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Abstract: Studies over several decades have documented the beneficial actions of n-3 polyunsaturated
fatty acids (PUFAs), which are plentiful in fish oil, in different disease states. Mechanisms responsible
for the efficacy of n-3 PUFAs include: (1) Reduction of triglyceride levels; (2) anti-arrhythmic and
antithrombotic effects, and (3) resolution of inflammatory processes. The human microbiota project
and subsequent studies using next-generation sequencing technology have highlighted that thousands
of different microbial species are present in the human gut, and that there has been a significant
variability of taxa in the microbiota composition among people. Several factors (gestational age,
mode of delivery, diet, sanitation and antibiotic treatment) influence the bacterial community in the
human gastrointestinal tract, and among these diet habits play a crucial role. The disturbances in
the gut microbiota composition, i.e., gut dysbiosis, have been associated with diseases ranging from
localized gastrointestinal disorders to neurologic, respiratory, metabolic, ocular, and cardiovascular
illnesses. Many studies have been published about the effects of probiotics and prebiotics on the
gut microbiota/microbioma. On the contrary, PUFAs in the gut microbiota have been less well
defined. However, experimental studies suggested that gut microbiota, n-3 PUFAs, and host immune
cells work together to ensure the intestinal wall integrity. This review discussed current evidence
concerning the links among gut microbiota, n-3 PUFAs intake, and human inflammatory disease.
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1. Introduction

Polyunsaturated fatty acids (PUFAs) are important constituents of the phospholipids of all cell
membranes, where they play roles assuring the correct environment for membrane protein function,
maintaining membrane fluidity, regulating cell signaling, gene expression and cellular function, and
serving as substrates for the synthesis of lipid mediators. The fatty acid composition of inflammatory
cells can be modified by increasing intake of marine n-3 PUFAs, which leads to a higher content
of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) [1]. These changes in membrane
phospholipid fatty acid composition might be expected to influence the function of cells involved in
inflammation through: (1) Alterations of the membrane fluidity and raft structure; (2) effects on cell
signalling pathways; and (3) alterations in the pattern of the lipid mediators produced [2].

Chronic inflammatory disease, such as atherosclerosis, nonalcoholic fatty liver disease (NAFLD) [3],
chronic obstructive pulmonary disease (COPD) [4], inflammatory bowel disease (IBD) [5], and retinal
illnesses [6], are responsible of pain, impaired function, and diminished quality of life, as well as, the
associated high health-care costs and loss of productivity [7].

The human gut microbiota has become a widely discussed topic over the past decade. The
intestinal microbial community lives in a mutualistic relationship with its host and is a key contributor
to host metabolism. There is mounting evidence from the literature that brought to the forefront the

Mar. Drugs 2019, 17, 374; doi:10.3390/md17060374 www.mdpi.com/journal/marinedrugs

http://www.mdpi.com/journal/marinedrugs
http://www.mdpi.com
https://orcid.org/0000-0002-5699-0918
http://www.mdpi.com/1660-3397/17/6/374?type=check_update&version=1
http://dx.doi.org/10.3390/md17060374
http://www.mdpi.com/journal/marinedrugs


Mar. Drugs 2019, 17, 374 2 of 27

impact of mutualistic bacterial communities of the gut microbiota on human health. Each person’s
microbiome is unique, rapidly developing throughout early childhood and with differing rates of
variability in adulthood. Microbial colonization runs in parallel with immune system maturation and
plays a role in intestinal physiology and regulation [8]. Moreover, the network of mucosal immune cells
and intestinal epithelium acts in concert to enforce barrier function, prevent mucosal infections and
maintain a symbiotic relationship with the commensal flora. The disruption of this balance, whether
due to genetic or environmental insults, is now recognized for having important and far-reaching
impacts on immune tolerance and hypersensitivity in intestinal and extra-intestinal tissues, including
the liver, the lung, the eyes, and the central nervous system [9].

Both genetic and environmental factors, including diet, geographical location, toxin/carcinogen
exposure, and hormones, can influence variations in gut microbial composition [10]. The western
lifestyle, including over-feeding of highly refined diets and sedentary behavior, is associated with
systemic low-grade inflammation, responsible for chronic degenerative disease.

This review describes the connections among gut microbiota, n-3 PUFAs intake, and IBD or
retinal disease.

2. Fish n-3 PUFAs

In recent years, much focus has been placed on the beneficial effects of fish consumption
strengthened by the concept that the ocean offers a wonderful resource for novel compounds. Many of
the positive effects of fish, including those on dyslipidemia and heart disease, have been attributed to
n-3 PUFAs, i.e., EPA and DHA. However, in addition to n-3 PUFAs, other nutrients, such as minerals,
vitamins and proteins, [11] have been associated to the prevention/treatment of cardiovascular (CV)
disease and associated health complications [1,12–14]. Indeed, in a recent experimental study, krill
oil (a sustainable source of EPA and DHA) and krill proteins proved to be effective in lowering
atherosclerosis development in apoE deficient mice [15]. Krill oil seems to exert this effect mainly by
interfering with cholesterol synthesis, whereas krill protein may affect atherosclerosis development by
supplying nitric oxide (NO) through arginine [16], thus preserving endothelial function, and, possibly,
through the release of atheroprotective peptides [17].

EPA and DHA are concentrated in fatty fish and marine mammals and these are the main source
in the eastern diet. n-3 PUFAs are also commercially available as dietary supplements in the form
of oil and capsules. In 2008, the US Food and Drug Administration (FDA) have formally stated that
consumption of up to 3 g/d of marine-based n-3 PUFAs is generally regarded as safe. In line with this
health claim, fish consumption is recommended in the 2015–2020 Dietary Guidelines for Americans
and by the American Heart Association (Figure 1) [18].

Clinical complications of atherosclerosis like myocardial infarction, stroke and peripheral arterial
disease still represent the leading cause of mortality and morbidity in the world [9,19]. Among patients
who are receiving appropriate treatment with statins, the rates of CV events remain high [20,21].
In addition, recent genetic [22–24] and Mendelian randomization studies [25,26] have highlighted
triglyceride levels as an independent risk factor for the incidence of ischemic events. Therefore, there
is renewed interest in targeting triglycerides aiming at reducing the residual cardiovascular risk [21].
Lifestyle modification remains the starting point of therapy for the hypertriglyceridemia, followed by
fibrates and n-3 PUFAs administration [27].

While earlier studies on CV outcomes demonstrated favorable effects of n-3 PUFAs [28,29],
subsequent clinical trials evaluating the impact of EPA (20:5n-3) and DHA (22:6n-3) administration,
alone or in combination, failed to confirm the previous results [30–32]. These considerations led to
the design of the prospective, randomized, double-blind Reduction in Cardiovascular Events with
EPA-Intervention Trial (REDUCE-IT) assessing the ability of icosapent ethyl to reduce CV outcomes in
high-risk statin-treated patients with triglyceride levels of at least 500 mg/dL [33,34]. In this study,
the risk of both primary (25%) and secondary (26%) composite end points was significantly lower
among patients treated with 2 g of icosapent ethyl than among those in the placebo group [35]. The
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overall rates of adverse events leading to discontinuation of trial were similar in both the clinical
groups. However, serious adverse events, i.e., bleeding and the rate of hospitalization for atrial
fibrillation or flutter, were observed with higher frequency among patients in the icosapent ethyl
group. The authors suggested that the observed reduction in the risk of ischemic events caused
by icosapent ethyl administration may be explained by metabolic effects other than a reduction of
triglyceride levels, i.e., antithrombotic, membrane-stabilizing, plaque stabilizing and anti-inflammatory
mechanisms [36–39]. It is known that, n-3 PUFAs, being natural agonists of GPR120 (also called free
fatty acid receptor 4) [40], attenuate NF-κB activation and stimulate PPARs, resulting in the reduced
production of prostaglandin E2 (PGE2), TNF-α, interleukin 6 (IL-6), IL-1β, soluble E selectin, and
high-sensitivity C-reactive protein [41,42]. In addition, n3-PUFAs also act as substrates for the synthesis
of specialized pro-resolving mediators (SPMs), i.e., resolvins (short for resolution phase interaction
products), protectins, and maresins (short for macrophage mediators in resolving inflammation) [43],
reducing the inflammatory circuits of atherosclerosis [44]. These SPMs, upon activation of specific
receptors, actively terminate the inflammatory reactions by increasing efferocytosis, phagocytosis and
leukocytes egress (Figure 2) [45].
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In line with these data, a recent study provided a link among EPA supplementation, the
generation of SPM’s precursors, and their signaling pathways in the context of cardiovascular
disease [46]. Specifically, the authors identified 18-HEPE as a plasma biosynthetic pathway marker of
EPA supplementation, and characterized the receptor for the 18-HEPE–derived lipid mediator RvE1,
i.e., ERV1/ChemR23, as a key player in atherosclerosis. The targeted deletion of Erv1/Chemr23 in
2 independent hyperlipidemic murine models was instead associated with proatherogenic signaling in
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macrophages, increased oxLDL uptake, reduced phagocytosis, and increased atherosclerotic plaque
size and necrotic core formation. Moreover, a specific ERV1/ChemR23–expressing macrophage subtype
was detected near the necrotic core into the human atherosclerotic lesions and its gene expression was
increased in the plaques harvested from patients receiving statins [46,47].
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The ongoing (VITAL, NCT01169259) placebo-controlled trial, designed to examine major CV events,
might clarify the utility of Lovaza, a drug formulation containing ethyl ester of EPA (465 mg) and DHA
(375 mg), in primary prevention of CV disease [48]. The randomized trial for evaluation in secondary
prevention efficacy of combination therapy–statin and EPA (RESPECT-EPA, UMIN000012069), a study
involving statin-treated patients in Japan, and the effect of Vascepa (a preparation of EPA as ethyl ester)
on improving coronary atherosclerosis in people with high triglyceride levels taking statin therapy trial
(EVAPORATE, NCT02926027), which is examining changes in coronary plaque over 9 to 18 months,
will provide further information on the effects of these agents. In addition, the statin residual risk
reduction with Epanova in hiGh cardiovascular risk patients with hypertriglyceridemia (STRENGTH
NCT02104817) is an ongoing trial that will be exploring residual cardiovascular risk reduction with 4 g
daily of EPA/DHA (Epanova) versus corn oil in patients on statin therapy.

Finally, it is should be noted that n-3 PUFAs have dramatically modified the biochemical
composition of the lipid rafts, i.e., the dynamic sphingolipid-cholesterol enriched regions of the
membrane that concentrate specific signaling proteins [49]. These lipid microdomanins play a crucial
role in the CD4+ T cell activation and differentiation, and downstream in the B cell activity [50].
Several in vitro and in vivo data have shown that n-3 PUFAs displaced many of the signaling proteins
necessary for CD4+ T cell activation [51]. In addition, n-3 PUFAs suppressed CD4+T cell polarization
into Th1 and Th17 cells, probably by altering the IL-6/gp130/STAT3 pathway [52]. On the other hand,
n-3 PUFAs or SPMs boosted humoral immunity by influencing B cell development in the bone marrow,
B cell activation and antibody production in response to antigen [53]. Although these data need to be
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confirmed and the underlying mechanisms better clarified, it can be speculated that n-3 PUFAs may
contribute in the attenuation of autoimmune and chronic inflammatory disease [51].

3. The Gut Microbiota

The gastrointestinal (GI) tract is a passage formed by mucosa, submucosa, and smooth muscle
containing a huge network of nerves and blood vessels. The mucosa is responsible for: Digestion and
absorption of nutrients from the diet; protection of the body against physical and chemical damage
from luminal contents; and supply of immunity [54,55]. The small intestinal epithelium, the single
cell layer that forms the luminal surface, is folded to form villi and crypts. Both these structures
serve to increase the total absorption surface of the intestine. Moreover, in the mucosa different types
of cells are present, such as enterocytes (the main cellular component accounting for about 80%),
Paneth, goblet, and enteroendocrine (comprise just 1% of the epithelium) [56]. Enteroendocrine cells,
distributed throughout the GI tract, form a large endocrine organ that control: (1) GI secretion and
motility; (2) regulation of food intake; (3) postprandial glucose levels; and (4) direct communication
with neurons innervating the GI tract (these cells are part of the gut brain axis) [57].

The mammalian intestine is colonized by a complex community of microorganisms, called
microbiota, constituted by bacteria (approximately 4 × 1013), archaea, viruses (especially bacteriophages),
protozoans and fungi [58]. Shotgun metagenomic sequencing through random sequencing of all
genes established that the human gut possesses a bacterial microbiome that is predominated by
phyla, such as Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia. Firmicutes and
Bacteroidetes represent 90% of the gut microbiota [9]. It is important to remember that the colonization
of the human gut starts prenatally and continues after birth, reaching the adult microbiota state
between the ages of 2 and 5 years [59]. Following birth, diverse microbes colonize the human intestine,
and several factors are known to affect this process, i.e., gestational age, mode of delivery, diet
(breast milk vs formula), sanitation and antibiotic treatment [60]. Several studies showed a positive
correlation between human milk oligosaccharides and the number of Bifidobacterium demonstrating
that milk oligosaccharides have a probiotic effect by stimulating the development of Bifidobacterium-rich
microbiota [61]. Furthermore, in addition to proteins, fats, carbohydrates and endocannabinoids,
human breast milk contains immunoglobulins (IgA and IgG), antimicrobial compounds (lysozyme
and lactoferrin), immune-regulatory cytokines (e.g. TGF-β and IL-10), and lymphocytes that express
gut homing markers [62,63]. Altogether these data indicate that intestinal bacterial colonization
dramatically influence the development of the host immune system in early life and affects health and
disease in later life, as indicated by the loss of immune function in germ-free (GF) mice [63–65].

A significant change in the gut microbiota composition accompanies the weaning from the mother
and the introduction of solid foods, with enhanced colonization of butyrate producers, including
Bacteroides and certain Clostridium species [66]. Once established, the composition of the gut microbiota
is relatively stable throughout adult life in the absence of perturbations such as long-term dietary
changes, disease-associated dysbiosis, or the use of antibiotics. However, centenarian’s microbiota
showed decreased levels of Bacteroides, Bifidobacterium and Enterobacteriaceae, while Clostridium species
levels were increased compared with younger adults. For these reasons, dietary-intervention studies
are warranted to investigate whether changing the dietary pattern of elderly individuals can alter their
gut microbiota in a way that is beneficial to their general health [67].

The Gut Microbiota and the Immune System

A noticeable example of the symbiotic effects of the microbiome is the immune system, whose
normal development and behavior are strongly influenced by microbial metabolites that are produced
by: (i) Bacteria from dietary components; (ii) the host and biochemically modified by gut bacteria; and
(iii) by gut microbes. In this context, a complex interplay between the local microbiota, the intestinal
epithelium and the resident immune cells has begun to emerge, in which all participants actively
foster GI homeostasis [9]. Segmented filamentous bacteria are best known for their ability to induce
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the differentiation of naïve T cells to form antigen-specific Th17 cells in the ileum of mice [68] and
humans [69]. Th17 cells play a critical role in host defense against extracellular pathogens (i.e., fungi
and extracellular bacteria [70]) and tissue homeostasis (i.e., promoting epithelial barrier functions [71])
but can induce autoimmunity [72]. The mechanisms implicated in the balance between ‘pathogenic’
and ‘non-pathogenic’ Th17 cell states are still unknown. However, treatment of non-pathogenic Th17
cells with IL-23 converts them into a pathogenic phenotype, suggesting that IL-23 is a cytokine that
drives the functional phenotype of Th17 cells [73]. Furthermore, the metabolic relationship between
diets and immune cells in the gut has been strengthened by the finding that short chain fatty acids
(SCFAs) promoted B cell metabolism [74] and the development and function of colonic regulatory T
(Treg) cells [75]. Treg cells have played a role of gatekeeper of commensal tolerance by the immune
system, through suppression of aberrant T cell responses. A balance between Th17 and Treg cell
differentiation has been demonstrated [76]. Beyond SCFAs, gut microbiota have produced several
additional immunologically important metabolites from food components. Dietary tryptophan, for
instance, is processed to different indole derivatives, which can act as ligands for the aryl hydrocarbon
receptor (AhR) [77], a ligand-activated transcription factor which plays a crucial role in the development
of multiple tissues. In the intestinal mucosa, AhR is required for postnatal maintenance of Group 3
innate lymphoid cells (ILC3s) producing IL-22, as well as for the formation of isolated lymphoid
follicles [9]. IL-22 is a cytokine that supports the integrity of the intestinal mucosa by inducing the
secretion of antimicrobial peptides from epithelial cells, the production of mucins and the proliferation
of intestinal goblet cells [78]. Highly reactive polyamines, i.e., putrescine, spermidine and spermine,
derive from arginine by the action of gut microbiota, are involved in the development and maintenance
of the intestinal mucosa and resident immune cells [79]. In addition, arginine itself is an important
modulator of the immunometabolism of macrophages and T cells, and thus affects their effector
functions [80]. Moreover, free taurine generated by deconjugation of primary bile acids [81] can
promote the activation of the NLRP6 inflammasome and the production IL-18, supporting epithelial
barrier function and maintenance [82]. In addition, bile acids are able to downregulate the expression
of pro-inflammatory cytokines from monocytes, macrophages, dendritic cells and Kupffer cells [9].

On the other hand, a deficit of vitamin B1 is responsible for the reduction in the number of naïve
B cells in Peyer’s patches, due to their dependence on this Krebs cycle cofactor, but has a neutral effect
on IgA+ plasma cells present in the lamina propria [83].

4. Human Disease, n-3 PUFAs and Gut Microbiota

Inflammation seems to be the common denominator among the above described seemingly
unrelated biological entities, i.e., the gut microbiome, the immune system, and n-3 PUFAs. Inflammation
is currently accepted to play a key role in the progression of several chronic diseases, such as
atherosclerosis, inflammatory bowel disease, cancer, diabetes, neurodegenerative syndromes, etc. [9].
In addition, as above described several evidences support the role of both the microbiota and the n-3
PUFAs in regulating inflammation and the immune system [45,52,74]. Moreover, dietary n-3 PUFAs,
affecting gut integrity, have been shown to reduce clinical colitis and colonic immunopathology by
improving epithelial barrier function in animal models [84]. Indeed, in clinical studies n-3 PUFAs have
demonstrated the ability of: (i) Decreasing the Firmicutes/Bacteroidetes ratio; (ii) decreasing the levels
of Coprococcus and Facecalibacterium; (iii) increasing the abundance of butyrate-producing bacterial
genera, i.e., Bifidobacterium, Lachnospira, Roseburia and Lactobacillus [85–87]. These data were in line with
those obtained in a subsequent study where the authors also found a significant correlation between
n-3 PUFAs plasma levels and SCFA-producing bacteria, i.e., Lachnospiraceae family [85]. In addition,
a diet supplemented with n-3 PUFAs was able to prevent neuropsychiatric disorders and dysbiosis
induced by social instability stress during adolescence, and these effects were maintained through
adulthood [88,89] supporting the concept that a healthy diet may have long-lasting beneficial effects
and help fight off neurodegenerative diseases. Altogether these data allow hypothesizing a link among
n-3 PUFAs intake, gut microbiome shaping and immune system modulation with the final common
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aim of hampering inflammatory-based disease (Figure 3). Accordingly, this review will particularly
focus on the recent studies regarding the therapeutic potential of the combination between fish n-3
PUFAs and probiotic/prebiotic in the IBD and retinal disease.
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4.1. Inflammatory Bowel Disease

IBD, specifically Crohn’s disease (CD) and ulcerative colitis (UC), are relapsing and remitting
inflammatory diseases of the GI tract without a clear etiology. The symptoms include abdominal
pain, diarrhea, weight loss, ulceration, perforation, and bowel obstruction. Although the all picture of
the pathogenesis of IBD remains unclear, aberrations in genetics, imbalances in the gut microbiome,
dietary and lifestyle factors such as cigarette smoking, medications, and environmental triggers (i.e.,
geographical location and social status) are all believed to play a role in the disease’s development
(Figure 4).

Genome-wide association studies (GWAS) have identified 242 loci associated to the presence of
IBD [5,90]. For example, variants at the NOD2 and CDH1 loci confer the largest increase in relative
risk of IBD and have been associated to UC, respectively [91–93]. The NOD2 gene encodes a protein
that is activated within the cytoplasm of macrophages and dendritic cells by bacterial ligands [94],
whereas CDH1 gene has a critical role in cell-cell adhesion and is also required for epithelial cell tight
junction formation [95]. Moreover, a meta-analysis revealed that genetic variations in TLR4 gene, the
receptor for LPS, conferred a statistically significant risk of developing CD and UC [96,97]. In addition,
polymorphisms in TLR2, the main receptor for gram-positive bacteria, have been associated with
IBD in humans and there is an inflammation-dependent induction of TLR2 expression in intestinal
macrophages [98].

The hyper-responsiveness of T cells toward non-pathogenic antigens could represent one of
the possible etiologies for IBD. The presence of antibodies against commensal microbial antigens
and autoantigens, such as anti-Saccharomyces cerevisiae, and anti-Pseudomonas fluorescens-associated
sequence 12 [99–101], has been associated to dysbiosis and loss of microbiota responsible for the
gut mucus barrier integrity. Since it has been shown that colitis-prone genetically predisposed GF
mice colonized by IBD-associated-microbiota developed severe colitis compared to those that were
colonized by healthy human microbiota, it can be hypothesized that gut dysbiosis contributes to IBD
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pathogenesis [102]. Together, these findings strongly indicate a bidirectional relationship between such
diseases and gut dysbiosis, in which dysbiosis potentially contributes to the onset of IBD and also
serves as a secondary consequence of gut inflammation [103,104].
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It is well known that the microbiota and the gut have a symbiotic relationship: The human host
supplies the nutrients needed for the survival of the microbes, and these latter protect the host against
pathogens, and act as regulatory factors of the immune responses [56]. An aberrant mucosal immune
system and irregular mucosal epithelium with increased intestinal permeability (IP) may permit the
translocation of bacterial-derived toxins causing gut inflammation. The communication between the
gut microbiota system and all the organs of the human body is regulated by the IP [105,106]. Indeed,
IP degree is very changeable and results from the interconnection between several factors: Type of diet;
gene expression; intestinal/liver pathology; surface mucus; integrity of tight junctions; and production
of immunoglobulins [107]. Several investigators detected a decrease of several protective bacteria (i.e.,
Fecalibacterium prausnitzii, Clostridium clusters IV and XIVa, some Bacteroides species, Bifidobacterium)
and an increase of harmful bacteria (i.e., adherent-invasive Escherichia coli, Fusobacterium, Campylobacter
concisus, Enterohepatic Helicobacter, Clostridium difficile, Veillonella) in IBD patients [108,109].

Several mechanisms are responsible for the intestinal inflammation caused by the consumption of
high-fat diets (HFDs), including both changes in the intestinal barrier and composition of the intestinal
microbiota. Experimental and clinical data indicated a direct correlation between plasma endotoxin
levels and dietary fat intake, which suggested an increase of the IP [110,111] due to the decrease of
epithelial tight junction proteins, such as occludin. Indeed, several experimental studies showed a
dramatic decrease of intestinal occludin expression associated to the administration of a HFD [112–114].
On the other hand, high consumption of carbohydrates, such as glucose, sucrose, lactose, or fructose,
overwhelms absorptive mechanisms of the intestine, resulting in high luminal sugar concentrations
used by the microbiota as an energy source [115]. In support of this hypothesis, consumption of a high
sugar diet was demonstrated to promote intestinal dysbiosis, the expansion of harmful bacteria (such
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as, Ruminococcus torques, Bacteroides, Prevotella), increased IP and inflammation [116,117]. In contrast,
a fish-oil based diet has been associated with Lactobacillus and Akkermansia muciniphila blooming,
and reduced gut inflammation [118,119]. The observed increase in the abundance of Akkermansia
muciniphila could be a paradox because this is a mucin-user bacterium and at the same time, it is crucial
for the maintenance of the mucus layer integrity [120]. However, this latest effect appeared to be more
significant as proved by the fact that increased intestinal levels of Akkermansia muciniphila has been
associated to a mucus layer thickening and a reduction of IP [121].

Recently, the treatment for IBD has made progress from simply controlling symptoms to modifying
the course of the disease by achieving and maintaining remission which is defined as complete mucosal
healing and normalization of blood markers, as well as disappearance of symptoms [122]. However,
the development of a safer and more effective novel treatment for IBD is in great need.

The role of gut microbiota in colitis development was confirmed by using animal models. GF
mice displayed minimal inflammation or delayed onset of chemically and genetically induced colitis
compared to the conventionally raised (CONV-R) animals [123–125]. However, higher mortality
was seen in GF than CONV-R mice after giving dextran sulfate sodium (DSS), due to massive gut
epithelial injury [126]. The seemingly paradoxical phenomenon could be explained by the lack of
immune maturation and/or tolerance as well as the impairment of epithelial turnover (which is
dependent on commensal colonization) in GF mouse intestine [127,128]. Gut microbiota metabolites
act as important signals for the monitoring of the correct function of the epithelial barrier and the
immune cells. Similarly, immune-driven signals central to gut homeostasis can also modulate the
metabolism of immune cells [129]. It is well known that several hematopoietic cells produce IL-10
and its importance for maintaining tolerance within the intestinal microbiota come from experimental
observations using IL-10- or IL-10R-deficient mice (both these mouse models develop spontaneous
colitis) (see below, [130]), and clinical data (IBD patients are characterized by decreased levels of the
anti-inflammatory cytokine IL-10). In line with these results, administration of genetically modified
probiotic, i.e., Lactococcus lactis expressing IL-10, had demonstrated a significant remission of disease
activity in CD patients. Furthermore, oligofructose-enriched inulin (OF-IN) administration was able to
induce an improvement in CD associated to a reduction of the Ruminococcus gnavus. In addition, it has
been recorded that the intake of this prebiotic is able to increase the abundance of the Bifidobacterium
longum. This bacteria neutralizes reactive oxygen species and exerts anti-inflammatory effects at the
site of inflammation, reducing gastrointestinal discomfort and tissue injury [131]. Previous studies also
showed that different probiotic combinations, especially Bifidobacterium longum or a multistrain mix of
Bifidobacterium longum, Lactobacillus acidophilus, and Streptococcus faecalis, increased expression of tight
junction proteins in IBD [132]. Furthermore, VSL#3®, a mixture of 4 species of Lactobacillus, 3 species
of Bifidobacterium, and 1 species of Streptococcus, has been shown to: (i) Improve epithelial barrier
damage; (ii) induce remission in active UC; and (iii) decrease pro-inflammatory mucosal cytokine
expression [133].

Meta-analyses revealed a low incidence of IBD in eskimos, whose diet is particularly rich in n-3
PUFAs [134]. Starting from these clinical evidences, the impact of dietary n-3 PUFAs has been evaluated
in different models of colitis. All the results obtained in these experiments are coherent and indicate that
n-3 PUFAs decrease chemically-induced intestinal tissue damage and inflammation [135]. Similarly,
in fat-1 transgenic mice, characterized by high levels of endogenous n-3 PUFAs, the intestinal tissue
damage was significantly reduced compared to wild type mice, together with decreased expression
of TNF-α, IL-1β, and increased synthesis of SPMs [136,137]. In addition, the fat-1 mice displayed
higher gut microbiota diversity and more abundance of Verrucomicrobiota plylum (Akkermansia genus)
compared to wild-type [138].

Moreover, a diet high in fibers and n-3 PUFAs is protective for the development of IBD, whereas a
diet high in refined sugars, complex carbohydrates, and n-6 PUFAs (i.e., red meat), increases the risk of
acquiring IBD. A number of studies indicated that homeostasis is crucial to have a good n-3 to n-6
PUFAs ratio, the former being anti-inflammatory and the latter pro-inflammatory molecules [1,139].
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Therefore, dietary n-3 PUFAs supplementation is encouraged as anti-inflammatory adjuvants for
IBD [140,141]. On the contrary, a low-fiber diet may increase the risk of CD, and, if associated to high
consumption of sugar and soft drinks, it may also increase UC risk [142]. However, thus far, the effects
of dietary interventions on CD and UC are uncertain [143]. The cornerstone is that dietary fiber is a
plant-based carbohydrate that resists digestion by intestinal and pancreatic enzymes in the human GI
tract. Soluble and insoluble dietary fibers are essential for gastrointestinal mucosa health because they
serve as important substrates for the gut microbiota. The fermentation products selectively promote
the growth of beneficial Bifidobacteria and Lactobacilli and exert anti-inflammatory (such as, inhibition
of NFκB transcription) and anti-carcinogenic functions [144].

Two large clinical trials designed at evaluating the effects of n-3 PUFA supplementation on CD
provided conflicting results and concluded that supplementation was not effective in preventing CD
relapse [145,146]. Intriguingly, another study suggested that IBD patients that achieved a n-3/n-6
ratio of 1 maintained disease remission at a significantly higher rate compared to those did not reach
this goal [147]. A double-blind, randomized study was carried out in 38 pediatric CD patients, who
received, for 12 months, 5-aminosalicylic acid (50 mg/kg/d) + n-3 PUFAs (3 capsule/d, each capsule
contained 400 mg/g EPA and 200 mg/g DHA) or 5-5-aminosalicylic acid (50 mg/kg/d) + olive oil placebo
capsules [148]. The results indicated that the addition of enteric-coated capsules to a conventional
therapy with 5-aminosalicylic acid delayed the relapse of the disease even though it could not prevent
it. Another study used enteric-coated n-3 PUFAs capsules for remission maintenance in adult CD
patients at high risk of relapse, and found n-3 PUFAs to be more effective than placebo [149]. However,
two multicentre, randomized, double-blind, placebo-controlled studies, called Epanova Program in
Crohn’s 1 and 2, (EPIC1 and EPIC2), found that relapse occurred in 32% with n-3 PUFAs and 36%
with placebo in EPIC1, and 48% with n-3 PUFAs and 49% with placebo in EPIC2, indicating that n-3
PUFAs did not reduce the rate of relapse in patients with quiescent CD [146]. Of interest, two random
double-blind placebo crossover studies reported significant improvement of the disease [150] and of
the oxidative stress status in active UC patients receiving sulfasalazine, respectively [151]. Thus, the
efficacy of n-3 PUFA or fish oil against CD or UC is, at best, marginal. However, none of the studies
reported any adverse effects associated with n-3 PUFA supplementation. A recent meta-analysis of
observational studies showed that fish consumption was inversely associated with the risk of CD.
Moreover, there was a strong inverse association between dietary n-3 PUFAs intake and the risk of
UC [152]. Previously published studies revealed that fish consumption and dietary n-3 PUFAs intake
might play a role in the etiology of IBD [153,154]. In line with these findings, one study revealed that
the Mediterranean diet, rich in fish and seafood, reduced inflammation [151] and normalized the gut
microbiome in CD patients, i.e., an increase in Bacteroidetes and Clostridium clusters, and a reduction
of Protebacteria and Bacillaceae [155]. In a pilot study, short-term EPA-supplementation reduced
mucosal inflammation favoring an improvement of both endoscopic and histological inflammation in
almost all patients, together with a significant up-regulation of IL-10 expression, and a reduction of
STAT3 activation [156]. Moreover, microbiota analysis showed that EPA treatment increased the family
Porphyromonadaceae and the genus Parabacteroides, and reduced the genus Bacteroides that include
mucolytic species [157].

In addition to fats and fibers, bioactive amino acids and oligopeptides are derived from food
proteins through chemical and enzymatic hydrolysis, or bacterial metabolism [158,159]. In vitro and
in vivo models of IBD have been used to test the antioxidant properties of amino acids. Cysteine,
methionine, taurine, tryptophan, tyrosine, phenylalanine are able to reduce the oxidative stress,
because of the presence of a thiol group and of an aromatic ring [142,160]. In addition, dietary cysteine
was effective at reducing the intestinal inflammatory responses and at enhancing mucin synthesis
in DSS-induced colitis animal models [161–163]. The anti-inflammatory activity of these bioactive
molecules involves the activation of the calcium-sensing receptor (CaSR), a protein controlling different
cellular activities (i.e., proliferation, differentiation, and apoptosis) [164,165]. On the other hand,
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mucins are cysteine-rich glycoproteins, secreted by goblet cells, and very important for intestinal
epithelial integrity.

4.2. Retinal Disease

Despite major advances in treatment and management, retinal disease cause over three-quarters
of all cases of irreversible vision loss in the western world. Recent estimates indicated that the leading
causes of irreversible severe visual impairment in those >50 years of age were diabetic retinopathy,
age-related macular degeneration (AMD) and glaucoma, affecting~5.4 million people globally [166].
Retinal disease manifest abnormal angiogenesis, proliferative neovascularization, excessive vascular
permeability, immunoregulatory dysfunction, alterations in physiologic reduction-oxidation (redox)
balance, or retinal pigment epithelial (RPE) cell degeneration.

Pathological factors affecting the retina health include ischemia, light exposure, oxidative stress,
apoptosis, inflammation, neuroactive cell signaling molecules, and aging. Moreover, plasma levels of
high-sensitivity C-reactive protein and pro-inflammatory cytokines, such as TNF-α and IL-6, have been
elevated in subjects with essential hypertension, coronary heart disease, type 2 diabetes, retinal disease,
and inflammatory bowel disease [167–170]. Anti-inflammatory therapy with canakinumab, targeting
the IL-1β innate immunity pathway, markedly reduced the plasma levels of IL-6 and high-sensitivity
C-reactive protein [171], and led to a significantly lower rate of recurrent cardiovascular events than
placebo, independent of lipid-level lowering [172]. These studies provide the proof of concept that the
removal of pro-inflammatory markers reduces the inflammatory-based disease risk.

Within the neural retina, phosphatidylcholine (PC) and phosphatidylethanolamine (PEA) represent
the predominant PUFA-rich lipid class, followed by phosphatidylserine (PS) and phosphatidylinositol
(PI). Arachidonic acid (AA) is the major PUFA in the neural and vascular tissue of the retina [173,174].
PUFA-containing phospholipids enter the RPE or photoreceptor inner segment via a receptor mediated
transport process. Tracer studies have indicated that DHA-containing phospholipids are then integrated
as structural constituents of photoreceptor disk membranes and are retained in proximity to rhodopsin
molecules across the life span of these organelles [175]. Several bioactive molecules play a crucial role
in the retinal disease, i.e., eicosanoids, angiogenic factors, matrix metalloproteinases (MMPs), reactive
oxygen species, cyclic nucleotides, neurotransmitters and neuromodulators, proinflammatory and
immunoregulatory cytokines, and inflammatory phospholipids. It has been shown that n-3 PUFAs are
able to modulate the production, activation, and potency of these molecules. DHA and its substrate,
EPA, influence eicosanoid metabolism by reducing n-6 PUFAs levels (mainly arachidonic acid, AA,
20:4n-6) and compete for enzymes (cyclooxygenase, COX and lipoxygenase, LOX) producing AA-based
angiogenic and proinflammatory eicosanoids [176].

As above mentioned, intestinal bacteria are often considered a hidden metabolic organ, since they
play a significant role in human nutrition and metabolism. It has been demonstrated that CONV-R mice
had reduced levels of multiple PC species in lens and retina compared to GF animals, which suggested
that the gut microbiota influenced the lens and retinal lipid composition [177]. Antibiotics depletion
of gut microbiota in a spontaneous mouse model of uveitis resulted in significant attenuation of the
retinal disease, associated with a reduced population of Th17 cells in the intestinal lamina propria (LP).
Co-housing GF with CON-R mice restored disease development [178]. Recently, an experimental study
demonstrated subclinical intestinal dysfunction in retinal disease leading to enhanced migration of
leukocytes between the intestine and the eye. These alterations were improved by 3-week pre-treatment
of SCFA sthrough induction of Treg in several tissues and inhibition of T cell differentiation into Th1
and Th17 [179]. Altogether, these data suggest that commensal microbiota may serve as triggers of
immune responses and offer clues to the environmental origin of ocular inflammation [180].

4.2.1. Age-Related Macular Degeneration

In patients older than 55 years, age-related macular degeneration (AMD) is considered the leading
cause of serious visual loss in the developed world [97,181], and the third leading cause of blindness in
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the world [182]. AMD is a degenerative disease caused by the concomitant presence of non-modifiable
(genetics, sex, age) and modifiable factors (nutritional status, smoking status) (Figure 5) [183]. Several
genetic associations have been found, the most studied are those related to inflammatory genes
such as complement factor H and certain complement components (i.e., C3 and C2) [184]. Recently,
a tissue-adaptive response, called para-inflammation, where the innate immune system engages a
low-grade inflammatory response to restore tissue homeostasis, has been associated to the pathogenesis
of ADM [185].
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The development of treatments targeting vascular endothelial growth factor (VEGF) over the past
10 years has seen a dramatic reduction in vision loss from advanced AMD. However, with long-term
treatment, many patients with AMD continue to lose vision [186]

Experimental and epidemiologic studies have indicated a link between the dietary consumption
of xanthophyll carotenoids, i.e., lutein (L) and zeaxanthin (Z), or n-3 PUFAs and the reduced risk of
advanced AMD [187–191]. Specifically, they found a direct correlation between the daily intake of
these xanthophyll carotenoids and their concentrations in both plasma and macula, the latter being
the district were they used to synthetize the macular pigment [192–195]. This is an important event,
because the macular pigments exhibit protective functions against oxidative stress and inflammation,
both factors implicated in the pathogenesis of AMD [196].

On the other hand, the neuroprotective role of n-3 PUFAs has been proved by several
epidemiological studies that observed a decreased risk of ADM in subjects with high intake of
n-3 PUFAs [173,197]. In a large prospective study, with 24–28 years of follow-up, n-3 PUFAs and
fatty fish intakes were associated to a lower risk of visually intermediate AMD, but no relationship
was found with the risk of advanced AMD [198]. Moreover, in healthy volunteers, macular pigment
density was associated not only with L and Z plasma concentrations, but also with plasma levels
of phospholipids containing n-3 PUFAs, particularly EPA and docosapentaenoic acid (DPA) [199].
The latter being the second most abundant n-3 PUFAs found within the retina and a metabolic
intermediary between EPA and DHA [200]. In a mouse model of AMD, the administration of L, Z and
n-3 PUFAs caused retinal lesion regression associated with a reduced expression of pathologic genes,
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and preservation of photoreceptors [201]. Moreover, in another experimental model of AMD, the
supplementation with n-3 PUFAs reduced the photoreceptor damage, and the mRNA and protein
expression of inflammatory mediators [202–204]. Altogether these data indicated that the efficacy
of n-3 PUFAs could be explained by a combination between the resolution of inflammation and the
induction of a regenerative process. Coherent with this hypothesis is the discovery of elovanoids,
bioactive lipid mediators derived from very long chain (VLC) n-3 PUFAs by the action of the elongase
ELOVL4. Indeed, the contemporary presence of free VLC n-3 PUFAs and oxidative stress seems to
generate a pro-homeostatic and cytoprotective milieu [205]. In line with these results, it has been
observed that mutant EVOVL4 caused juvenile macular degeneration due to protein mislocalization
and photoreceptor cell death [205]. Recently, a linear association between the dose of fish consumption
and the risk of AMD was found, strengthening the role of n-3 PUFAs in AMD pathogenesis [206].
Taken together, these results suggested that the metabolic pathway responsible for the synthesis of the
elovanoids should be the object of future studies because it could open a new therapeutic approach
for AMD.

As discussed earlier, gut microbiota affect all aspects of immune development and homeostasis
in health and disease [9]. For this reason, the intestinal microbiota represent candidates for the
interplay between the genetic and environmental factors that cause AMD. Using mouse models of
neovascular AMD, it has been demonstrated that HFDs exacerbated choroidal neovascularization by
altering gut microbiota [207]. Gut dysbiosis instead leads to heightened IP and chronic low-grade
inflammation, characteristic of inflammaging, with elevated production of IL-6, IL-1β, TNF-α, and
VEGF-A. Both antibiotic treatment and microbiotal transplants (T) from chow diet (CD)-fed mice
restored microbial proportions, i.e., Bacteroidetes to Firmicutes ratio of 3 to 1. In addition, improved
glucose tolerance, lower systemic and choroidal inflammation, and IP in HFDxCDT mice compared to
HFDxHFDT mice were observed [207]. Furthermore, mice fed high-glucose diet (HGD) developed a
dysbiosis associated with AMD-like features, such as RPE and photoreceptor atrophy, and lipofuscin
accumulation [208]. In addition, HGD-fed mice showed lower microbial diversity than CD-fed animals,
with a reduced abundance of Bacteroidetes and an increased level of Proteobacteria at the phylus
levels (one of the best source of LPS), as well as higher levels of the Desulfovibrio vulgaris species. A
significant increase of IP, demonstrated by a reduced expression of tight junction proteins, such as
ZO-1 and occludin, was also observed [209].

In a clinical study, AMD patients displayed significant gut microbial alterations compared with
healthy controls. Moreover, AMD associated gut bacteria were immunologically relevant, enriched
in the IgA-bound fraction, and contained altered microbes relating to fatty acid metabolism and
carotenoid pathway biosynthesis, compared to controls [210]. A cross-sectional study reported that
the western diet, rich in dairy products, red meats, and eggs, was significantly associated to a higher
incidence of advanced AMD compared with the oriental diet, rich in vegetable, legumes, rice, fruits,
low-fat dairy products and fish [211].

4.2.2. Glaucoma

Glaucoma is a term defining a group of optic degenerative diseases characterized by the progressive
death of retinal ganglion cells (RGCs) and excavation of the optic nerve head (ONH) [212]. Glaucoma
is the leading cause of global irreversible blindness. The number of people with glaucoma worldwide
(aged 40 e 80 years) will increase from 64.3 million in 2013 to 111.8 million in 2040, disproportionately
affecting people residing in Asia and Africa [213]. Primary open-angle glaucoma is characterized by a
particular abnormal appearance of the optic- nerve disk, whereas pigmentary glaucoma is a secondary
glaucoma showing: (1) Disruption of the posterior iris-pigment epithelium; (2) dispersion of the
pigment throughout the anterior segment and the trabecular mesh work; and (3) increase in intraocular
pressure (IOP) [214]. Age, elevated IOP, race, family history, myopia, diabetes, and para-inflammation
are involved in the pathogenesis, development and progression of glaucoma (Figure 5) [215] [216–218].
Moreover, several data have suggested that the immune system is involved even before the normal
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signs of glaucoma begin [217,219]. The up to date treatments for the early management of the glaucoma
have involved the reduction of IOP, via topical instillation of anti-glaucoma eye drops, laser therapy
or invasive surgery [220]. Preclinical and clinical studies have demonstrated the protective effects of
n-3 PUFAs in different retinal disease [221–223], including glaucoma [224]. Interestingly, EPA and
DHA plasma levels found in patients affected by primary open-angle glaucoma were lower than those
measured in healthy subjects [225]. In addition, in an experimental model of hereditary glaucoma [226],
the administration of n-3 PUFAs, alone or in combination with timolol, displayed neuroprotective
effects only when the ratio of AA to Epa was kept between 1 and 1.5 [227]. This result was associated
with the downregulation of IL-18 and TNF-α expression only when n-3 PUFAs were administrated
alone, which indicated that the neuroprotection in the retina might be mediated by other mechanisms,
i.e., the synthesis of SPMs were able, not only to resolve inflammation, but also protected organs
and stimulate tissue regeneration (Figure 2) [228]. It has been demonstrated that RGCs are the most
susceptible retinal neurons to high IOP [229]. Ocular hypertension also lead to an alteration of visual
function [230], since both a and b-wave amplitudes of the electroretinogram (ERG) were decreased
after a marked elevation of IOP caused by an ischemia-reperfusion sequence [231,232]. In an in vivo rat
model of IOP elevation, it has been demonstrated that dietary supplementation of n-3 and n-6 PUFAs
was able to reduce retinal stress and preserve retinal structure [233]. In line with these data, Bazan and
co-workers demonstrated that the oxygenated metabolite of DHA, neuroprotectin D1 (NPD1), was
responsible of these neuroprotective effects (Figure 2) [234,235]. NPD1 was shown to decrease: (i) The
production of inflammatory molecules (such as COX-2, IL-1β); (ii) to up-regulate anti-apoptotic Bcl-2
proteins; and (iii) to down-regulate pro-apoptotic proteins (Bax, Bad, Caspase-3) [233,236].

Recently, in a mouse model, it was shown that a transient elevation of IOP was sufficient to
induce T-cell infiltration into the retina and this step was essential for the development of glaucoma.
In addition, the authors demonstrated that T-cell activations and glaucomatous neurodegeneration
were abolished in GF mice, strengthening the hypothesis that a bacteria-sensitized T-cell responses
underly the pathogenesis of glaucoma [237]. In line with these data, long-term intake of Lactobacillus
paracasei KW3110 has been associated with a more abundance of beneficial gut bacteria and a reduction
of the age-related immune dysfunctions, i.e., lowered expansion of pro-inflammatory T cells and
serum cytokines [238]. Instead, this probiotic treatment determined a reduction of the Firmicutes to
Bacteroidetes ratio, demonstrated by increased Bifidobacteriaceae and decreased Streptococcaceae
families. It is important to highlight that Bifidobacterium is known as one of the most beneficial
bacterial family [67], and Streptococcaceae bacteria are able to stimulate the intestinal cells to secrete
pro-inflammatory cytokines [239].

5. Conclusions

Many observational studies have shown the potential role of nutraceuticals and functional foods,
such as n3-PUFAs, probiotics and prebiotics, in preventing chronic inflammatory disease or to aid in
their treatment. Since IBD, AMD and glaucoma are illnesses increasing at alarming rates, more basic
and clinical studies are needed to definitely determine if dietary factors (alone or in combination) are
able to prevent the development of these disabling pathologies. The discovery of n-3 PUFAs-derived
anti-inflammatory molecules, i.e., SPMs, may offer a fascinating new complementary option for the
treatment of these inflammatory-based diseases. Indeed, a new area of research is focusing on the
development of synthetic analogs of the natural SPMs as well as on the combination between n-3
PUFAs with drugs acting as regulators of endogenous enzyme activities [240]. The former strategy has
been pursued by the OMEICOS Therapeutics and the compound OMT-28 entered clinical phase I in
February 2017 (NTC 03906799).

On the other hand, n-3 PUFAs can also be considered prebiotics due to the fact that they are able
to increase the production of anti-inflammatory molecules, such as SCFAs. Coherent with this data,
recent reports suggested that the combination between prebiotics and probiotics, called symbiotic,
bear great potential for correcting the gut dysbiosis and selectively stimulated the growth and/or
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activated the metabolism of one or a limited number of health-promoting bacteria, aimed at restoring
the mutualism of holobiont [241]. Moreover, a better understanding of the mechanisms that underlie
microbial resilience towards external perturbations will be a key requirement for microbiome-directed
precision medicine [242].

In summary, modulation of the microbiota remains a promising therapeutic option for the
prevention and treatment of complex diseases, but much more must be learned to maximize
treatment success.

Funding: This work was supported by from MIUR Progetto Eccellenza.

Acknowledgments: We thank Elda Desiderio Pinto for administrative assistance.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Chiesa, G.; Busnelli, M.; Manzini, S.; Parolini, C. Nutraceuticals and Bioactive Components from Fish for
Dyslipidemia and Cardiovascular Risk Reduction. Mar. Drugs 2016, 14, 113. [CrossRef] [PubMed]

2. Calder, P.C. Fatty acids and inflammation: the cutting edge between food and pharma. Eur J. Pharmacol.
2011, 668 (Suppl. 1), S50–S58. [CrossRef]

3. Arrese, M.; Cabrera, D.; Kalergis, A.M.; Feldstein, A.E. Innate Immunity and Inflammation in NAFLD/NASH.
Dig. Dis. Sci. 2016, 61, 1294–1303. [CrossRef] [PubMed]

4. Pizzini, A.; Lunger, L.; Sonnweber, T.; Weiss, G.; Tancevski, I. The Role of Omega-3 Fatty Acids in the Setting
of Coronary Artery Disease and COPD: A Review. Nutrients 2018, 10, 1864. [CrossRef] [PubMed]

5. Mirkov, M.U.; Verstockt, B.; Cleynen, I. Genetics of inflammatory bowel disease: beyond NOD2. Lancet.
Gastroenterol. Hepatol. 2017, 2, 224–234. [CrossRef]

6. Arjamaa, O.; Aaltonen, V.; Piippo, N.; Csont, T.; Petrovski, G.; Kaarniranta, K.; Kauppinen, A. Hypoxia and
inflammation in the release of VEGF and interleukins from human retinal pigment epithelial cells. Graefes
Arch. Clin. Exp. Ophthalmol. 2017, 255, 1757–1762. [CrossRef] [PubMed]

7. Busnelli, M.; Manzini, S.; Sirtori, C.R.; Chiesa, G.; Parolini, C. Effects of Vegetable Proteins on
Hypercholesterolemia and Gut Microbiota Modulation. Nutrients 2018, 10, 1249. [CrossRef] [PubMed]

8. Macpherson, A.J.; Harris, N.L. Interactions between commensal intestinal bacteria and the immune system.
Nat. Rev. Immunol. 2004, 4, 478–485. [CrossRef]

9. Illiano, P.; Brambilla, R.; Parolini, C. The mutual interplay of gut microbiota, diet and human disease. Med.
Res. Rev. 2019, under review.

10. Lloyd-Price, J.; Mahurkar, A.; Rahnavard, G.; Crabtree, J.; Orvis, J.; Hall, A.B.; Brady, A.; Creasy, H.H.;
McCracken, C.; Giglio, M.G.; et al. Strains, functions and dynamics in the expanded Human Microbiome
Project. Nature 2017, 550, 61–66. [CrossRef]

11. Vazquez, C.; Botella-Carretero, J.I.; Corella, D.; Fiol, M.; Lage, M.; Lurbe, E.; Richart, C.; Fernandez-Real, J.M.;
Fuentes, F.; Ordonez, A.; et al. White fish reduces cardiovascular risk factors in patients with metabolic
syndrome: the WISH-CARE study, a multicenter randomized clinical trial. Nutr. Met. Cardiovasc. Dis. 2014,
24, 328–335. [CrossRef] [PubMed]

12. Howard, A.; Udenigwe, C.C. Mechanisms and prospects of food protein hydrolysates and peptide-induced
hypolipidaemia. Food Funct. 2013, 4, 40–51. [CrossRef] [PubMed]

13. Parolini, C.; Vik, R.; Busnelli, M.; Bjorndal, B.; Holm, S.; Brattelid, T.; Manzini, S.; Ganzetti, G.S.; Dellera, F.;
Halvorsen, B.; et al. A salmon protein hydrolysate exerts lipid-independent anti-atherosclerotic activity in
ApoE-deficient mice. PLoS ONE 2014, 9, e97598. [CrossRef] [PubMed]

14. Cicero, A.F.G.; Fogacci, F.; Colletti, A. Potential role of bioactive peptides in prevention and treatment of
chronic diseases: a narrative review. Br. J. Pharmacol. 2017, 174, 1378–1394. [CrossRef] [PubMed]

15. Busnelli, M.; Manzini, S.; Hilvo, M.; Parolini, C.; Ganzetti, G.S.; Dellera, F.; Ekroos, K.; Janis, M.;
Escalante-Alcalde, D.; Sirtori, C.R.; et al. Liver-specific deletion of the Plpp3 gene alters plasma lipid
composition and worsens atherosclerosis in apoE(-/-) mice. Sci. Rep. 2017, 7, 44503. [CrossRef] [PubMed]

16. Dellera, F.; Ganzetti, G.S.; Froio, A.; Manzini, S.; Busnelli, M.; Meinitzer, A.; Sirtori, C.R.; Chiesa, G.; Parolini, C.
L-homoarginine administration reduces neointimal hyperplasia in balloon-injured rat carotids. Thromb.
Haemost. 2016, 116, 400–402. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/md14060113
http://www.ncbi.nlm.nih.gov/pubmed/27338419
http://dx.doi.org/10.1016/j.ejphar.2011.05.085
http://dx.doi.org/10.1007/s10620-016-4049-x
http://www.ncbi.nlm.nih.gov/pubmed/26841783
http://dx.doi.org/10.3390/nu10121864
http://www.ncbi.nlm.nih.gov/pubmed/30513804
http://dx.doi.org/10.1016/S2468-1253(16)30111-X
http://dx.doi.org/10.1007/s00417-017-3711-0
http://www.ncbi.nlm.nih.gov/pubmed/28631245
http://dx.doi.org/10.3390/nu10091249
http://www.ncbi.nlm.nih.gov/pubmed/30200592
http://dx.doi.org/10.1038/nri1373
http://dx.doi.org/10.1038/nature23889
http://dx.doi.org/10.1016/j.numecd.2013.09.018
http://www.ncbi.nlm.nih.gov/pubmed/24462043
http://dx.doi.org/10.1039/C2FO30216K
http://www.ncbi.nlm.nih.gov/pubmed/23108291
http://dx.doi.org/10.1371/journal.pone.0097598
http://www.ncbi.nlm.nih.gov/pubmed/24840793
http://dx.doi.org/10.1111/bph.13608
http://www.ncbi.nlm.nih.gov/pubmed/27572703
http://dx.doi.org/10.1038/srep44503
http://www.ncbi.nlm.nih.gov/pubmed/28291223
http://dx.doi.org/10.1160/TH15-10-0831
http://www.ncbi.nlm.nih.gov/pubmed/27279573


Mar. Drugs 2019, 17, 374 16 of 27

17. Parolini, C.; Bjorndal, B.; Busnelli, M.; Manzini, S.; Ganzetti, G.S.; Dellera, F.; Ramsvik, M.; Bruheim, I.;
Berge, R.K.; Chiesa, G. Effect of Dietary Components from Antarctic Krill on Atherosclerosis in apoE-Deficient
Mice. Mol. Nutr. Food Res. 2017, 61. [CrossRef]

18. Rimm, E.B.; Appel, L.J.; Chiuve, S.E.; Djousse, L.; Engler, M.B.; Kris-Etherton, P.M.; Mozaffarian, D.;
Siscovick, D.S.; Lichtenstein, A.H.; On behalf of the American Heart Association Nutrition Committee of
the Council on Lifestyle and Cardiometabolic Health; et al. Seafood Long-Chain n-3 Polyunsaturated Fatty
Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation
2018, 138, e35–e47. [CrossRef]

19. Busnelli, M.; Manzini, S.; Parolini, C.; Escalante-Alcalde, D.; Chiesa, G. Lipid phosphate phosphatase 3 in
vascular pathophysiology. Atherosclerosis 2018, 271, 156–165. [CrossRef]

20. Superko, H.R.; King, S., 3rd. Lipid management to reduce cardiovascular risk: A new strategy is required.
Circulation 2008, 117, 560–568. [CrossRef]

21. Parolini, C.; Adorni, M.P.; Busnelli, M.; Manzini, S.; Cipollari, E.; Favari, E.; Lorenzon, P.; Ganzetti, G.S.;
Fingerle, J.; Bernini, F.; et al. Infusions of large synthetic HDL containing trimeric apoA-I stabilize
atherosclerotic plaques in hypercholesterolemic rabbits. Can. J. Cardiol. 2019, accepted for publication.
[CrossRef]

22. Chiesa, G.; Parolini, C.; Sirtori, C.R. Acute effects of high-density lipoproteins: biochemical basis and clinical
findings. Curr. Opin. Cardiol. 2008, 23, 379–385. [CrossRef]

23. Do, R.; Stitziel, N.O.; Won, H.H.; Jorgensen, A.B.; Duga, S.; Angelica Merlini, P.; Kiezun, A.; Farrall, M.;
Goel, A.; Zuk, O.; et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for
myocardial infarction. Nature 2015, 518, 102–106. [CrossRef] [PubMed]

24. Myocardial Infarction, G.; Investigators, C.A.E.C.; Stitziel, N.O.; Stirrups, K.E.; Masca, N.G.; Erdmann, J.;
Ferrario, P.G.; Konig, I.R.; Weeke, P.E.; Webb, T.R.; et al. Coding Variation in ANGPTL4, LPL, and SVEP1 and
the Risk of Coronary Disease. N. Engl. J. Med. 2016, 374, 1134–1144. [CrossRef]

25. Klempfner, R.; Erez, A.; Sagit, B.Z.; Goldenberg, I.; Fisman, E.; Kopel, E.; Shlomo, N.; Israel, A.; Tenenbaum, A.
Elevated Triglyceride Level Is Independently Associated With Increased All-Cause Mortality in Patients With
Established Coronary Heart Disease: Twenty-Two-Year Follow-Up of the Bezafibrate Infarction Prevention
Study and Registry. Circ. Cardiovasc. Qual. Outcomes 2016, 9, 100–108. [CrossRef] [PubMed]

26. Nichols, G.A.; Philip, S.; Reynolds, K.; Granowitz, C.B.; Fazio, S. Increased Cardiovascular Risk in
Hypertriglyceridemic Patients With Statin-Controlled LDL Cholesterol. J. Clin. Endocrinol. Metab. 2018, 103,
3019–3027. [CrossRef] [PubMed]

27. Watts, G.F.; Ooi, E.M.; Chan, D.C. Demystifying the management of hypertriglyceridaemia. Nat. Rev. Cardiol.
2013, 10, 648–661. [CrossRef]

28. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction:
results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto
miocardico. Lancet 1999, 354, 447–455. [CrossRef] [PubMed]

29. Saito, Y.; Yokoyama, M.; Origasa, H.; Matsuzaki, M.; Matsuzawa, Y.; Ishikawa, Y.; Oikawa, S.; Sasaki, J.;
Hishida, H.; Itakura, H.; et al. Effects of EPA on coronary artery disease in hypercholesterolemic patients
with multiple risk factors: sub-analysis of primary prevention cases from the Japan EPA Lipid Intervention
Study (JELIS). Atherosclerosis 2008, 200, 135–140. [CrossRef]

30. Kromhout, D.; Giltay, E.J.; Geleijnse, J.M.; Alpha Omega Trial, G. n-3 fatty acids and cardiovascular events
after myocardial infarction. N. Engl. J. Med. 2010, 363, 2015–2026. [CrossRef]

31. Investigators, O.T.; Bosch, J.; Gerstein, H.C.; Dagenais, G.R.; Diaz, R.; Dyal, L.; Jung, H.; Maggiono, A.P.;
Probstfield, J.; Ramachandran, A.; et al. n-3 fatty acids and cardiovascular outcomes in patients with
dysglycemia. N. Engl. J. Med. 2012, 367, 309–318. [CrossRef]

32. Aung, T.; Halsey, J.; Kromhout, D.; Gerstein, H.C.; Marchioli, R.; Tavazzi, L.; Geleijnse, J.M.; Rauch, B.;
Ness, A.; Galan, P.; et al. Associations of Omega-3 Fatty Acid Supplement Use With Cardiovascular Disease
Risks: Meta-analysis of 10 Trials Involving 77917 Individuals. JAMA Cardiol. 2018, 3, 225–234. [CrossRef]

33. Bhatt, D.L.; Steg, P.G.; Brinton, E.A.; Jacobson, T.A.; Miller, M.; Tardif, J.C.; Ketchum, S.B.; Doyle, R.T., Jr.;
Murphy, S.A.; Soni, P.N.; et al. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events
with Icosapent Ethyl-Intervention Trial. Clin. Cardiol. 2017, 40, 138–148. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/mnfr.201700098
http://dx.doi.org/10.1161/CIR.0000000000000574
http://dx.doi.org/10.1016/j.atherosclerosis.2018.02.025
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.667428
http://dx.doi.org/10.1016/j.cjca.2019.05.033
http://dx.doi.org/10.1097/HCO.0b013e3283007ccd
http://dx.doi.org/10.1038/nature13917
http://www.ncbi.nlm.nih.gov/pubmed/25487149
http://dx.doi.org/10.1056/NEJMoa1507652
http://dx.doi.org/10.1161/CIRCOUTCOMES.115.002104
http://www.ncbi.nlm.nih.gov/pubmed/26957517
http://dx.doi.org/10.1210/jc.2018-00470
http://www.ncbi.nlm.nih.gov/pubmed/29850861
http://dx.doi.org/10.1038/nrcardio.2013.140
http://dx.doi.org/10.1016/S0140-6736(99)07072-5
http://www.ncbi.nlm.nih.gov/pubmed/10465168
http://dx.doi.org/10.1016/j.atherosclerosis.2008.06.003
http://dx.doi.org/10.1056/NEJMoa1003603
http://dx.doi.org/10.1056/NEJMoa1203859
http://dx.doi.org/10.1001/jamacardio.2017.5205
http://dx.doi.org/10.1002/clc.22692
http://www.ncbi.nlm.nih.gov/pubmed/28294373


Mar. Drugs 2019, 17, 374 17 of 27

34. Manzini, S.; Busnelli, M.; Parolini, C.; Minoli, L.; Ossoli, A.; Brambilla, E.; Simonelli, S.; Lekka, E.; Persidis, A.;
Scanziani, E.; et al. Topiramate protects apoE-deficient mice from kidney damage without affecting plasma
lipids. Pharmacol. Res. 2018, 141, 189–200. [CrossRef] [PubMed]

35. Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.;
Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia.
N. Engl. J. Med. 2019, 380, 11–22. [CrossRef] [PubMed]

36. Chiesa, G.; Rigamonti, E.; Monteggia, E.; Parolini, C.; Marchesi, M.; Miragoli, L.; Grotti, A.; Maggioni, F.;
Lorusso, V.; Sirtori, C.R. Evaluation of a soft atherosclerotic lesion in the rabbit aorta by an invasive IVUS
method versus a non-invasive MRI technology. Atherosclerosis 2004, 174, 25–33. [CrossRef] [PubMed]

37. Mason, R.P.; Jacob, R.F.; Shrivastava, S.; Sherratt, S.C.R.; Chattopadhyay, A. Eicosapentaenoic acid reduces
membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like
model membranes. Biochim. Biophys. Acta 2016, 1858, 3131–3140. [CrossRef] [PubMed]

38. Nelson, J.R.; Wani, O.; May, H.T.; Budoff, M. Potential benefits of eicosapentaenoic acid on atherosclerotic
plaques. Vasc. Pharmacol. 2017, 91, 1–9. [CrossRef] [PubMed]

39. Bays, H.E.; Ballantyne, C.M.; Braeckman, R.A.; Stirtan, W.G.; Soni, P.N. Icosapent ethyl, a pure ethyl ester of
eicosapentaenoic acid: Effects on circulating markers of inflammation from the MARINE and ANCHOR
studies. Am. J. Cardiovasc. Drugs. 2013, 13, 37–46. [CrossRef]

40. Im, D.S. Functions of omega-3 fatty acids and FFA4 (GPR120) in macrophages. Eur. J. Pharmacol. 2016, 785,
36–43. [CrossRef]

41. Kromhout, D.; Yasuda, S.; Geleijnse, J.M.; Shimokawa, H. Fish oil and omega-3 fatty acids in cardiovascular
disease: do they really work? Eur. Heart J. 2012, 33, 436–443. [CrossRef]

42. Darwesh, A.M.; Sosnowski, D.K.; Lee, T.Y.; Keshavarz-Bahaghighat, H.; Seubert, J.M. Insights into the
cardioprotective properties of n-3 PUFAs against ischemic heart disease via modulation of the innate immune
system. Chem. Biol. Interact. 2019, 308, 20–44. [CrossRef]

43. Lorente-Cebrian, S.; Costa, A.G.; Navas-Carretero, S.; Zabala, M.; Laiglesia, L.M.; Martinez, J.A.;
Moreno-Aliaga, M.J. An update on the role of omega-3 fatty acids on inflammatory and degenerative
diseases. J. Physiol. Biochem. 2015, 71, 341–349. [CrossRef] [PubMed]

44. Serhan, C.N.; Levy, B.D. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators.
J. Clin. Investig. 2018, 128, 2657–2669. [CrossRef] [PubMed]

45. Back, M.; Hansson, G.K. Omega-3 fatty acids, cardiovascular risk, and the resolution of inflammation. FASEB
J. 2019, 33, 1536–1539. [CrossRef] [PubMed]

46. Laguna-Fernandez, A.; Checa, A.; Carracedo, M.; Artiach, G.; Petri, M.H.; Baumgartner, R.; Forteza, M.J.;
Jiang, X.; Andonova, T.; Walker, M.E.; et al. ERV1/ChemR23 Signaling Protects Against Atherosclerosis by
Modifying Oxidized Low-Density Lipoprotein Uptake and Phagocytosis in Macrophages. Circulation 2018,
138, 1693–1705. [CrossRef] [PubMed]

47. Marchesi, M.; Parolini, C.; Caligari, S.; Gilio, D.; Manzini, S.; Busnelli, M.; Cinquanta, P.; Camera, M.;
Brambilla, M.; Sirtori, C.R.; et al. Rosuvastatin does not affect human apolipoprotein A-I expression in
genetically modified mice: a clue to the disputed effect of statins on HDL. Br. J. Pharmacol. 2011, 164,
1460–1468. [CrossRef] [PubMed]

48. Pradhan, A.D.; Manson, J.E. Update on the Vitamin D and OmegA-3 trial (VITAL). J. Steroid Biochem. Mol.
Biol. 2016, 155, 252–256. [CrossRef] [PubMed]

49. Lingwood, D.; Simons, K. Lipid rafts as a membrane-organizing principle. Science 2010, 327, 46–50. [CrossRef]
50. Nicolau, D.V., Jr.; Burrage, K.; Parton, R.G.; Hancock, J.F. Identifying optimal lipid raft characteristics required

to promote nanoscale protein-protein interactions on the plasma membrane. Mol. Cell. Biol. 2006, 26, 313–323.
[CrossRef]

51. Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical
relevance. Biochim. Biophys. Acta 2015, 1851, 469–484. [CrossRef]

52. Hou, T.Y.; McMurray, D.N.; Chapkin, R.S. Omega-3 fatty acids, lipid rafts, and T cell signaling. Eur. J.
Pharmacol. 2016, 785, 2–9. [CrossRef]

53. Whelan, J.; Gowdy, K.M.; Shaikh, S.R. N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical
models: Implications for the immune response to infections. Eur. J. Pharmacol. 2016, 785, 10–17. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.phrs.2018.12.022
http://www.ncbi.nlm.nih.gov/pubmed/30593851
http://dx.doi.org/10.1056/NEJMoa1812792
http://www.ncbi.nlm.nih.gov/pubmed/30415628
http://dx.doi.org/10.1016/j.atherosclerosis.2004.01.018
http://www.ncbi.nlm.nih.gov/pubmed/15135247
http://dx.doi.org/10.1016/j.bbamem.2016.10.002
http://www.ncbi.nlm.nih.gov/pubmed/27718370
http://dx.doi.org/10.1016/j.vph.2017.02.004
http://www.ncbi.nlm.nih.gov/pubmed/28263852
http://dx.doi.org/10.1007/s40256-012-0002-3
http://dx.doi.org/10.1016/j.ejphar.2015.03.094
http://dx.doi.org/10.1093/eurheartj/ehr362
http://dx.doi.org/10.1016/j.cbi.2019.04.037
http://dx.doi.org/10.1007/s13105-015-0395-y
http://www.ncbi.nlm.nih.gov/pubmed/25752887
http://dx.doi.org/10.1172/JCI97943
http://www.ncbi.nlm.nih.gov/pubmed/29757195
http://dx.doi.org/10.1096/fj.201802445R
http://www.ncbi.nlm.nih.gov/pubmed/30703872
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032801
http://www.ncbi.nlm.nih.gov/pubmed/29739755
http://dx.doi.org/10.1111/j.1476-5381.2011.01429.x
http://www.ncbi.nlm.nih.gov/pubmed/21486287
http://dx.doi.org/10.1016/j.jsbmb.2015.04.006
http://www.ncbi.nlm.nih.gov/pubmed/25864623
http://dx.doi.org/10.1126/science.1174621
http://dx.doi.org/10.1128/MCB.26.1.313-323.2006
http://dx.doi.org/10.1016/j.bbalip.2014.08.010
http://dx.doi.org/10.1016/j.ejphar.2015.03.091
http://dx.doi.org/10.1016/j.ejphar.2015.03.100
http://www.ncbi.nlm.nih.gov/pubmed/26022530


Mar. Drugs 2019, 17, 374 18 of 27

54. Miron, N.; Cristea, V. Enterocytes: active cells in tolerance to food and microbial antigens in the gut. Clin.
Exp. Immunol. 2012, 167, 405–412. [CrossRef] [PubMed]

55. Kamiya, T. The overlap in the genetic pathogenesis of ulcerative colitis and irritable bowel syndrome. Dig.
Dis. Sci. 2013, 58, 3379–3381. [CrossRef] [PubMed]

56. Khan, I.; Samson, S.E.; Grover, A.K. Antioxidant Supplements and Gastrointestinal Diseases: A Critical
Appraisal. Med. Princ. Pract. 2017, 26, 201–217. [CrossRef] [PubMed]

57. Worthington, J.J.; Reimann, F.; Gribble, F.M. Enteroendocrine cells-sensory sentinels of the intestinal
environment and orchestrators of mucosal immunity. Mucosal. Immunol. 2018, 11, 3–20. [CrossRef]

58. Sender, R.; Fuchs, S.; Milo, R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host
Cells in Humans. Cell 2016, 164, 337–340. [CrossRef] [PubMed]

59. Rodriguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.;
Jenmalm, M.C.; et al. The composition of the gut microbiota throughout life, with an emphasis on early life.
Microb. Ecol. Health Dis. 2015, 26, 26050. [CrossRef]

60. Marques, T.M.; Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Ryan, C.A.; Stanton, C. Programming infant gut
microbiota: influence of dietary and environmental factors. Curr. Opin. Biotechnol. 2010, 21, 149–156.
[CrossRef]

61. Bezirtzoglou, E.; Tsiotsias, A.; Welling, G.W. Microbiota profile in feces of breast- and formula-fed newborns
by using fluorescence in situ hybridization (FISH). Anaerobe 2011, 17, 478–482. [CrossRef]

62. Parolini, C.; Busnelli, M.; Ganzetti, G.S.; Dellera, F.; Manzini, S.; Scanziani, E.; Johnson, J.L.; Sirtori, C.R.;
Chiesa, G. Magnetic resonance imaging visualization of vulnerable atherosclerotic plaques at the
brachiocephalic artery of apolipoprotein E knockout mice by the blood-pool contrast agent B22956/1.
Mol. Imaging 2014, 13. [CrossRef]

63. Tanaka, M.; Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life.
Allergol. Int. 2017, 66, 515–522. [CrossRef] [PubMed]

64. Iyengar, S.R.; Walker, W.A. Immune factors in breast milk and the development of atopic disease. J. Pediatr.
Gastroenterol. Nutr. 2012, 55, 641–647. [CrossRef] [PubMed]

65. Palmeira, P.; Carneiro-Sampaio, M. Immunology of breast milk. Rev. Assoc. Med. Bras. 2016, 62, 584–593.
[CrossRef] [PubMed]

66. Fallani, M.; Young, D.; Scott, J.; Norin, E.; Amarri, S.; Adam, R.; Aguilera, M.; Khanna, S.; Gil, A.;
Edwards, C.A.; et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond
delivery mode, breast-feeding, and antibiotics. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 77–84. [CrossRef]
[PubMed]

67. Drago, L.; Toscano, M.; Rodighiero, V.; De Vecchi, E.; Mogna, G. Cultivable and pyrosequenced fecal
microflora in centenarians and young subjects. J. Clin. Gastroenterol. 2012, 46, S81–S84. [CrossRef] [PubMed]

68. Farkas, A.M.; Panea, C.; Goto, Y.; Nakato, G.; Galan-Diez, M.; Narushima, S.; Honda, K.; Ivanov, I.I. Induction
of Th17 cells by segmented filamentous bacteria in the murine intestine. J. Immunol. Methods 2015, 421,
104–111. [CrossRef] [PubMed]

69. Tan, T.G.; Sefik, E.; Geva-Zatorsky, N.; Kua, L.; Naskar, D.; Teng, F.; Pasman, L.; Ortiz-Lopez, A.; Jupp, R.;
Wu, H.J.; et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal
Th17 cells in mice. Proc. Natl. Acad. Sci. USA 2016, 113, E8141–E8150. [CrossRef]

70. Gaffen, S.L.; Hernandez-Santos, N.; Peterson, A.C. IL-17 signaling in host defense against Candida albicans.
Immunol. Res. 2011, 50, 181–187. [CrossRef]

71. Guglani, L.; Khader, S.A. Th17 cytokines in mucosal immunity and inflammation. Curr. Opin. HIV AIDS
2010, 5, 120–127. [CrossRef]

72. Wang, C.; Yosef, N.; Gaublomme, J.; Wu, C.; Lee, Y.; Clish, C.B.; Kaminski, J.; Xiao, S.; Meyer Zu Horste, G.;
Pawlak, M.; et al. CD5L/AIM Regulates Lipid Biosynthesis and Restrains Th17 Cell Pathogenicity. Cell 2015,
163, 1413–1427. [CrossRef]

73. Lee, Y.; Awasthi, A.; Yosef, N.; Quintana, F.J.; Xiao, S.; Peters, A.; Wu, C.; Kleinewietfeld, M.; Kunder, S.;
Hafler, D.A.; et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 2012, 13,
991–999. [CrossRef] [PubMed]

74. Kim, M.; Qie, Y.; Park, J.; Kim, C.H. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host
Microbe 2016, 20, 202–214. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1365-2249.2011.04523.x
http://www.ncbi.nlm.nih.gov/pubmed/22288583
http://dx.doi.org/10.1007/s10620-013-2936-y
http://www.ncbi.nlm.nih.gov/pubmed/24233129
http://dx.doi.org/10.1159/000468988
http://www.ncbi.nlm.nih.gov/pubmed/28278495
http://dx.doi.org/10.1038/mi.2017.73
http://dx.doi.org/10.1016/j.cell.2016.01.013
http://www.ncbi.nlm.nih.gov/pubmed/26824647
http://dx.doi.org/10.3402/mehd.v26.26050
http://dx.doi.org/10.1016/j.copbio.2010.03.020
http://dx.doi.org/10.1016/j.anaerobe.2011.03.009
http://dx.doi.org/10.2310/7290.2014.00012
http://dx.doi.org/10.1016/j.alit.2017.07.010
http://www.ncbi.nlm.nih.gov/pubmed/28826938
http://dx.doi.org/10.1097/MPG.0b013e3182617a9d
http://www.ncbi.nlm.nih.gov/pubmed/22684347
http://dx.doi.org/10.1590/1806-9282.62.06.584
http://www.ncbi.nlm.nih.gov/pubmed/27849237
http://dx.doi.org/10.1097/MPG.0b013e3181d1b11e
http://www.ncbi.nlm.nih.gov/pubmed/20479681
http://dx.doi.org/10.1097/MCG.0b013e3182693982
http://www.ncbi.nlm.nih.gov/pubmed/22955365
http://dx.doi.org/10.1016/j.jim.2015.03.020
http://www.ncbi.nlm.nih.gov/pubmed/25858227
http://dx.doi.org/10.1073/pnas.1617460113
http://dx.doi.org/10.1007/s12026-011-8226-x
http://dx.doi.org/10.1097/COH.0b013e328335c2f6
http://dx.doi.org/10.1016/j.cell.2015.10.068
http://dx.doi.org/10.1038/ni.2416
http://www.ncbi.nlm.nih.gov/pubmed/22961052
http://dx.doi.org/10.1016/j.chom.2016.07.001
http://www.ncbi.nlm.nih.gov/pubmed/27476413


Mar. Drugs 2019, 17, 374 19 of 27

75. Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.;
Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell
generation. Nature 2013, 504, 451–455. [CrossRef] [PubMed]

76. Berod, L.; Friedrich, C.; Nandan, A.; Freitag, J.; Hagemann, S.; Harmrolfs, K.; Sandouk, A.; Hesse, C.;
Castro, C.N.; Bahre, H.; et al. De novo fatty acid synthesis controls the fate between regulatory T and T
helper 17 cells. Nat. Med. 2014, 20, 1327–1333. [CrossRef] [PubMed]

77. Sun, M.; Ma, N.; He, T.; Johnston, L.J.; Ma, X. Tryptophan (Trp) modulates gut homeostasis via aryl
hydrocarbon receptor (AhR). Crit. Rev. Food Sci. Nutr. 2019, 1–9. [CrossRef] [PubMed]

78. Postler, T.S.; Ghosh, S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and
Shape the Immune System. Cell Metab. 2017, 26, 110–130. [CrossRef] [PubMed]

79. Michael, A.J. Biosynthesis of polyamines and polyamine-containing molecules. Biochem. J. 2016, 473,
2315–2329. [CrossRef]

80. O’Neill, L.A.; Kishton, R.J.; Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev.
Immunol. 2016, 16, 553–565. [CrossRef]

81. Parolini, C.; Caligari, S.; Gilio, D.; Manzini, S.; Busnelli, M.; Montagnani, M.; Locatelli, M.; Diani, E.;
Giavarini, F.; Caruso, D.; et al. Reduced biliary sterol output with no change in total faecal excretion in mice
expressing a human apolipoprotein A-I variant. Liver Inter. 2012, 32, 1363–1371. [CrossRef]

82. Levy, M.; Thaiss, C.A.; Elinav, E. Metabolites: Messengers between the microbiota and the immune system.
Genes Dev. 2016, 30, 1589–1597. [CrossRef]

83. Kunisawa, J.; Sugiura, Y.; Wake, T.; Nagatake, T.; Suzuki, H.; Nagasawa, R.; Shikata, S.; Honda, K.;
Hashimoto, E.; Suzuki, Y.; et al. Mode of Bioenergetic Metabolism during B Cell Differentiation in the
Intestine Determines the Distinct Requirement for Vitamin B1. Cell Rep. 2015, 13, 122–131. [CrossRef]
[PubMed]

84. Whiting, C.V.; Bland, P.W.; Tarlton, J.F. Dietary n-3 polyunsaturated fatty acids reduce disease and colonic
proinflammatory cytokines in a mouse model of colitis. Inflamm. Bowel Dis. 2005, 11, 340–349. [CrossRef]
[PubMed]

85. Andersen, A.D.; Molbak, L.; Michaelsen, K.F.; Lauritzen, L. Molecular fingerprints of the human fecal
microbiota from 9 to 18 months old and the effect of fish oil supplementation. J. Pediatr. Gastroenterol. Nutr.
2011, 53, 303–309. [CrossRef] [PubMed]

86. Balfego, M.; Canivell, S.; Hanzu, F.A.; Sala-Vila, A.; Martinez-Medina, M.; Murillo, S.; Mur, T.; Ruano, E.G.;
Linares, F.; Porras, N.; et al. Effects of sardine-enriched diet on metabolic control, inflammation and gut
microbiota in drug-naive patients with type 2 diabetes: A pilot randomized trial. Lipids Health Dis. 2016,
15, 78. [CrossRef] [PubMed]

87. Watson, H.; Mitra, S.; Croden, F.C.; Taylor, M.; Wood, H.M.; Perry, S.L.; Spencer, J.A.; Quirke, P.; Toogood, G.J.;
Lawton, C.L.; et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on
the human intestinal microbiota. Gut 2018, 67, 1974–1983. [CrossRef] [PubMed]

88. Robertson, R.C.; Seira Oriach, C.; Murphy, K.; Moloney, G.M.; Cryan, J.F.; Dinan, T.G.; Paul Ross, R.; Stanton, C.
Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in
adolescence and adulthood. Brain Behav. Immun. 2017, 59, 21–37. [CrossRef] [PubMed]

89. Provensi, G.; Schmidt, S.D.; Boehme, M.; Bastiaanssen, T.F.S.; Rani, B.; Costa, A.; Busca, K.; Fouhy, F.;
Strain, C.; Stanton, C.; et al. Preventing adolescent stress-induced cognitive and microbiome changes by diet.
Proc. Natl. Acad. Sci. USA 2019, 116, 9644–9651. [CrossRef] [PubMed]

90. Ganzetti, G.S.; Rigamonti, E.; Brambilla, R.; Parolini, C. Microarray analysis of liver gene expression in
apoA-I and apoA-IMilano knock-in mouse models. Clin. Res. Nephrol. Kidney Dis. 2019, 1, 1001.

91. Ogura, Y.; Bonen, D.K.; Inohara, N.; Nicolae, D.L.; Chen, F.F.; Ramos, R.; Britton, H.; Moran, T.; Karaliuskas, R.;
Duerr, R.H.; et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature
2001, 411, 603–606. [CrossRef]

92. Parolini, C.; Chiesa, G.; Gong, E.; Caligari, S.; Cortese, M.M.; Koga, T.; Forte, T.M.; Rubin, E.M. Apolipoprotein
A-I and the molecular variant apoA-I(Milano): Evaluation of the antiatherogenic effects in knock-in mouse
model. Atherosclerosis 2005, 183, 222–229. [CrossRef]

93. Consortium, U.I.G.; Barrett, J.C.; Lee, J.C.; Lees, C.W.; Prescott, N.J.; Anderson, C.A.; Phillips, A.; Wesley, E.;
Parnell, K.; Zhang, H.; et al. Genome-wide association study of ulcerative colitis identifies three new
susceptibility loci, including the HNF4A region. Nat. Genet. 2009, 41, 1330–1334. [CrossRef]

http://dx.doi.org/10.1038/nature12726
http://www.ncbi.nlm.nih.gov/pubmed/24226773
http://dx.doi.org/10.1038/nm.3704
http://www.ncbi.nlm.nih.gov/pubmed/25282359
http://dx.doi.org/10.1080/10408398.2019.1598334
http://www.ncbi.nlm.nih.gov/pubmed/30924357
http://dx.doi.org/10.1016/j.cmet.2017.05.008
http://www.ncbi.nlm.nih.gov/pubmed/28625867
http://dx.doi.org/10.1042/BCJ20160185
http://dx.doi.org/10.1038/nri.2016.70
http://dx.doi.org/10.1111/j.1478-3231.2012.02855.x
http://dx.doi.org/10.1101/gad.284091.116
http://dx.doi.org/10.1016/j.celrep.2015.08.063
http://www.ncbi.nlm.nih.gov/pubmed/26411688
http://dx.doi.org/10.1097/01.MIB.0000164016.98913.7c
http://www.ncbi.nlm.nih.gov/pubmed/15803023
http://dx.doi.org/10.1097/MPG.0b013e31821d298f
http://www.ncbi.nlm.nih.gov/pubmed/21865979
http://dx.doi.org/10.1186/s12944-016-0245-0
http://www.ncbi.nlm.nih.gov/pubmed/27090218
http://dx.doi.org/10.1136/gutjnl-2017-314968
http://www.ncbi.nlm.nih.gov/pubmed/28951525
http://dx.doi.org/10.1016/j.bbi.2016.07.145
http://www.ncbi.nlm.nih.gov/pubmed/27423492
http://dx.doi.org/10.1073/pnas.1820832116
http://www.ncbi.nlm.nih.gov/pubmed/31010921
http://dx.doi.org/10.1038/35079114
http://dx.doi.org/10.1016/j.atherosclerosis.2005.03.008
http://dx.doi.org/10.1038/ng.483


Mar. Drugs 2019, 17, 374 20 of 27

94. Hugot, J.P.; Chamaillard, M.; Zouali, H.; Lesage, S.; Cezard, J.P.; Belaiche, J.; Almer, S.; Tysk, C.; O’Morain, C.A.;
Gassull, M.; et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease.
Nature 2001, 411, 599–603. [CrossRef] [PubMed]

95. McGovern, D.P.; Gardet, A.; Torkvist, L.; Goyette, P.; Essers, J.; Taylor, K.D.; Neale, B.M.; Ong, R.T.; Lagace, C.;
Li, C.; et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet.
2010, 42, 332–337. [CrossRef] [PubMed]

96. Wait, R.; Chiesa, G.; Parolini, C.; Miller, I.; Begum, S.; Brambilla, D.; Galluccio, L.; Ballerio, R.; Eberini, I.;
Gianazza, E. Reference maps of mouse serum acute-phase proteins: Changes with LPS-induced inflammation
and apolipoprotein A-I and A-II transgenes. Proteomics 2005, 5, 4245–4253. [CrossRef] [PubMed]

97. Shen, X.; Shi, R.; Zhang, H.; Li, K.; Zhao, Y.; Zhang, R. The Toll-like receptor 4 D299G and T399I polymorphisms
are associated with Crohn’s disease and ulcerative colitis: A meta-analysis. Digestion 2010, 81, 69–77.
[CrossRef] [PubMed]

98. Pierik, M.; Joossens, S.; Van Steen, K.; Van Schuerbeek, N.; Vlietinck, R.; Rutgeerts, P.; Vermeire, S. Toll-like
receptor-1, -2, and -6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm.
Bowel. Dis. 2006, 12, 1–8. [CrossRef] [PubMed]

99. Duchmann, R.; May, E.; Heike, M.; Knolle, P.; Neurath, M.; Meyer zum Buschenfelde, K.H. T cell specificity
and cross reactivity towards enterobacteria, bacteroides, bifidobacterium, and antigens from resident
intestinal flora in humans. Gut 1999, 44, 812–818. [CrossRef] [PubMed]

100. Landers, C.J.; Cohavy, O.; Misra, R.; Yang, H.; Lin, Y.C.; Braun, J.; Targan, S.R. Selected loss of tolerance
evidenced by Crohn’s disease-associated immune responses to auto- and microbial antigens. Gastroenterology
2002, 123, 689–699. [CrossRef] [PubMed]

101. Cinquetti, R.; Badi, I.; Campione, M.; Bortoletto, E.; Chiesa, G.; Parolini, C.; Camesasca, C.; Russo, A.;
Taramelli, R.; Acquati, F. Transcriptional deregulation and a missense mutation define ANKRD1 as a
candidate gene for total anomalous pulmonary venous return. Hum. Mutat. 2008, 29, 468–474. [CrossRef]

102. Nagao-Kitamoto, H.; Shreiner, A.B.; Gillilland, M.G., 3rd; Kitamoto, S.; Ishii, C.; Hirayama, A.; Kuffa, P.;
El-Zaatari, M.; Grasberger, H.; Seekatz, A.M.; et al. Functional Characterization of Inflammatory Bowel
Disease-Associated Gut Dysbiosis in Gnotobiotic Mice. Cell Mol. Gastroenterol. Hepatol. 2016, 2, 468–481.
[CrossRef]

103. Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Van Immerseel, F.;
Verbeke, K.; et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium
prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014, 63, 1275–1283. [CrossRef] [PubMed]

104. Kho, Z.Y.; Lal, S.K. The Human Gut Microbiome—A Potential Controller of Wellness and Disease. Front.
Microbiol. 2018, 9, 1835. [CrossRef] [PubMed]

105. Vik, R.; Busnelli, M.; Parolini, C.; Bjorndal, B.; Holm, S.; Bohov, P.; Halvorsen, B.; Brattelid, T.;
Manzini, S.; Ganzetti, G.S.; et al. An immunomodulating fatty acid analogue targeting mitochondria
exerts anti-atherosclerotic effect beyond plasma cholesterol-lowering activity in apoe(-/-) mice. PLoS ONE
2013, 8, e81963. [CrossRef] [PubMed]

106. Chassaing, B.; Etienne-Mesmin, L.; Gewirtz, A.T. Microbiota-liver axis in hepatic disease. Hepatology 2014,
59, 328–339. [CrossRef] [PubMed]

107. Wells, J.M.; Brummer, R.J.; Derrien, M.; MacDonald, T.T.; Troost, F.; Cani, P.D.; Theodorou, V.; Dekker, J.;
Meheust, A.; de Vos, W.M.; et al. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol.
Gastrointest. Liver Physiol. 2017, 312, G171–G193. [CrossRef] [PubMed]

108. Manzini, S.; Pinna, C.; Busnelli, M.; Cinquanta, P.; Rigamonti, E.; Ganzetti, G.S.; Dellera, F.; Sala, A.;
Calabresi, L.; Franceschini, G.; et al. Beta2-adrenergic activity modulates vascular tone regulation in
lecithin:cholesterol acyltransferase knockout mice. Vasc. Pharmacol. 2015, 74, 114–121. [CrossRef]

109. Serban, D.E. Microbiota in Inflammatory Bowel Disease Pathogenesis and Therapy: Is It All About Diet?
Nutr. Clin. Pract. 2015, 30, 760–779. [CrossRef]

110. Gruber, L.; Kisling, S.; Lichti, P.; Martin, F.P.; May, S.; Klingenspor, M.; Lichtenegger, M.; Rychlik, M.; Haller, D.
High fat diet accelerates pathogenesis of murine Crohn’s disease-like ileitis independently of obesity. PLoS
ONE 2013, 8, e71661. [CrossRef]

111. Pendyala, S.; Walker, J.M.; Holt, P.R. A high-fat diet is associated with endotoxemia that originates from the
gut. Gastroenterology. 2012, 142, 1100–1101. [CrossRef]

http://dx.doi.org/10.1038/35079107
http://www.ncbi.nlm.nih.gov/pubmed/11385576
http://dx.doi.org/10.1038/ng.549
http://www.ncbi.nlm.nih.gov/pubmed/20228799
http://dx.doi.org/10.1002/pmic.200401292
http://www.ncbi.nlm.nih.gov/pubmed/16196095
http://dx.doi.org/10.1159/000260417
http://www.ncbi.nlm.nih.gov/pubmed/20093834
http://dx.doi.org/10.1097/01.MIB.0000195389.11645.ab
http://www.ncbi.nlm.nih.gov/pubmed/16374251
http://dx.doi.org/10.1136/gut.44.6.812
http://www.ncbi.nlm.nih.gov/pubmed/10323882
http://dx.doi.org/10.1053/gast.2002.35379
http://www.ncbi.nlm.nih.gov/pubmed/12198693
http://dx.doi.org/10.1002/humu.20711
http://dx.doi.org/10.1016/j.jcmgh.2016.02.003
http://dx.doi.org/10.1136/gutjnl-2013-304833
http://www.ncbi.nlm.nih.gov/pubmed/24021287
http://dx.doi.org/10.3389/fmicb.2018.01835
http://www.ncbi.nlm.nih.gov/pubmed/30154767
http://dx.doi.org/10.1371/journal.pone.0081963
http://www.ncbi.nlm.nih.gov/pubmed/24324736
http://dx.doi.org/10.1002/hep.26494
http://www.ncbi.nlm.nih.gov/pubmed/23703735
http://dx.doi.org/10.1152/ajpgi.00048.2015
http://www.ncbi.nlm.nih.gov/pubmed/27908847
http://dx.doi.org/10.1016/j.vph.2015.08.006
http://dx.doi.org/10.1177/0884533615606898
http://dx.doi.org/10.1371/journal.pone.0071661
http://dx.doi.org/10.1053/j.gastro.2012.01.034


Mar. Drugs 2019, 17, 374 21 of 27

112. Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in
gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and
diabetes in mice. Diabetes 2008, 57, 1470–1481. [CrossRef]

113. Badi, I.; Cinquetti, R.; Frascoli, M.; Parolini, C.; Chiesa, G.; Taramelli, R.; Acquati, F. Intracellular ANKRD1
protein levels are regulated by 26S proteasome-mediated degradation. FEBS Lett. 2009, 583, 2486–2492.
[CrossRef] [PubMed]

114. Kim, K.A.; Gu, W.; Lee, I.A.; Joh, E.H.; Kim, D.H. High fat diet-induced gut microbiota exacerbates
inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE 2012, 7, e47713. [CrossRef]
[PubMed]

115. Steinhoff-Wagner, J.; Zitnan, R.; Schonhusen, U.; Pfannkuche, H.; Hudakova, M.; Metges, C.C.; Hammon, H.M.
Diet effects on glucose absorption in the small intestine of neonatal calves: Importance of intestinal mucosal
growth, lactase activity, and glucose transporters. J. Dairy Sci. 2014, 97, 6358–6369. [CrossRef] [PubMed]

116. Barrett, J.S.; Irving, P.M.; Shepherd, S.J.; Muir, J.G.; Gibson, P.R. Comparison of the prevalence of fructose
and lactose malabsorption across chronic intestinal disorders. Aliment. Pharmacol. Ther. 2009, 30, 165–174.
[CrossRef] [PubMed]

117. Martinez-Medina, M.; Denizot, J.; Dreux, N.; Robin, F.; Billard, E.; Bonnet, R.; Darfeuille-Michaud, A.;
Barnich, N. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier
function favouring AIEC colonisation. Gut 2014, 63, 116–124. [CrossRef] [PubMed]

118. David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.;
Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature
2014, 505, 559–563. [CrossRef] [PubMed]

119. Derrien, M.; Belzer, C.; de Vos, W.M. Akkermansia muciniphila and its role in regulating host functions.
Microb. Pathog. 2017, 106, 171–181. [CrossRef]

120. Bellenger, J.; Bellenger, S.; Escoula, Q.; Bidu, C.; Narce, M. N-3 polyunsaturated fatty acids: An innovative
strategy against obesity and related metabolic disorders, intestinal alteration and gut microbiota dysbiosis.
Biochimie 2019, 159, 66–71. [CrossRef]

121. Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.;
Muccioli, G.G.; Delzenne, N.M.; et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium
controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [CrossRef]

122. Jeong, D.Y.; Kim, S.; Son, M.J.; Son, C.Y.; Kim, J.Y.; Kronbichler, A.; Lee, K.H.; Shin, J.I. Induction and
maintenance treatment of inflammatory bowel disease: A comprehensive review. Autoimmun. Rev. 2019, 18,
439–454. [CrossRef]

123. Hudcovic, T.; Stepankova, R.; Cebra, J.; Tlaskalova-Hogenova, H. The role of microflora in the development of
intestinal inflammation: Acute and chronic colitis induced by dextran sulfate in germ-free and conventionally
reared immunocompetent and immunodeficient mice. Folia Microbiol. (Praha) 2001, 46, 565–572. [CrossRef]
[PubMed]

124. Parolini, C.; Chiesa, G.; Zhu, Y.; Forte, T.; Caligari, S.; Gianazza, E.; Sacco, M.G.; Sirtori, C.R.; Rubin, E.M.
Targeted replacement of mouse apolipoprotein A-I with human ApoA-I or the mutant ApoA-IMilano.
Evidence of APOA-IM impaired hepatic secretion. J. Biol. Chem. 2003, 278, 4740–4746. [CrossRef] [PubMed]

125. Llewellyn, S.R.; Britton, G.J.; Contijoch, E.J.; Vennaro, O.H.; Mortha, A.; Colombel, J.F.; Grinspan, A.;
Clemente, J.C.; Merad, M.; Faith, J.J. Interactions Between Diet and the Intestinal Microbiota Alter Intestinal
Permeability and Colitis Severity in Mice. Gastroenterology 2018, 154, 1037–1046. [CrossRef] [PubMed]

126. Hernandez-Chirlaque, C.; Aranda, C.J.; Ocon, B.; Capitan-Canadas, F.; Ortega-Gonzalez, M.; Carrero, J.J.;
Suarez, M.D.; Zarzuelo, A.; Sanchez de Medina, F.; Martinez-Augustin, O. Germ-free and Antibiotic-treated
Mice are Highly Susceptible to Epithelial Injury in DSS Colitis. J. Crohn’s Colitis 2016, 10, 1324–1335. [CrossRef]
[PubMed]

127. Chung, H.; Pamp, S.J.; Hill, J.A.; Surana, N.K.; Edelman, S.M.; Troy, E.B.; Reading, N.C.; Villablanca, E.J.;
Wang, S.; Mora, J.R.; et al. Gut immune maturation depends on colonization with a host-specific microbiota.
Cell 2012, 149, 1578–1593. [CrossRef]

128. Yu, L.C. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers:
exploring a common ground hypothesis. J. Biomed. Sci. 2018, 25, 79. [CrossRef] [PubMed]

129. Buck, M.D.; Sowell, R.T.; Kaech, S.M.; Pearce, E.L. Metabolic Instruction of Immunity. Cell 2017, 169, 570–586.
[CrossRef]

http://dx.doi.org/10.2337/db07-1403
http://dx.doi.org/10.1016/j.febslet.2009.07.001
http://www.ncbi.nlm.nih.gov/pubmed/19589340
http://dx.doi.org/10.1371/journal.pone.0047713
http://www.ncbi.nlm.nih.gov/pubmed/23091640
http://dx.doi.org/10.3168/jds.2014-8391
http://www.ncbi.nlm.nih.gov/pubmed/25108868
http://dx.doi.org/10.1111/j.1365-2036.2009.04018.x
http://www.ncbi.nlm.nih.gov/pubmed/19392860
http://dx.doi.org/10.1136/gutjnl-2012-304119
http://www.ncbi.nlm.nih.gov/pubmed/23598352
http://dx.doi.org/10.1038/nature12820
http://www.ncbi.nlm.nih.gov/pubmed/24336217
http://dx.doi.org/10.1016/j.micpath.2016.02.005
http://dx.doi.org/10.1016/j.biochi.2019.01.017
http://dx.doi.org/10.1073/pnas.1219451110
http://dx.doi.org/10.1016/j.autrev.2019.03.002
http://dx.doi.org/10.1007/BF02818004
http://www.ncbi.nlm.nih.gov/pubmed/11898350
http://dx.doi.org/10.1074/jbc.M207335200
http://www.ncbi.nlm.nih.gov/pubmed/12471038
http://dx.doi.org/10.1053/j.gastro.2017.11.030
http://www.ncbi.nlm.nih.gov/pubmed/29174952
http://dx.doi.org/10.1093/ecco-jcc/jjw096
http://www.ncbi.nlm.nih.gov/pubmed/27117829
http://dx.doi.org/10.1016/j.cell.2012.04.037
http://dx.doi.org/10.1186/s12929-018-0483-8
http://www.ncbi.nlm.nih.gov/pubmed/30413188
http://dx.doi.org/10.1016/j.cell.2017.04.004


Mar. Drugs 2019, 17, 374 22 of 27

130. Kuhn, R.; Lohler, J.; Rennick, D.; Rajewsky, K.; Muller, W. Interleukin-10-deficient mice develop chronic
enterocolitis. Cell 1993, 75, 263–274. [CrossRef] [PubMed]

131. Joossens, M.; De Preter, V.; Ballet, V.; Verbeke, K.; Rutgeerts, P.; Vermeire, S. Effect of oligofructose-enriched
inulin (OF-IN) on bacterial composition and disease activity of patients with Crohn’s disease: Results from a
double-blinded randomised controlled trial. Gut 2012, 61, 958. [CrossRef]

132. Wang, Y.; Kasper, L.H. The role of microbiome in central nervous system disorders. Brain Behav. Immun.
2014, 38, 1–12. [CrossRef]

133. Parian, A.M.; Limketkai, B.N.; Shah, N.D.; Mullin, G.E. Nutraceutical Supplements for Inflammatory Bowel
Disease. Nutr. Clin. Pract. 2015, 30, 551–558. [CrossRef] [PubMed]

134. Belluzzi, A.; Boschi, S.; Brignola, C.; Munarini, A.; Cariani, G.; Miglio, F. Polyunsaturated fatty acids and
inflammatory bowel disease. Am. J. Clin. Nutr. 2000, 71, 339S–342S. [CrossRef] [PubMed]

135. Nieto, N.; Torres, M.I.; Rios, A.; Gil, A. Dietary polyunsaturated fatty acids improve histological and
biochemical alterations in rats with experimental ulcerative colitis. J. Nutr. 2002, 132, 11–19. [CrossRef]
[PubMed]

136. Hudert, C.A.; Weylandt, K.H.; Lu, Y.; Wang, J.; Hong, S.; Dignass, A.; Serhan, C.N.; Kang, J.X. Transgenic
mice rich in endogenous omega-3 fatty acids are protected from colitis. Proc. Natl. Acad. Sci. USA 2006, 103,
11276–11281. [CrossRef] [PubMed]

137. Arita, M.; Yoshida, M.; Hong, S.; Tjonahen, E.; Glickman, J.N.; Petasis, N.A.; Blumberg, R.S.; Serhan, C.N.
Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against
2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc. Natl. Acad. Sci. USA 2005, 102, 7671–7676. [CrossRef]

138. Bidu, C.; Escoula, Q.; Bellenger, S.; Spor, A.; Galan, M.; Geissler, A.; Bouchot, A.; Dardevet, D.; Morio, B.;
Cani, P.D.; et al. The Transplantation of omega3 PUFA-Altered Gut Microbiota of fat-1 Mice to Wild-Type
Littermates Prevents Obesity and Associated Metabolic Disorders. Diabetes 2018, 67, 1512–1523. [CrossRef]
[PubMed]

139. Raphael, W.; Sordillo, L.M. Dietary polyunsaturated fatty acids and inflammation: The role of phospholipid
biosynthesis. Int. J. Mol. Sci. 2013, 14, 21167–21188. [CrossRef]

140. Tsujikawa, T.; Satoh, J.; Uda, K.; Ihara, T.; Okamoto, T.; Araki, Y.; Sasaki, M.; Fujiyama, Y.; Bamba, T. Clinical
importance of n-3 fatty acid-rich diet and nutritional education for the maintenance of remission in Crohn’s
disease. J. Gastroenterol. 2000, 35, 99–104. [CrossRef] [PubMed]

141. Belluzzi, A. N-3 fatty acids for the treatment of inflammatory bowel diseases. Proc. Nutr. Soc. 2002, 61,
391–395. [CrossRef] [PubMed]

142. Uranga, J.A.; Lopez-Miranda, V.; Lombo, F.; Abalo, R. Food, nutrients and nutraceuticals affecting the course
of inflammatory bowel disease. Pharmacol. Rep. 2016, 68, 816–826. [CrossRef]

143. Limketkai, B.N.; Iheozor-Ejiofor, Z.; Gjuladin-Hellon, T.; Parian, A.; Matarese, L.E.; Bracewell, K.;
MacDonald, J.K.; Gordon, M.; Mullin, G.E. Dietary interventions for induction and maintenance of remission
in inflammatory bowel disease. Cochrane Database Syst. Rev. 2019, 2, CD012839. [CrossRef] [PubMed]

144. Statovci, D.; Aguilera, M.; MacSharry, J.; Melgar, S. The Impact of Western Diet and Nutrients on the
Microbiota and Immune Response at Mucosal Interfaces. Front. Immunol. 2017, 8, 838. [CrossRef] [PubMed]

145. Endres, S.; Lorenz, R.; Loeschke, K. Lipid treatment of inflammatory bowel disease. Curr. Opin. Clin. Nutr.
Metab. Care 1999, 2, 117–120. [CrossRef] [PubMed]

146. Feagan, B.G.; Sandborn, W.J.; Mittmann, U.; Bar-Meir, S.; D’Haens, G.; Bradette, M.; Cohen, A.; Dallaire, C.;
Ponich, T.P.; McDonald, J.W.; et al. Omega-3 free fatty acids for the maintenance of remission in Crohn
disease: The EPIC Randomized Controlled Trials. JAMA 2008, 299, 1690–1697. [CrossRef] [PubMed]

147. Turner, D.; Shah, P.S.; Steinhart, A.H.; Zlotkin, S.; Griffiths, A.M. Maintenance of remission in inflammatory
bowel disease using omega-3 fatty acids (fish oil): A systematic review and meta-analyses. Inflamm. Bowel
Dis. 2011, 17, 336–345. [CrossRef] [PubMed]

148. Romano, C.; Cucchiara, S.; Barabino, A.; Annese, V.; Sferlazzas, C. Usefulness of omega-3 fatty acid
supplementation in addition to mesalazine in maintaining remission in pediatric Crohn’s disease: A
double-blind, randomized, placebo-controlled study. World J. Gastroenterol. 2005, 11, 7118–7121. [CrossRef]
[PubMed]

149. Belluzzi, A.; Brignola, C.; Campieri, M.; Pera, A.; Boschi, S.; Miglioli, M. Effect of an enteric-coated fish-oil
preparation on relapses in Crohn’s disease. N. Engl. J. Med. 1996, 334, 1557–1560. [CrossRef]

http://dx.doi.org/10.1016/0092-8674(93)80068-P
http://www.ncbi.nlm.nih.gov/pubmed/8402911
http://dx.doi.org/10.1136/gutjnl-2011-300413
http://dx.doi.org/10.1016/j.bbi.2013.12.015
http://dx.doi.org/10.1177/0884533615586598
http://www.ncbi.nlm.nih.gov/pubmed/26024677
http://dx.doi.org/10.1093/ajcn/71.1.339s
http://www.ncbi.nlm.nih.gov/pubmed/10617993
http://dx.doi.org/10.1093/jn/132.1.11
http://www.ncbi.nlm.nih.gov/pubmed/11773501
http://dx.doi.org/10.1073/pnas.0601280103
http://www.ncbi.nlm.nih.gov/pubmed/16847262
http://dx.doi.org/10.1073/pnas.0409271102
http://dx.doi.org/10.2337/db17-1488
http://www.ncbi.nlm.nih.gov/pubmed/29793999
http://dx.doi.org/10.3390/ijms141021167
http://dx.doi.org/10.1007/s005350050021
http://www.ncbi.nlm.nih.gov/pubmed/10680664
http://dx.doi.org/10.1079/PNS2002171
http://www.ncbi.nlm.nih.gov/pubmed/12296296
http://dx.doi.org/10.1016/j.pharep.2016.05.002
http://dx.doi.org/10.1002/14651858.CD012839.pub2
http://www.ncbi.nlm.nih.gov/pubmed/30736095
http://dx.doi.org/10.3389/fimmu.2017.00838
http://www.ncbi.nlm.nih.gov/pubmed/28804483
http://dx.doi.org/10.1097/00075197-199903000-00004
http://www.ncbi.nlm.nih.gov/pubmed/10453341
http://dx.doi.org/10.1001/jama.299.14.1690
http://www.ncbi.nlm.nih.gov/pubmed/18398081
http://dx.doi.org/10.1002/ibd.21374
http://www.ncbi.nlm.nih.gov/pubmed/20564531
http://dx.doi.org/10.3748/wjg.v11.i45.7118
http://www.ncbi.nlm.nih.gov/pubmed/16437657
http://dx.doi.org/10.1056/NEJM199606133342401


Mar. Drugs 2019, 17, 374 23 of 27

150. Stenson, W.F.; Cort, D.; Rodgers, J.; Burakoff, R.; DeSchryver-Kecskemeti, K.; Gramlich, T.L.; Beeken, W.
Dietary supplementation with fish oil in ulcerative colitis. Ann. Intern. Med. 1992, 116, 609–614. [CrossRef]
[PubMed]

151. Barbosa, D.S.; Cecchini, R.; El Kadri, M.Z.; Rodriguez, M.A.; Burini, R.C.; Dichi, I. Decreased oxidative stress
in patients with ulcerative colitis supplemented with fish oil omega-3 fatty acids. Nutrition 2003, 19, 837–842.
[CrossRef] [PubMed]

152. Mozaffari, H.; Daneshzad, E.; Larijani, B.; Bellissimo, N.; Azadbakht, L. Dietary intake of fish, n-3
polyunsaturated fatty acids, and risk of inflammatory bowel disease: A systematic review and meta-analysis
of observational studies. Eur. J. Nutr. 2019. [CrossRef]

153. Ananthakrishnan, A.N.; Khalili, H.; Konijeti, G.G.; Higuchi, L.M.; de Silva, P.; Fuchs, C.S.; Willett, W.C.;
Richter, J.M.; Chan, A.T. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease.
Gut 2014, 63, 776–784. [CrossRef] [PubMed]

154. IBD in EPIC Study Investigators; Tjonneland, A.; Overvad, K.; Bergmann, M.M.; Nagel, G.; Linseisen, J.;
Hallmans, G.; Palmqvist, R.; Sjodin, H.; Hagglund, G.; et al. Linoleic acid, a dietary n-6 polyunsaturated
fatty acid, and the aetiology of ulcerative colitis: A nested case-control study within a European prospective
cohort study. Gut 2009, 58, 1606–1611. [CrossRef] [PubMed]

155. Marlow, G.; Ellett, S.; Ferguson, I.R.; Zhu, S.; Karunasinghe, N.; Jesuthasan, A.C.; Han, D.Y.; Fraser, A.G.;
Ferguson, L.R. Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in
Crohn’s disease patients. Hum. Genom. 2013, 7, 24. [CrossRef] [PubMed]

156. Prossomariti, A.; Scaioli, E.; Piazzi, G.; Fazio, C.; Bellanova, M.; Biagi, E.; Candela, M.; Brigidi, P.;
Consolandi, C.; Balbi, T.; et al. Short-term treatment with eicosapentaenoic acid improves inflammation and
affects colonic differentiation markers and microbiota in patients with ulcerative colitis. Sci. Rep. 2017, 7,
7458. [CrossRef] [PubMed]

157. Fischbach, M.A.; Sonnenburg, J.L. Eating for two: How metabolism establishes interspecies interactions in
the gut. Cell Host Microbe 2011, 10, 336–347. [CrossRef] [PubMed]

158. Caligari, S.; Chiesa, G.; Johnson, S.K.; Camisassi, D.; Gilio, D.; Marchesi, M.; Parolini, C.; Rubio, L.A.;
Sirtori, C.R. Lupin (Lupinus albus) protein isolate (L-ISO) has adequate nutritional value and reduces large
intestinal weight in rats after restricted and ad libitum feeding. Ann. Nutr. Metab. 2006, 50, 528–537.
[CrossRef] [PubMed]

159. Marchesi, M.; Parolini, C.; Diani, E.; Rigamonti, E.; Cornelli, L.; Arnoldi, A.; Sirtori, C.R.; Chiesa, G.
Hypolipidaemic and anti-atherosclerotic effects of lupin proteins in a rabbit model. Br. J. Nutr. 2008, 100,
707–710. [CrossRef]

160. Zhang, H.; Hu, C.A.; Kovacs-Nolan, J.; Mine, Y. Bioactive dietary peptides and amino acids in inflammatory
bowel disease. Amino Acids 2015, 47, 2127–2141. [CrossRef]

161. Faure, M.; Mettraux, C.; Moennoz, D.; Godin, J.P.; Vuichoud, J.; Rochat, F.; Breuille, D.; Obled, C.;
Corthesy-Theulaz, I. Specific amino acids increase mucin synthesis and microbiota in dextran sulfate
sodium-treated rats. J. Nutr. 2006, 136, 1558–1564. [CrossRef]

162. Kim, C.J.; Kovacs-Nolan, J.; Yang, C.; Archbold, T.; Fan, M.Z.; Mine, Y. L-cysteine supplementation attenuates
local inflammation and restores gut homeostasis in a porcine model of colitis. Biochim. Biophys. Acta 2009,
1790, 1161–1169. [CrossRef]

163. Marchesi, M.; Parolini, C.; Valetti, C.; Mangione, P.; Obici, L.; Giorgetti, S.; Raimondi, S.; Donadei, S.;
Gregorini, G.; Merlini, G.; et al. The intracellular quality control system down-regulates the secretion of
amyloidogenic apolipoprotein A-I variants: A possible impact on the natural history of the disease. Biochim.
Biophys. Acta 2011, 1812, 87–93. [CrossRef] [PubMed]

164. Quinn, S.J.; Ye, C.P.; Diaz, R.; Kifor, O.; Bai, M.; Vassilev, P.; Brown, E. The Ca2+-sensing receptor: A target
for polyamines. Am. J. Physiol. 1997, 273, C1315–C1323. [CrossRef] [PubMed]

165. Parolini, C.; Manzini, S.; Busnelli, M.; Rigamonti, E.; Marchesi, M.; Diani, E.; Sirtori, C.R.; Chiesa, G. Effect of
the combinations between pea proteins and soluble fibres on cholesterolaemia and cholesterol metabolism in
rats. Br. J. Nutr. 2013, 110, 1394–1401. [CrossRef] [PubMed]

166. Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.;
Keeffe, J.; Kempen, J.H.; et al. Global causes of blindness and distance vision impairment 1990-2020: A
systematic review and meta-analysis. Lancet. Glob. Health. 2017, 5, e1221–e1234. [CrossRef]

http://dx.doi.org/10.7326/0003-4819-116-8-609
http://www.ncbi.nlm.nih.gov/pubmed/1312317
http://dx.doi.org/10.1016/S0899-9007(03)00162-X
http://www.ncbi.nlm.nih.gov/pubmed/14559317
http://dx.doi.org/10.1007/s00394-019-01901-0
http://dx.doi.org/10.1136/gutjnl-2013-305304
http://www.ncbi.nlm.nih.gov/pubmed/23828881
http://dx.doi.org/10.1136/gut.2008.169078
http://www.ncbi.nlm.nih.gov/pubmed/19628674
http://dx.doi.org/10.1186/1479-7364-7-24
http://www.ncbi.nlm.nih.gov/pubmed/24283712
http://dx.doi.org/10.1038/s41598-017-07992-1
http://www.ncbi.nlm.nih.gov/pubmed/28785079
http://dx.doi.org/10.1016/j.chom.2011.10.002
http://www.ncbi.nlm.nih.gov/pubmed/22018234
http://dx.doi.org/10.1159/000098145
http://www.ncbi.nlm.nih.gov/pubmed/17191026
http://dx.doi.org/10.1017/S000711450894215X
http://dx.doi.org/10.1007/s00726-014-1886-9
http://dx.doi.org/10.1093/jn/136.6.1558
http://dx.doi.org/10.1016/j.bbagen.2009.05.018
http://dx.doi.org/10.1016/j.bbadis.2010.07.002
http://www.ncbi.nlm.nih.gov/pubmed/20637862
http://dx.doi.org/10.1152/ajpcell.1997.273.4.C1315
http://www.ncbi.nlm.nih.gov/pubmed/9357776
http://dx.doi.org/10.1017/S0007114513000639
http://www.ncbi.nlm.nih.gov/pubmed/23458494
http://dx.doi.org/10.1016/S2214-109X(17)30393-5


Mar. Drugs 2019, 17, 374 24 of 27

167. Libby, P.; Ridker, P.M.; Hansson, G.K.; Leducq Transatlantic Network on, A. Inflammation in atherosclerosis:
From pathophysiology to practice. J. Am. Coll. Cardiol. 2009, 54, 2129–2138. [CrossRef] [PubMed]

168. Parolini, C.; Marchesi, M.; Chiesa, G. HDL therapy for the treatment of cardiovascular diseases. Curr. Vasc.
Pharmacol. 2009, 7, 550–556. [CrossRef] [PubMed]

169. Pronin, A.; Pham, D.; An, W.; Dvoriantchikova, G.; Reshetnikova, G.; Qiao, J.; Kozhekbaeva, Z.; Reiser, A.E.;
Slepak, V.Z.; Shestopalov, V.I. Inflammasome Activation Induces Pyroptosis in the Retina Exposed to Ocular
Hypertension Injury. Front. Mol. Neurosci. 2019, 12, 36. [CrossRef]

170. Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448,
427–434. [CrossRef]

171. Ridker, P.M.; Howard, C.P.; Walter, V.; Everett, B.; Libby, P.; Hensen, J.; Thuren, T.; Group, C.P.I. Effects of
interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6,
and fibrinogen: A phase IIb randomized, placebo-controlled trial. Circulation 2012, 126, 2739–2748. [CrossRef]

172. Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.;
Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N.
Engl. J. Med. 2017, 377, 1119–1131. [CrossRef]

173. SanGiovanni, J.P.; Chew, E.Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and
disease of the retina. Progr. Retin. Eye Res. 2005, 24, 87–138. [CrossRef] [PubMed]

174. Parolini, C.; Marchesi, M.; Lorenzon, P.; Castano, M.; Balconi, E.; Miragoli, L.; Chaabane, L.; Morisetti, A.;
Lorusso, V.; Martin, B.J.; et al. Dose-related effects of repeated ETC-216 (recombinant apolipoprotein
A-I Milano/1-palmitoyl-2-oleoyl phosphatidylcholine complexes) administrations on rabbit lipid-rich soft
plaques: In vivo assessment by intravascular ultrasound and magnetic resonance imaging. J. Am. Coll.
Cardiol. 2008, 51, 1098–1103. [CrossRef] [PubMed]

175. Scott, B.L.; Bazan, N.G. Membrane docosahexaenoate is supplied to the developing brain and retina by the
liver. Proc. Natl. Acad. Sci. USA 1989, 86, 2903–2907. [CrossRef] [PubMed]

176. de Urquiza, A.M.; Liu, S.; Sjoberg, M.; Zetterstrom, R.H.; Griffiths, W.; Sjovall, J.; Perlmann, T. Docosahexaenoic
acid, a ligand for the retinoid X receptor in mouse brain. Science 2000, 290, 2140–2144. [CrossRef] [PubMed]

177. Oresic, M.; Seppanen-Laakso, T.; Yetukuri, L.; Backhed, F.; Hanninen, V. Gut microbiota affects lens and
retinal lipid composition. Exp. Eye Res. 2009, 89, 604–607. [CrossRef] [PubMed]

178. Horai, R.; Zarate-Blades, C.R.; Dillenburg-Pilla, P.; Chen, J.; Kielczewski, J.L.; Silver, P.B.; Jittayasothorn, Y.;
Chan, C.C.; Yamane, H.; Honda, K.; et al. Microbiota-Dependent Activation of an Autoreactive T Cell
Receptor Provokes Autoimmunity in an Immunologically Privileged Site. Immunity 2015, 43, 343–353.
[CrossRef] [PubMed]

179. Nakamura, Y.K.; Janowitz, C.; Metea, C.; Asquith, M.; Karstens, L.; Rosenbaum, J.T.; Lin, P. Short chain fatty
acids ameliorate immune-mediated uveitis partially by altering migration of lymphocytes from the intestine.
Sci. Rep. 2017, 7, 11745. [CrossRef]

180. Wen, X.; Hu, X.; Miao, L.; Ge, X.; Deng, Y.; Bible, P.W.; Wei, L. Epigenetics, microbiota, and intraocular
inflammation: New paradigms of immune regulation in the eye. Prog. Retin. Eye Res. 2018, 64, 84–95.
[CrossRef]

181. Pedrosa, A.C.; Sousa, T.; Pinheiro-Costa, J.; Beato, J.; Falcao, M.S.; Falcao-Reis, F.; Carneiro, A. Treatment of
Neovascular Age-Related Macular Degeneration with Anti-VEGF Agents: Predictive Factors of Long-Term
Visual Outcomes. J. Ophthalmol. 2017, 2017, 4263017. [CrossRef]

182. Horani, M.; Mahmood, S.; Aslam, T.M. Macular Atrophy of the Retinal Pigment Epithelium in Patients
with Neovascular Age-Related Macular Degeneration: What is the Link? Part I: A Review of Disease
Characterization and Morphological Associations. Ophthalmol. Ther. 2019. [CrossRef]

183. Jager, R.D.; Mieler, W.F.; Miller, J.W. Age-related macular degeneration. N. Engl. J. Med. 2008, 358, 2606–2617.
[CrossRef]

184. Anderson, D.H.; Radeke, M.J.; Gallo, N.B.; Chapin, E.A.; Johnson, P.T.; Curletti, C.R.; Hancox, L.S.; Hu, J.;
Ebright, J.N.; Malek, G.; et al. The pivotal role of the complement system in aging and age-related macular
degeneration: Hypothesis re-visited. Prog. Retin. Eye Res. 2010, 29, 95–112. [CrossRef] [PubMed]

185. Chen, M.; Xu, H. Parainflammation, chronic inflammation, and age-related macular degeneration. J. Leukoc.
Biol. 2015, 98, 713–725. [CrossRef] [PubMed]

186. Fletcher, E.L.; Wang, A.Y.; Jobling, A.I.; Rutar, M.V.; Greferath, U.; Gu, B.; Vessey, K.A. Targeting P2X7
receptors as a means for treating retinal disease. Drug Discov. Today 2019. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jacc.2009.09.009
http://www.ncbi.nlm.nih.gov/pubmed/19942084
http://dx.doi.org/10.2174/157016109789043856
http://www.ncbi.nlm.nih.gov/pubmed/19485919
http://dx.doi.org/10.3389/fnmol.2019.00036
http://dx.doi.org/10.1038/nature06005
http://dx.doi.org/10.1161/CIRCULATIONAHA.112.122556
http://dx.doi.org/10.1056/NEJMoa1707914
http://dx.doi.org/10.1016/j.preteyeres.2004.06.002
http://www.ncbi.nlm.nih.gov/pubmed/15555528
http://dx.doi.org/10.1016/j.jacc.2007.12.010
http://www.ncbi.nlm.nih.gov/pubmed/18342229
http://dx.doi.org/10.1073/pnas.86.8.2903
http://www.ncbi.nlm.nih.gov/pubmed/2523075
http://dx.doi.org/10.1126/science.290.5499.2140
http://www.ncbi.nlm.nih.gov/pubmed/11118147
http://dx.doi.org/10.1016/j.exer.2009.06.018
http://www.ncbi.nlm.nih.gov/pubmed/19591827
http://dx.doi.org/10.1016/j.immuni.2015.07.014
http://www.ncbi.nlm.nih.gov/pubmed/26287682
http://dx.doi.org/10.1038/s41598-017-12163-3
http://dx.doi.org/10.1016/j.preteyeres.2018.01.001
http://dx.doi.org/10.1155/2017/4263017
http://dx.doi.org/10.1007/s40123-019-0177-7
http://dx.doi.org/10.1056/NEJMra0801537
http://dx.doi.org/10.1016/j.preteyeres.2009.11.003
http://www.ncbi.nlm.nih.gov/pubmed/19961953
http://dx.doi.org/10.1189/jlb.3RI0615-239R
http://www.ncbi.nlm.nih.gov/pubmed/26292978
http://dx.doi.org/10.1016/j.drudis.2019.03.029
http://www.ncbi.nlm.nih.gov/pubmed/30954685


Mar. Drugs 2019, 17, 374 25 of 27

187. Mares-Perlman, J.A.; Fisher, A.I.; Klein, R.; Palta, M.; Block, G.; Millen, A.E.; Wright, J.D. Lutein and
zeaxanthin in the diet and serum and their relation to age-related maculopathy in the third national health
and nutrition examination survey. Am. J. Epidemiol. 2001, 153, 424–432. [CrossRef] [PubMed]

188. Age-Related Eye Disease Study Research Group; SanGiovanni, J.P.; Chew, E.Y.; Clemons, T.E.; Ferris, F.L., 3rd;
Gensler, G.; Lindblad, A.S.; Milton, R.C.; Seddon, J.M.; Sperduto, R.D. The relationship of dietary carotenoid
and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS
Report No. 22. Arch. Ophthalmol. 2007, 125, 1225–1232. [CrossRef] [PubMed]

189. Delcourt, C.; Carriere, I.; Delage, M.; Barberger-Gateau, P.; Schalch, W.; Group, P.S. Plasma lutein and
zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: The
POLA Study. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2329–2335. [CrossRef] [PubMed]

190. Tuo, J.; Ross, R.J.; Herzlich, A.A.; Shen, D.; Ding, X.; Zhou, M.; Coon, S.L.; Hussein, N.; Salem, N., Jr.;
Chan, C.C. A high omega-3 fatty acid diet reduces retinal lesions in a murine model of macular degeneration.
Am. J. Pathol. 2009, 175, 799–807. [CrossRef] [PubMed]

191. Christen, W.G.; Schaumberg, D.A.; Glynn, R.J.; Buring, J.E. Dietary omega-3 fatty acid and fish intake and
incident age-related macular degeneration in women. Arch. Ophthalmol. 2011, 129, 921–929. [CrossRef]

192. Kvansakul, J.; Rodriguez-Carmona, M.; Edgar, D.F.; Barker, F.M.; Kopcke, W.; Schalch, W.; Barbur, J.L.
Supplementation with the carotenoids lutein or zeaxanthin improves human visual performance. Ophthalmic
Physiol. Opt. 2006, 26, 362–371. [CrossRef]

193. Trieschmann, M.; Beatty, S.; Nolan, J.M.; Hense, H.W.; Heimes, B.; Austermann, U.; Fobker, M.; Pauleikhoff, D.
Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following
supplemental lutein and zeaxanthin: The LUNA study. Exp. Eye Res. 2007, 84, 718–728. [CrossRef] [PubMed]

194. Connolly, E.E.; Beatty, S.; Thurnham, D.I.; Loughman, J.; Howard, A.N.; Stack, J.; Nolan, J.M. Augmentation
of macular pigment following supplementation with all three macular carotenoids: An exploratory study.
Curr. Eye Res. 2010, 35, 335–351. [CrossRef]

195. Group, A.R.; Chew, E.Y.; Clemons, T.; SanGiovanni, J.P.; Danis, R.; Domalpally, A.; McBee, W.; Sperduto, R.;
Ferris, F.L. The Age-Related Eye Disease Study 2 (AREDS2): Study design and baseline characteristics
(AREDS2 report number 1). Ophthalmology 2012, 119, 2282–2289. [CrossRef]

196. Krinsky, N.I.; Landrum, J.T.; Bone, R.A. Biologic mechanisms of the protective role of lutein and zeaxanthin
in the eye. Annu. Rev. Nutr. 2003, 23, 171–201. [CrossRef]

197. SanGiovanni, J.P.; Chew, E.Y.; Agron, E.; Clemons, T.E.; Ferris, F.L., 3rd; Gensler, G.; Lindblad, A.S.;
Milton, R.C.; Seddon, J.M.; Klein, R.; et al. The relationship of dietary omega-3 long-chain polyunsaturated
fatty acid intake with incident age-related macular degeneration: AREDS report no. 23. Arch. Ophthalmol.
2008, 126, 1274–1279. [CrossRef] [PubMed]

198. Wu, J.; Cho, E.; Giovannucci, E.L.; Rosner, B.A.; Sastry, S.M.; Willett, W.C.; Schaumberg, D.A. Dietary
Intakes of Eicosapentaenoic Acid and Docosahexaenoic Acid and Risk of Age-Related Macular Degeneration.
Ophthalmology 2017, 124, 634–643. [CrossRef] [PubMed]

199. Delyfer, M.N.; Buaud, B.; Korobelnik, J.F.; Rougier, M.B.; Schalch, W.; Etheve, S.; Vaysse, C.; Combe, N.;
Goff, M.L.; Wolf-Schnurrbusch, U.E.; et al. Association of macular pigment density with plasma omega-3
fatty acids: The PIMAVOSA study. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1204–1210. [CrossRef]

200. Liu, A.; Chang, J.; Lin, Y.; Shen, Z.; Bernstein, P.S. Long-chain and very long-chain polyunsaturated fatty
acids in ocular aging and age-related macular degeneration. J. Lipid Res. 2010, 51, 3217–3229. [CrossRef]

201. Ramkumar, H.L.; Tuo, J.; Shen, D.F.; Zhang, J.; Cao, X.; Chew, E.Y.; Chan, C.C. Nutrient supplementation with
n3 polyunsaturated fatty acids, lutein, and zeaxanthin decrease A2E accumulation and VEGF expression in
the retinas of Ccl2/Cx3cr1-deficient mice on Crb1rd8 background. J. Nutr. 2013, 143, 1129–1135. [CrossRef]

202. Parolini, C.; Rigamonti, E.; Marchesi, M.; Busnelli, M.; Cinquanta, P.; Manzini, S.; Sirtori, C.R.; Chiesa, G.
Cholesterol-lowering effect of dietary Lupinus angustifolius proteins in adult rats through regulation of
genes involved in cholesterol homeostasis. Food Chem. 2012, 132, 1475–1479. [CrossRef]

203. Prokopiou, E.; Kolovos, P.; Kalogerou, M.; Neokleous, A.; Papagregoriou, G.; Deltas, C.; Malas, S.; Georgiou, T.
Therapeutic potential of omega-3 fatty acids supplementation in a mouse model of dry macular degeneration.
BMJ Open Ophthalmol. 2017, 1, e000056. [CrossRef]

204. Georgiou, T.; Wen, Y.T.; Chang, C.H.; Kolovos, P.; Kalogerou, M.; Prokopiou, E.; Neokleous, A.; Huang, C.T.;
Tsai, R.K. Neuroprotective Effects of Omega-3 Polyunsaturated Fatty Acids in a Rat Model of Anterior
Ischemic Optic Neuropathy. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1603–1611. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/aje/153.5.424
http://www.ncbi.nlm.nih.gov/pubmed/11226974
http://dx.doi.org/10.1001/archopht.125.9.1225
http://www.ncbi.nlm.nih.gov/pubmed/17846363
http://dx.doi.org/10.1167/iovs.05-1235
http://www.ncbi.nlm.nih.gov/pubmed/16723441
http://dx.doi.org/10.2353/ajpath.2009.090089
http://www.ncbi.nlm.nih.gov/pubmed/19608872
http://dx.doi.org/10.1001/archophthalmol.2011.34
http://dx.doi.org/10.1111/j.1475-1313.2006.00387.x
http://dx.doi.org/10.1016/j.exer.2006.12.010
http://www.ncbi.nlm.nih.gov/pubmed/17306793
http://dx.doi.org/10.3109/02713680903521951
http://dx.doi.org/10.1016/j.ophtha.2012.05.027
http://dx.doi.org/10.1146/annurev.nutr.23.011702.073307
http://dx.doi.org/10.1001/archopht.126.9.1274
http://www.ncbi.nlm.nih.gov/pubmed/18779490
http://dx.doi.org/10.1016/j.ophtha.2016.12.033
http://www.ncbi.nlm.nih.gov/pubmed/28153441
http://dx.doi.org/10.1167/iovs.11-8721
http://dx.doi.org/10.1194/jlr.M007518
http://dx.doi.org/10.3945/jn.112.169649
http://dx.doi.org/10.1016/j.foodchem.2011.12.004
http://dx.doi.org/10.1136/bmjophth-2016-000056
http://dx.doi.org/10.1167/iovs.16-20979
http://www.ncbi.nlm.nih.gov/pubmed/28291869


Mar. Drugs 2019, 17, 374 26 of 27

205. Jun, B.; Mukherjee, P.K.; Asatryan, A.; Kautzmann, M.A.; Heap, J.; Gordon, W.C.; Bhattacharjee, S.; Yang, R.;
Petasis, N.A.; Bazan, N.G. Elovanoids are novel cell-specific lipid mediators necessary for neuroprotective
signaling for photoreceptor cell integrity. Sci. Rep. 2017, 7, 5279. [CrossRef] [PubMed]

206. Zhu, W.; Wu, Y.; Meng, Y.F.; Xing, Q.; Tao, J.J.; Lu, J. Fish Consumption and Age-Related Macular Degeneration
Incidence: A Meta-Analysis and Systematic Review of Prospective Cohort Studies. Nutrients 2016, 8, 743.
[CrossRef] [PubMed]

207. Andriessen, E.M.; Wilson, A.M.; Mawambo, G.; Dejda, A.; Miloudi, K.; Sennlaub, F.; Sapieha, P. Gut
microbiota influences pathological angiogenesis in obesity-driven choroidal neovascularization. EMBO Mol.
Med. 2016, 8, 1366–1379. [CrossRef] [PubMed]

208. Rowan, S.; Jiang, S.; Korem, T.; Szymanski, J.; Chang, M.L.; Szelog, J.; Cassalman, C.; Dasuri, K.; McGuire, C.;
Nagai, R.; et al. Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related
macular degeneration. Proc. Natl. Acad. Sci. USA 2017, 114, E4472–E4481. [CrossRef]

209. Rizzatti, G.; Lopetuso, L.R.; Gibiino, G.; Binda, C.; Gasbarrini, A. Proteobacteria: A Common Factor in
Human Diseases. Biomed. Res. Int. 2017, 2017, 9351507. [CrossRef]

210. Lin, P. Importance of the intestinal microbiota in ocular inflammatory diseases: A review. Clin. Exp.
Ophthalmol. 2019, 47, 418–422. [CrossRef]

211. Chiu, C.J.; Chang, M.L.; Zhang, F.F.; Li, T.; Gensler, G.; Schleicher, M.; Taylor, A. The relationship of major
American dietary patterns to age-related macular degeneration. Am. J. Ophthalmol. 2014, 158, 118–127.
[CrossRef]

212. Quigley, H.A. Open-angle glaucoma. N. Engl. J. Med. 1993, 328, 1097–1106. [CrossRef]
213. Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and

projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014,
121, 2081–2090. [CrossRef] [PubMed]

214. Sowka, J. Pigment dispersion syndrome and pigmentary glaucoma. Optometry 2004, 75, 115–122. [CrossRef]
[PubMed]

215. Ahmed, F.; Brown, K.M.; Stephan, D.A.; Morrison, J.C.; Johnson, E.C.; Tomarev, S.I. Microarray analysis
of changes in mRNA levels in the rat retina after experimental elevation of intraocular pressure. Investig.
Ophthalmol. Vis. Sci. 2004, 45, 1247–1258. [CrossRef] [PubMed]

216. Yan, X.; Tezel, G.; Wax, M.B.; Edward, D.P. Matrix metalloproteinases and tumor necrosis factor alpha in
glaucomatous optic nerve head. Arch. Ophthalmol. 2000, 118, 666–673. [CrossRef] [PubMed]

217. Zhou, X.; Li, F.; Kong, L.; Tomita, H.; Li, C.; Cao, W. Involvement of inflammation, degradation, and apoptosis
in a mouse model of glaucoma. J. Biol. Chem. 2005, 280, 31240–31248. [CrossRef] [PubMed]

218. Chi, W.; Li, F.; Chen, H.; Wang, Y.; Zhu, Y.; Yang, X.; Zhu, J.; Wu, F.; Ouyang, H.; Ge, J.; et al. Caspase-8
promotes NLRP1/NLRP3 inflammasome activation and IL-1beta production in acute glaucoma. Proc. Natl.
Acad. Sci. USA 2014, 111, 11181–11186. [CrossRef] [PubMed]

219. Fan, W.; Li, X.; Wang, W.; Mo, J.S.; Kaplan, H.; Cooper, N.G. Early Involvement of Immune/Inflammatory
Response Genes in Retinal Degeneration in DBA/2J Mice. Ophthalmol. Eye Dis. 2010, 1, 23–41. [CrossRef]
[PubMed]

220. Conlon, R.; Saheb, H.; Ahmed, I.I. Glaucoma treatment trends: A review. Can. J. Ophthalmol. 2017, 52,
114–124. [CrossRef]

221. Seddon, J.M.; Cote, J.; Rosner, B. Progression of age-related macular degeneration: Association with dietary
fat, transunsaturated fat, nuts, and fish intake. Arch. Ophthalmol. 2003, 121, 1728–1737. [CrossRef]

222. Smith, W.; Mitchell, P.; Leeder, S.R. Dietary fat and fish intake and age-related maculopathy. Arch. Ophthalmol.
2000, 118, 401–404. [CrossRef] [PubMed]

223. Hodge, W.G.; Barnes, D.; Schachter, H.M.; Pan, Y.I.; Lowcock, E.C.; Zhang, L.; Sampson, M.; Morrison, A.;
Tran, K.; Miguelez, M.; et al. The evidence for efficacy of omega-3 fatty acids in preventing or slowing the
progression of retinitis pigmentosa: A systematic review. Can. J. Ophthalmol. 2006, 41, 481–490. [CrossRef]

224. Tellez-Vazquez, J. Omega-3 fatty acid supplementation improves dry eye symptoms in patients with
glaucoma: Results of a prospective multicenter study. Clin. Ophthalmol. 2016, 10, 617–626. [CrossRef]
[PubMed]

225. Ren, H.; Magulike, N.; Ghebremeskel, K.; Crawford, M. Primary open-angle glaucoma patients have reduced
levels of blood docosahexaenoic and eicosapentaenoic acids. Prostaglandins Leukot. Essent. Fatty Acids 2006,
74, 157–163. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/s41598-017-05433-7
http://www.ncbi.nlm.nih.gov/pubmed/28706274
http://dx.doi.org/10.3390/nu8110743
http://www.ncbi.nlm.nih.gov/pubmed/27879656
http://dx.doi.org/10.15252/emmm.201606531
http://www.ncbi.nlm.nih.gov/pubmed/27861126
http://dx.doi.org/10.1073/pnas.1702302114
http://dx.doi.org/10.1155/2017/9351507
http://dx.doi.org/10.1111/ceo.13493
http://dx.doi.org/10.1016/j.ajo.2014.04.016
http://dx.doi.org/10.1056/NEJM199304153281507
http://dx.doi.org/10.1016/j.ophtha.2014.05.013
http://www.ncbi.nlm.nih.gov/pubmed/24974815
http://dx.doi.org/10.1016/S1529-1839(04)70023-8
http://www.ncbi.nlm.nih.gov/pubmed/14989503
http://dx.doi.org/10.1167/iovs.03-1123
http://www.ncbi.nlm.nih.gov/pubmed/15037594
http://dx.doi.org/10.1001/archopht.118.5.666
http://www.ncbi.nlm.nih.gov/pubmed/10815159
http://dx.doi.org/10.1074/jbc.M502641200
http://www.ncbi.nlm.nih.gov/pubmed/15985430
http://dx.doi.org/10.1073/pnas.1402819111
http://www.ncbi.nlm.nih.gov/pubmed/25024200
http://dx.doi.org/10.1177/117917211000200005
http://www.ncbi.nlm.nih.gov/pubmed/20352036
http://dx.doi.org/10.1016/j.jcjo.2016.07.013
http://dx.doi.org/10.1001/archopht.121.12.1728
http://dx.doi.org/10.1001/archopht.118.3.401
http://www.ncbi.nlm.nih.gov/pubmed/10721964
http://dx.doi.org/10.1016/S0008-4182(06)80012-8
http://dx.doi.org/10.2147/OPTH.S96433
http://www.ncbi.nlm.nih.gov/pubmed/27103781
http://dx.doi.org/10.1016/j.plefa.2005.11.007
http://www.ncbi.nlm.nih.gov/pubmed/16410047


Mar. Drugs 2019, 17, 374 27 of 27

226. Kalogerou, M.; Kolovos, P.; Prokopiou, E.; Papagregoriou, G.; Deltas, C.; Malas, S.; Georgiou, T. Omega-3
fatty acids protect retinal neurons in the DBA/2J hereditary glaucoma mouse model. Exp. Eye Res. 2018, 167,
128–139. [CrossRef] [PubMed]

227. Prokopiou, E.; Kolovos, P.; Kalogerou, M.; Neokleous, A.; Nicolaou, O.; Sokratous, K.; Kyriacou, K.;
Georgiou, T. Omega-3 Fatty Acids Supplementation: Therapeutic Potential in a Mouse Model of Stargardt
Disease. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2757–2767. [CrossRef] [PubMed]

228. Spite, M.; Claria, J.; Serhan, C.N. Resolvins, specialized proresolving lipid mediators, and their potential
roles in metabolic diseases. Cell Metab. 2014, 19, 21–36. [CrossRef] [PubMed]

229. Lafuente, M.P.; Villegas-Perez, M.P.; Selles-Navarro, I.; Mayor-Torroglosa, S.; Miralles de Imperial, J.;
Vidal-Sanz, M. Retinal ganglion cell death after acute retinal ischemia is an ongoing process whose severity
and duration depends on the duration of the insult. Neuroscience 2002, 109, 157–168. [CrossRef] [PubMed]

230. Grozdanic, S.D.; Kwon, Y.H.; Sakaguchi, D.S.; Kardon, R.H.; Sonea, I.M. Functional evaluation of retina
and optic nerve in the rat model of chronic ocular hypertension. Exp. Eye Res. 2004, 79, 75–83. [CrossRef]
[PubMed]

231. Mukaida, Y.; Machida, S.; Masuda, T.; Tazawa, Y. Correlation of retinal function with retinal histopathology
following ischemia-reperfusion in rat eyes. Curr. Eye Res. 2004, 28, 381–389. [CrossRef]

232. Mayor-Torroglosa, S.; De la Villa, P.; Rodriguez, M.E.; Lopez-Herrera, M.P.; Aviles-Trigueros, M.;
Garcia-Aviles, A.; de Imperial, J.M.; Villegas-Perez, M.P.; Vidal-Sanz, M. Ischemia results 3 months later in
altered ERG, degeneration of inner layers, and deafferented tectum: Neuroprotection with brimonidine.
Investig. Ophthalmol. Vis. Sci. 2005, 46, 3825–3835. [CrossRef]

233. Schnebelen, C.; Pasquis, B.; Salinas-Navarro, M.; Joffre, C.; Creuzot-Garcher, C.P.; Vidal-Sanz, M.; Bron, A.M.;
Bretillon, L.; Acar, N. A dietary combination of omega-3 and omega-6 polyunsaturated fatty acids is more
efficient than single supplementations in the prevention of retinal damage induced by elevation of intraocular
pressure in rats. Graefes Arch. Clin. Exp. Ophthalmol. 2009, 247, 1191–1203. [CrossRef] [PubMed]

234. Bazan, N.G. Cell survival matters: Docosahexaenoic acid signaling, neuroprotection and photoreceptors.
Trends Neurosci. 2006, 29, 263–271. [CrossRef] [PubMed]

235. Schnebelen, C.; Gregoire, S.; Pasquis, B.; Joffre, C.; Creuzot-Garcher, C.P.; Bron, A.M.; Bretillon, L.; Acar, N.
Dietary n-3 and n-6 PUFA enhance DHA incorporation in retinal phospholipids without affecting PGE(1)
and PGE (2) levels. Lipids 2009, 44, 465–470. [CrossRef] [PubMed]

236. Rigamonti, E.; Parolini, C.; Marchesi, M.; Diani, E.; Brambilla, S.; Sirtori, C.R.; Chiesa, G. Hypolipidemic
effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism. Mol. Nutr. Food Res.
2010, 54, S24–S30. [CrossRef] [PubMed]

237. Chen, H.; Cho, K.S.; Vu, T.H.K.; Shen, C.H.; Kaur, M.; Chen, G.; Mathew, R.; McHam, M.L.; Fazelat, A.;
Lashkari, K.; et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration
in glaucoma. Nat. Commun. 2018, 9, 3209. [CrossRef] [PubMed]

238. Morita, Y.; Jounai, K.; Sakamoto, A.; Tomita, Y.; Sugihara, Y.; Suzuki, H.; Ohshio, K.; Otake, M.; Fujiwara, D.;
Kanauchi, O.; et al. Long-term intake of Lactobacillus paracasei KW3110 prevents age-related chronic
inflammation and retinal cell loss in physiologically aged mice. Aging 2018, 10, 2723–2740. [CrossRef]
[PubMed]

239. Veckman, V.; Miettinen, M.; Matikainen, S.; Lande, R.; Giacomini, E.; Coccia, E.M.; Julkunen, I. Lactobacilli
and streptococci induce inflammatory chemokine production in human macrophages that stimulates Th1
cell chemotaxis. J. Leukoc. Biol. 2003, 74, 395–402. [CrossRef] [PubMed]

240. Schunck, W.H.; Konkel, A.; Fischer, R.; Weylandt, K.H. Therapeutic potential of omega-3 fatty acid-derived
epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol. Ther. 2018, 183, 177–204.
[CrossRef]

241. Markowiak, P.; Slizewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients
2017, 9, 1021. [CrossRef]

242. Sommer, F.; Anderson, J.M.; Bharti, R.; Raes, J.; Rosenstiel, P. The resilience of the intestinal microbiota
influences health and disease. Nat. Rev. Microbiol. 2017, 15, 630–638. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.exer.2017.12.005
http://www.ncbi.nlm.nih.gov/pubmed/29258748
http://dx.doi.org/10.1167/iovs.17-23523
http://www.ncbi.nlm.nih.gov/pubmed/29860462
http://dx.doi.org/10.1016/j.cmet.2013.10.006
http://www.ncbi.nlm.nih.gov/pubmed/24239568
http://dx.doi.org/10.1016/S0306-4522(01)00458-4
http://www.ncbi.nlm.nih.gov/pubmed/11784707
http://dx.doi.org/10.1016/j.exer.2004.02.011
http://www.ncbi.nlm.nih.gov/pubmed/15183102
http://dx.doi.org/10.1080/02713680490503679
http://dx.doi.org/10.1167/iovs.05-0392
http://dx.doi.org/10.1007/s00417-009-1094-6
http://www.ncbi.nlm.nih.gov/pubmed/19437028
http://dx.doi.org/10.1016/j.tins.2006.03.005
http://www.ncbi.nlm.nih.gov/pubmed/16580739
http://dx.doi.org/10.1007/s11745-009-3289-3
http://www.ncbi.nlm.nih.gov/pubmed/19242743
http://dx.doi.org/10.1002/mnfr.200900251
http://www.ncbi.nlm.nih.gov/pubmed/20077421
http://dx.doi.org/10.1038/s41467-018-05681-9
http://www.ncbi.nlm.nih.gov/pubmed/30097565
http://dx.doi.org/10.18632/aging.101583
http://www.ncbi.nlm.nih.gov/pubmed/30341255
http://dx.doi.org/10.1189/jlb.0402212
http://www.ncbi.nlm.nih.gov/pubmed/12949243
http://dx.doi.org/10.1016/j.pharmthera.2017.10.016
http://dx.doi.org/10.3390/nu9091021
http://dx.doi.org/10.1038/nrmicro.2017.58
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Fish n-3 PUFAs 
	The Gut Microbiota 
	Human Disease, n-3 PUFAs and Gut Microbiota 
	Inflammatory Bowel Disease 
	Retinal Disease 
	Age-Related Macular Degeneration 
	Glaucoma 


	Conclusions 
	References

