.818, 0.906, 0.847, 0.946, and 0.790, respectively.
They were all above 0.7, which revealed that the spatial distribution for all land-use types can be
explained by the selected driving forces, whereas different driving forces result in some differences in
various land-use types. The resulting regression coefficients for the driving forces were used in the
subsequent experiments.

3.3. Spatial Distribution of Simulated Maps

The spatial distributions all land-use types for the three scenarios in 2020 are presented in Figure 4.
Under scenario 1, cultivated land was mainly concentrated in Yongding with an area of 839 hm2

(Figure 4a). The garden land area was more or less the same as that in 2007, while its spatial distribution
differed. Garden land in Yongding declined, whereas that in Miaofengshan increased. Forest land
declined with an area of 360 hm2 and grassland showed an obvious tendency of decline with an area
of 1027 hm2. Most grassland was converted into forest land. Water increased by 45 hm2. According
to the land-use plan, there is a great need for construction land to foster industrial transformation
and urbanization. Most AML was reclaimed to construction land to meet the demands of that in the
non-spatial module. The reduced unutilized land was shifted into construction land as well. The
situation conformed to the demand for supplying cultivated land and construction land represented in
the local land-use planning.

Under scenario 2, there was a rising tendency in the amount of cultivated land, forest land, water,
and construction land, which increased by 844 hm2, 996 hm2, 735 hm2, and 3928 hm2, respectively
(Figure 4b). However, there was a sharp decline in grassland and unutilized land, with declining areas
of 1984 hm2 and 1420 hm2. Garden land was more or less the same.

Under scenario 3, there was an increasing tendency in the amount of cultivated land, forest
land, water, and construction land, which increased by 838 hm2, 2637 hm2, 175 hm2, and 3947 hm2,
respectively (Figure 4c). However, there was a sharp decline in grassland and unutilized land, with
declining areas of 2588 hm2 and 1956 hm2. Again, garden land was more or less the same.

Cultivated land was mainly seen in Yongding, which is located in the southeast region of the study
area (Figure 4). As shown in Equation (7), TPROP was assumed to provide an accurate description of
the spatial distribution of all types under the actual geophysical and socioeconomic conditions in the
study area. The conversion was observed in the grid cells with higher TPROP values. Thus, TPROP
was used to determine grids that have the potential to increase the percentage cover of the different
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types. Demand for grid cells with cultivated land and construction land cover was considerably higher
than the actual cover in 2007, which experienced an increase in iteration. Some geophysical driving
factors, namely elevation and slope, and some socioeconomic driving forces, namely population
density and agricultural population, significantly contributed to the conversion.

Int. J. Environ. Res. Public Health 2016, 13, 354 12 of 20 

3.3. Spatial Distribution of Simulated Maps 

The spatial distributions all land-use types for the three scenarios in 2020 are presented in 
Figure 4. Under scenario 1, cultivated land was mainly concentrated in Yongding with an area of 839 
hm2 (Figure 4a). The garden land area was more or less the same as that in 2007, while its spatial 
distribution differed. Garden land in Yongding declined, whereas that in Miaofengshan increased. 
Forest land declined with an area of 360 hm2 and grassland showed an obvious tendency of decline 
with an area of 1027 hm2. Most grassland was converted into forest land. Water increased by 45 hm2. 
According to the land-use plan, there is a great need for construction land to foster industrial 
transformation and urbanization. Most AML was reclaimed to construction land to meet the 
demands of that in the non-spatial module. The reduced unutilized land was shifted into 
construction land as well. The situation conformed to the demand for supplying cultivated land and 
construction land represented in the local land-use planning. 

 
Figure 4. Simulated maps under the three scenarios for 2020: (a) scenario 1; (b) scenario 2; and (c) 
scenario 3. 

Under scenario 2, there was a rising tendency in the amount of cultivated land, forest land, 
water, and construction land, which increased by 844 hm2, 996 hm2, 735 hm2, and 3928 hm2, 
respectively (Figure 4b). However, there was a sharp decline in grassland and unutilized land, with 
declining areas of 1984 hm2 and 1420 hm2. Garden land was more or less the same. 

(a) (b)

(c) 

Figure 4. Simulated maps under the three scenarios for 2020: (a) scenario 1; (b) scenario 2;
and (c) scenario 3.

3.4. AML Transformations Under Different Scenarios

The spatial transformation of AML for 2020 under the three scenarios can be extracted by
overlapping the layer of the original AML of 2007 with the simulated maps in Figure 4. The spatial
transformations and areas of AML under the three reclamation scenarios for 2020 are shown in Figure 5
and Table 6, respectively.

3.4.1. Scenario 1

The transformation of AML into cultivated land was seen in Yongding (Figure 5a). Owing to
their flat terrain and transport accessibility, the conversion from AML into construction land mainly
occurred in Junzhuang and Datai. In addition to cultivated land and construction land, the respective
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areas of reclaimed garden land, forest land, grassland, and water were 35 hm2, 152 hm2, 50 hm2, and
54 hm2. These areas were small and the spatial allocation of those types was not obvious.

3.4.2. Scenario 2

AML was mainly reclaimed to cultivated land, forest land, and construction land (Figure 5b).
Similar to scenario 1, the reclamation of cultivated land mainly occurred in Yongding, in the southeast
region of the study area. In addition, some new reclaimed cultivated land was concentrated in the
surroundings of the watershed in Miaofengshan owing to its good irrigation conditions. Forest land
spread widely across Datai, which was suitable for reclamation to forest land and construction land.Int. J. Environ. Res. Public Health 2016, 13, 354 14 of 20 
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Table 6. Areas of transformations of AML in 2007 under the three reclamation scenarios for 2020 (hm2).

Scenarios Cultivated
Land

Garden
Land

Forest
Land

Grass
Land

Construction
Land AML Water Unutilized

Land

Scenario 1 563 35 152 50 2246 440 54 33

Scenario 2 561 35 558 26 1879 424 67 23

Scenario 3 502 36 2484 10 10 458 55 18
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3.4.3. Scenario 3

AML was mainly reclaimed to cultivated land and forest land (Figure 5c). As for new cultivated
land, similar conditions were observed in Yongding. Almost no spatial distribution of cultivated land
was found in the other towns. Compared with the other two scenarios, demand for forest land was
higher (Table 5). Assuming forest development followed the trend shown in the non-spatial module,
some AML can be converted into forest land. By comparing the simulated scenario for 2020 with the
actual map of 2007, we see that the conversion of forest land from the other types primarily occured in
Yongding, Junzhuang, Miaofengshan, and Longquan.

3.5. Analysis of the Landscape Patterns under Different Scenarios

Nine landscape indices were selected to describe the characteristics of the landscapes and their
components (Table 7). The spatial statistics quantify the differences between these simulated maps.

Table 7. Landscape-scale graph metrics of the simulated maps.

Graph Metric Scenario 1 Scenario 2 Scenario 3

Mean patch size 41.384 39.561 44.582

Patch size coefficient of variation 2077.569 2103.256 1989.408

Landscape shape index 18.200 19.381 17.554

Area-weighted mean patch contiguity index 0.827 0.816 0.834

Contagion index 54.968 56.091 60.348

Mean Euclidean nearest neighbor distance 373.062 360.209 377.284

Connectance index 1.193 1.183 1.250

Shannon’s diversity index 1.262 1.192 1.081

Shannon’s evenness index 0.607 0.573 0.520

As shown in Table 7, scenario 3 had the largest average patch area and lowest size variability,
whereas scenario 2 had a smaller average patch area but higher relative size variability. Considering
the landscape shape index, scenario 2 was the highest because the landscape shape in this scenario
was the most irregular and the length of its edges was the longest of the three simulated maps. The
contiguity index of scenario 3 was higher than that of the alternatives. The contagion index ranked
from highest to lowest in the order of scenario 3, scenario 2, and scenario 1. Moreover, scenario 3 had a
high value for mean Euclidean nearest neighbor distance. The connectance index was computed as the
proportion of functional joinings among all patches, where each pair of patches was either connected
or not based on some criterion. The ranking of the connectance index for the three scenarios was the
same as the mean Euclidean nearest neighbor distance. As for Shannon’s diversity index, it ranked
from highest to lowest in the order of scenario 1, scenario 2, and scenario 3, which was the same for
Shannon’s evenness index. These rankings suggested that scenario 1 had the most classes of units, with
most of the units reporting a similar proportional area (evenness). Considering the selected landscape
indices, scenario 3 is thus more suitable that its alternatives.

4. Discussion

4.1. Simulation Accuracy of the Combined Model

After getting the simulated maps through the modeling approach showed above, we examined
the logistic regression results by using ROC curves; the ROCs for the eight land-use types were all
above 0.7. Further, the accuracy of simulating whole types can be evaluated by using Kappa index [51].
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The simulated map for 2013 was compared with the actual map using ENVI 4.8. The Kappa index was
0.90, which suggested that the model effectively captured future trends.

However, according to the MLS results, AML can only be shifted into four land-use categories,
namely cultivated land, garden land, forest land, and construction land. As presented in Table 6, other
land-use types such as grassland, water, and unutilized land showed small percentages, and their
spatial allocations were not obvious. This may be caused by the relative error in the model (Tables 5
and 6). We simulated changes in all land-use types by using the CLUE-S model, rather than only
simulating AML shifts when running the model. To meet the requirements in the non-spatial model for
the whole area, there was a balance between demand and the TPROP values of all the categories. We
tried to overcome this shortcoming by only simulating the dynamics of AML without other land-use
types. However, if we put the unique land-use type (i.e., AML) into the model, the model cannot
carry out the conversions between different land-use types without inputting various land-use types.
Moreover, it cannot generate new land-use types during the simulation. The land-use types in the
model must be consistent before and after a model run. Therefore, further research on parameter
settings should be conducted to improve simulation accuracy.

4.2. Mechanisms of Landscape Pattern Changes under Different Scenarios

In the three scenarios, the reclamation of cultivated land mainly occurred in Yongding, located in
the southeast region of the study area. The possible reason is that some geophysical driving forces,
namely lower elevation and slope, and some socioeconomic driving forces, namely higher population
density and agricultural population, significantly contributed to the conversion. In scenario 2, some
new reclaimed cultivated land was concentrated in the surroundings of the watershed in Miaofengshan
due to its good irrigation conditions. In addition, because of their flat terrain and transport accessibility,
the conversion from AML to construction land mainly observed in Junzhuang and Datai. Further,
reclaimed forest land was concentrated in Datai. A large amount of forest land spread widely across
Datai because of the high connectivity of patches of the same type. Compared with the other two
scenarios, demand for forest land in scenario 3 was higher (Table 5) and the conversion into forest land
from other types mainly occurred in Yongding, Junzhuang, Miaofengshan, and Longquan, which have
high transport accessibility.

Scenario 3 showed an advantage for most of the selected landscape-scale metrics. Mean patch size
and patch size coefficient of variation provided simple statistics for the overall differences between
the terrenes. Average patch area in scenario 3 was the largest and size variability was the lowest. The
low number of patches in scenario 3 resulted in high mean patch size and low patch size coefficient
of variation. The area-weighted mean patch contiguity index assessed the spatial connectedness, or
contiguity, of the cells within the grid cell patch to provide an index of patch boundary configuration
and thus patch shape. The contiguity index equaled 0 for a one-pixel patch and increases to a limit of 1
as patch contiguity, or connectedness, increases. Large contiguous patches resulted in larger contiguity
index values; therefore, the contiguity index of scenario 3 was higher than those of other scenarios.

The contagion index has been widely used in landscape ecology given its effective summary
of overall clumpiness on categorical maps. Contagion measures the extent to which patch types
are aggregated or clumped (i.e., dispersion); higher values of contagion may result from landscapes
with a few large, contiguous patches, whereas lower values generally characterize landscapes with
many small and dispersed patches. The higher value in scenario 3 may thus be attributed to the large
patches of forest land caused by reclamation. The mean Euclidean nearest neighbor distance was
perhaps the simplest measure of patch isolation and this equals the distance to the nearest neighboring
patch of the same type according to the shortest edge-to-edge distance. The widespread forest land
in scenario 3 significantly contributed to the high value of this index. The connectance index was
calculated by using a threshold distance specified by the user and reported as a percentage of the
maximum possible connectance, given the number of patches. The threshold distance was based on
the mean Euclidean distance; thus, the ranking of the connectance index for the three scenarios was
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the same as the mean Euclidean nearest neighbor distance. As discussed above, scenario 3 dominated
in most of the selected indices.

4.3. Implications for AML Management

From the aspect of landscape patterns, we advise that future ecological restoration policy in the
area of AML transformation should concentrate on shifting AML to more forest land because of the
closely combined and lowest variability patches as discussed above in order to maintain ecosystem
stability and biological diversity [52]. As shown in Figure 2, forest land dominated in the study area,
and therefore increasing the number of patches of the same type can enhance connectivity in the local
area [53,54]. In China, one rule for the reclamation of AML is that reclaimed patches should be line
with the surrounding land-use types, according to the Management Approach to the Reclamation and
Utilization of Abandoned Mine Land. It is obvious that forest patches comprise a high percentage in the
study area, and thus converting AML patches into forest would be consistent with the policy.

Moreover, in China, the concept of major function-oriented zones was proposed to achieve
coordinated regional development and environmental protection based on territorial functions [55].
In 2012, the Beijing Municipal Government realized four such function-oriented zones in Beijing:
the capital area, the urban extended zone, the new zone of urban development, and the ecological
preservation zone. The Mentougou District was included in the latter. Transforming AML into more
forest land has thus been identified as helping protect regional ecological safety and enhance ESV.

Further research is needed to consider a range of scenarios for AML reclamation and fully assess
ecological risk under different scenarios [17] to formulate effective environmental policy. Further, we
should further study the simulation accuracy, ecological parameterization, and ecological realism of
land-use models. Moreover, the method of simulating AML conversions used in this study was based
on incorporating the LP and CLUE-S models to obtain land requirements and spatial distributions,
respectively. Future research that combines different land-use models and ecological models with
more complex methods of simulating and assessing land-use scenarios [56] may provide a more
comprehensive assessment of AML transformations.

5. Conclusions

To understand the potential impact of AML transformations under different land reclamation
scenarios, we integrated the LP and CLUE-S models to provide a new approach for simulating AML
shifts. Based on the results, nine landscape-scale metrics were then used to characterize the simulated
maps. We found that the ROC and Kappa indices provided a good explanation of the conversion of
land-use types under actual biophysical and socioeconomic driving forces. Therefore, the application
in the case study demonstrates that the results of spatial transformations of land-use types under these
three scenarios can be reliable.

Owing to the different characteristics of the three scenarios, however, AML transformations
differed. New cultivated land dominated in scenario 1, while construction land and forest land
accounted for major percentages in scenarios 2 and 3, respectively. From the analysis of the nine
landscape indices, we can see that scenario 3 had an advantage in most with the patches combining
most closely and with the lowest complexity.

From the perspective of landscape patterns, further ecological policy should focus on transforming
AML into forest land to be in line with the surroundings in the study area. In China, a large number of
mines have been or will be closed, thereby resulting in more AML. Therefore, it is urgent to formulate
effective policies to restore AML in order to protect regional ecological safety and to keep people away
from the soil pollution, soil erosion, and land desertification caused by abandoned land.

However, this study only identified the most suitable scenario from the perspective of land-use
pattern analysis. Other factors such as reclamation investment costs and local policies should also be
considered in future studies to explore the optimal land reclamation scenarios.



Int. J. Environ. Res. Public Health 2016, 13, 354 18 of 20

Acknowledgments: The authors acknowledge the Foundation for Public Welfare of the Ministry of Land and
Resources of China (No. 201411017).

Author Contributions: Liping Zhang, Shiwen Zhang, and Yuanfang Huang conceived and designed the study;
Liping Zhang conducted the whole simulation process. Yajie Huang and Meng Cao collected and processed some
data; Liping Zhang wrote the paper; Yuanfang Huang and Hongyan Zhang contributed in the preparation of the
manuscript. All authors read and approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hu, Z.Q.; Fu, Y.H.; Xiao, W.; Zhao, Y.L.; Wei, T.T. Ecological restoration plan for abandoned underground
coal mine site in Eastern China. Int. J. Min. Reclam. Environ. 2015, 29, 316–330. [CrossRef]

2. Pichtel, J.R.; Dick, W.A.; Sutton, P. Comparison of amendments and management practices for long-term
reclamation of abandoned mine lands. J. Environ. Qual. 1994, 23, 766–772. [CrossRef]

3. Johnson, C.D.; Skousen, J.G. Minesoil properties of 15 abandoned mine land sites in West Virginia. J. Environ.
Qual. 1995, 24, 635–643. [CrossRef]

4. Kostarelos, K.; Gavriel, I.; Stylianou, M.; Zissimos, A.M.; Morisseau, E.; Dermatas, D. Legacy soil
contamination at abandoned mine sites: Making a case for guidance on soil protection. Bull. Environ.
Contam. Toxicol. 2015, 94, 269–274. [CrossRef] [PubMed]

5. Miao, Z.; Marrs, R. Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China.
J. Environ. Manag. 2000, 59, 205–215. [CrossRef]

6. Long, H.L. Land consolidation: An indispensable way of spatial restructuring in rural China. J. Geogr. Sci.
2014, 24, 211–225. [CrossRef]

7. Long, H.L.; Liu, Y.; Li, X.; Chen, Y. Building new countryside in China: A geographical perspective.
Land Use Policy 2010, 27, 457–470. [CrossRef]

8. Bendfeldt, E.S.; Burger, J.A.; Daniels, W.L. Quality of amended mine soils after sixteen years. Soil Sci. Soc.
Am. J. 2001, 65, 1736–1744. [CrossRef]

9. Alday, J.G.; Marrs, R.H.; Martínez-Ruiz, C. Vegetation succession on reclaimed coal wastes in Spain: The
influence of soil and environmental factors. Appl. Veg. Sci. 2011, 14, 84–94. [CrossRef]

10. Soltanmohammadi, H.; Osanloo, M.; Aghajani Bazzazi, A. An analytical approach with a reliable logic and a
ranking policy for post-mining land-use determination. Land Use Policy 2010, 27, 364–372. [CrossRef]

11. Sullivan, J.; Amacher, G.S. Optimal hardwood tree planting and forest reclamation policy on reclaimed
surface mine lands in the Appalachian coal region. Resour. Policy 2013, 38, 1–7. [CrossRef]

12. Mishra, S.K.; Hitzhusen, F.J.; Sohngen, B.L.; Guldmann, J.M. Costs of abandoned coal mine reclamation and
associated recreation benefits in Ohio. J. Environ. Manag. 2012, 100, 52–58. [CrossRef] [PubMed]

13. Hu, Z.Q.; Xiao, W. Optimization of concurrent mining and reclamation plans for single coal seam: A case
study in northern Anhui, China. Environ. Earth Sci. 2012, 68, 1247–1254. [CrossRef]

14. Schneider, S.H. Integrated assessment modeling of global climate change: Transparent rational tool for
policy making or opaque screen hiding value-laden assumptions? Environ. Model. Assess. 1997, 2, 229–249.
[CrossRef]

15. Lambin, E.F.; Rounsevell, M.D.A.; Geist, H.J. Are agricultural land-use models able to predict changes in
land-use intensity? Agric. Ecosyst. Environ. 2000, 82, 321–331. [CrossRef]

16. Xia, Y.; Liu, D.F.; Liu, Y.L.; He, J.H.; Hong, X.F. Alternative zoning scenarios for regional sustainable land use
controls in China: A knowledge-based multiobjective optimisation model. Int. J. Environ. Res. Public Health
2014, 11, 8839–8866. [CrossRef] [PubMed]

17. Gong, J.; Yang, J.; Tang, W. Spatially explicit landscape-level ecological risks induced by land use and land
cover change in a national ecologically representative region in China. Int. J. Environ. Res. Public Health 2015,
12, 14192–14215. [CrossRef] [PubMed]

18. Lin, Y.P.; Hong, N.M.; Chiang, L.C.; Liu, Y.L.; Chu, H.J. Adaptation of land-use demands to the impact of
climate change on the hydrological processes of an urbanized watershed. Int. J. Environ. Res. Public Health
2012, 9, 4083–4102. [CrossRef] [PubMed]

http://dx.doi.org/10.1080/17480930.2014.1000645
http://dx.doi.org/10.2134/jeq1994.00472425002300040022x
http://dx.doi.org/10.2134/jeq1995.00472425002400040014x
http://dx.doi.org/10.1007/s00128-015-1461-4
http://www.ncbi.nlm.nih.gov/pubmed/25600021
http://dx.doi.org/10.1006/jema.2000.0353
http://dx.doi.org/10.1007/s11442-014-1083-5
http://dx.doi.org/10.1016/j.landusepol.2009.06.006
http://dx.doi.org/10.2136/sssaj2001.1736
http://dx.doi.org/10.1111/j.1654-109X.2010.01104.x
http://dx.doi.org/10.1016/j.landusepol.2009.05.001
http://dx.doi.org/10.1016/j.resourpol.2012.06.011
http://dx.doi.org/10.1016/j.jenvman.2012.01.021
http://www.ncbi.nlm.nih.gov/pubmed/22366357
http://dx.doi.org/10.1007/s12665-012-1822-9
http://dx.doi.org/10.1023/A:1019090117643
http://dx.doi.org/10.1016/S0167-8809(00)00235-8
http://dx.doi.org/10.3390/ijerph110908839
http://www.ncbi.nlm.nih.gov/pubmed/25170679
http://dx.doi.org/10.3390/ijerph121114192
http://www.ncbi.nlm.nih.gov/pubmed/26569270
http://dx.doi.org/10.3390/ijerph9114083
http://www.ncbi.nlm.nih.gov/pubmed/23202833


Int. J. Environ. Res. Public Health 2016, 13, 354 19 of 20

19. Yeshaneh, E.; Wagner, W.; Exner-Kittridge, M.; Legesse, D.; Blöschl, G. Identifying land use/cover dynamics
in the Koga Catchment, Ethiopia, from multi-scale data, and implications for environmental change.
ISPRS Int. J. Geo Inf. 2013, 2, 302–323. [CrossRef]

20. Veldkamp, A.; Lambin, E.F. Predicting land-use change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [CrossRef]
21. Megahed, Y.; Cabral, P.; Silva, J.; Caetano, M. Land cover mapping analysis and urban growth modelling

using remote sensing techniques in Greater Cairo Region-Egypt. ISPRS Int. J. Geo Inf. 2015, 4, 1750–1769.
[CrossRef]

22. Xu, C.; Liu, M.S.; Yang, X.J.; Sheng, S.; Zhang, M.J.; Huang, Z. Detecting the spatial differentiation
in settlement change rates during rapid urbanization in the Nanjing metropolitan region, China.
Environ. Monit. Assess. 2010, 171, 457–470. [CrossRef] [PubMed]

23. Britz, W.; Verburg, P.H.; Leip, A. Modelling of land cover and agricultural change in Europe: Combining the
CLUE and CAPRI-Spat approaches. Agric. Ecosyst. Environ. 2011, 142, 40–50. [CrossRef]

24. Appiah, D.O.; Schröder, D.; Forkuo, E.K.; Bugri, J.T. Application of geo-information techniques in land use
and land cover change analysis in a Peri-Urban District of Ghana. ISPRS Int. J. Geo Inf. 2015, 4, 1265–1289.
[CrossRef]

25. Mitsova, D. Coupling land use change modeling with climate projections to estimate seasonal variability
in runoff from an urbanizing catchment near Cincinnati, Ohio. ISPRS Int. J. Geo Inf. 2014, 3, 1256–1277.
[CrossRef]
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